research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structures of substituted pyridine N-oxide with manganese(II) acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, GA 31419, USA, and bSt. Vincent's Academy, Savannah, 31401 Georgia, USA
*Correspondence e-mail: wlynch@georgiasouthern.edu

Edited by M. Zeller, Purdue University, USA (Received 24 April 2018; accepted 30 August 2018; online 11 September 2018)

Manganese(II) acetate coordination polymers have been prepared with three derivatives of pyridine N-oxide. The compounds are catena-poly[manganese(II)-μ3-acetato-di-μ2-acetato-[aqua­manganese(II)]-μ2-acetato-μ-(pyridine N-oxide)-manganese(II)-μ3-acetato-μ2-acetato-μ-(pyridine N-oxide)-[aqua­manganese(II)]-di-μ2-acetato], [Mn4(CH3COO)8(C5H5NO)2(H2O)2]n, (I), catena-poly[[manganese(II)]-μ3-acetato-μ2-acetato-μ-(2-methyl­pyridine N-oxide)-[aqua­manganese(II)]-di-μ2-acetato-manganese(II)-di-μ2-acetato-μ3-acetato-[aqua­manganese(II)]-μ2-acetato-μ-(2-methyl­pyridine N-oxide)], [Mn4(CH3COO)8(C6H7NO)2(H2O)2]n, (II), and catena-poly[[manganese(II)-di-μ2-acetato-μ-(4-methyl­pyridine N-oxide)] monohydrate], {[Mn(CH3COO)2(C6H7NO)]·H2O}n, (III). Compounds (I) and (II) both have three unique Mn atoms; in both compounds two of them sit on a crystallographic inversion center while the third is on a general position. In compound (III), the single unique Mn atom sits on a general position. Pseudo-octa­hedral six-coordinate mangan­ese(II) centers are found in all compounds. All of the compounds form chains of Mn atoms bridged by acetate ions and the oxygen atom of the N-oxide in pyridine N-oxide (PNO), 2-methyl­pyridine N-oxide (2MePNO), or 4-methyl­pyridine N-oxide (4MePNO). Compound (I) and (II) both exhibit a bound water of solvation. In (I), the water hydrogen bonds to a nearby acetate whereas in (II) the water mol­ecule forms bridging hydrogen bonds between two neighboring acetates. In compound (III) a water mol­ecule of solvation is found in the lattice, not bound to the metal ion but hydrogen bonding to a bridging acetate.

1. Chemical context

N-Oxides and acetates both have inter­esting binding modes that facilitate the growth of unique coordination structures. The structures take advantage of the versatility of the acetate ions and the hybridization and dipole at the oxygen atom on the N-oxide. The structures extend to the formation of coord­ination polymers that have been reported previously (Sarma et al., 2008[Sarma, R., Karmakar, A. & Baruah, J. B. (2008). Inorg. Chim. Acta, 361, 2081-2086.], 2009[Sarma, R., Perumal, A. & Baruah, J. B. (2009). J. Coord. Chem. 62, 1513-1524.]; Sarma & Baruah, 2011[Sarma, R. & Baruah, J. B. (2011). Solid State Sci. 13, 1692-1700.]). A recent report shows the utility of pyridine N-oxide to facilitate coordination polymer formation with both zinc(II) and manganese(II) metal ions with a single bifunctional ligand containing an acetate and N-oxide moiety (Ren et al., 2018[Ren, X.-H., Wang, P., Cheng, J.-Y. & Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145-151.]). In a previous paper in this series, we examined the initial utility of aromatic N-oxide ligands to form polymeric structures with mangan­ese(II) chloride (Kang et al., 2017[Kang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434-1438.]). Complexes have also been used previously as metal centers for catalytic transformations (Liu et al., 2014[Liu, J., Chen, L., Cui, H., Zhang, Y., Zhang, L. & Su, C.-Y. (2014). Chem. Soc. Rev. 43, 6011-6061.]).

[Scheme 1]
[Scheme 2]
[Scheme 3]

In this contribution, we report the synthesis and solid-state structures of three manganese(II) complexes with the versatile mono- or bidentate bridging ligands acetate and three deriv­atives of pyridine N-oxide (Figs. 1[link]–3[link][link]). In this study, each of the ligands pyridine N-oxide, 2-methyl and 4-methyl pyridine N-oxide has an impact on the structures of manganese(II) acetate complexes. All three complexes form coordination polymers with the N-oxide bridging in a μ2-1,1 mode and varying acetate ligation. The study was conducted to investigate the utility of both acetate and substituted pyridine N-oxide to facilitate the growth of unique coordination polymers.

[Figure 1]
Figure 1
A view of compound I, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level, H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) −x + 1, –y + 1, −z + 1; (ii) x + [{1\over 2}], y − [{1\over 2}], z; (iii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1.]
[Figure 2]
Figure 2
A view of compound II, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level, H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y, −z + 2.]
[Figure 3]
Figure 3
A view of compound III, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level, H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}].]

2. Structural commentary

General structural details. The pyridine N-oxide (PNO) complex, compound I, is a repeating tetrameric coordination polymer that crystallizes in the monoclinic space group C2/c. The manganese atoms align as an Mn3, Mn2, Mn1, Mn2, chain. The structure can be formulated in the simplest empirical relationship as [Mn4(PNO)2(OAc)8(H2O)2]n. Examining the mol­ecule across the AB vertex, Mn3 and Mn1 sit in a repeating line of Mn3, Mn1, Mn3 atoms. The Mn2 atoms all sit along a different line in this orientation. The atom-to-atom connectivity in the Mn3,Mn2,Mn1,Mn2 repeating unit can best be described as zigzag (Fig. 4[link]). In this orientation, the pyridine rings also stack; however, they are not π stacked because of the separation distance caused by the methyl group of an acetate ligand in between each aromatic group. Inter­polymeric chain hydrogen bonding is observed from the water mol­ecule (O10) on Mn2 to an oxygen atom (O6) on an Mn2-bound acetate ligand (Table 1[link]). The structure contains a six-coordinate metal center at each MnII atom with all six donor atoms being oxygen. Mn1 sits on an inversion center and is bound trans by two μ2-1,1-PNOs (to Mn2), trans by two μ2-1,3-acetates (to Mn2), and trans by two μ3-1,3,3-acetates (to both Mn2 and Mn3). Mn2 is also six-coordinate with a μ2-1,1-PNO (from Mn1), a μ2-1,3-acetate (from Mn1), and a μ3-1,3,3-acetate (from Mn1 and Mn3). Further, the octa­hedral environment is completed by a water of hydration, a μ2-1,1-acetate (to Mn3), and a μ2-1,3-acetate (to Mn3). Mn3 also sits on an inversion cente, showing an octahedral enviroment where all the six coordinated oxygen atoms belong to acetate ligands. The coordination sphere comprises two μ3-1,3,3-acetates (uniquely bound to Mn2 and Mn1), two μ2-1,1-acetates (to Mn2) and two μ2-1,3-acetates (to Mn2).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O9i 0.85 (2) 1.85 (2) 2.652 (2) 157 (3)
O10—H10B⋯O6ii 0.83 (2) 1.98 (2) 2.786 (2) 166 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 4]
Figure 4
Crystal packing diagram of compound I, viewed along the b axis. Displacement ellipsoids are drawn at the 50% probability level, H atoms not involved in hydrogen bonding have been omitted for clarity, hydrogen bonds are rendered in blue.

The 2-methyl­pyridine N-oxide (2MePNO) complex, compound II, is similar to I in that it is a repeating tetrameric coordination polymer. The polymer crystallizes in the triclinic system, space group P[\overline{1}]. The manganese atoms align as an Mn3, Mn2, Mn1, Mn2 chain similar to I with Mn1 and Mn3 sitting on inversion centers. Examining the mol­ecule across the BC vertex, as in I, the Mn3 and Mn1 sit in a line whereas the Mn2 atoms all sit along a different line with respect to this orientation. The atom-to-atom connectivity in the Mn3, Mn2, Mn1, Mn2 repeating unit can best be described as zigzag (Fig. 5[link]). In this orientation, the 2-methyl­pyridine ring planes are twisted by 85.31 (2)° with respect to the Mn1/O2/Mn2 plane with all the methyl groups pointing in two symmetry-related directions. As observed in I, inter­polymeric chain hydrogen bonding is observed from the water mol­ecule (O10) on Mn2 to an oxygen atom on the adjacent Mn2 on the next polymer. However, symmetry dictates that the hydrogen bonding is to oxygen atoms (O5 and O8) on two acetates bound to Mn2 (Table 2[link]). The structure can be formulated with the same empirical stoichiometry as I, [Mn4(2MePNO)2(OAc)7(H2O)4]n. Compound II has one important variation from the PNO derivative outlined above. There is no evidence of the μ2-1,1-acetate bridge found above. While the singular μ3-1,3,3-acetate bridge is retained between Mn2 and Mn3, the μ2-1,1 has been replaced by a μ2-1,3 acetate bridge. This is likely because of the steric demands of the 2-methyl substituent.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10D⋯O5i 0.84 (2) 2.04 (2) 2.821 (3) 155 (3)
O10—H10E⋯O8i 0.85 (2) 1.94 (2) 2.727 (3) 155 (3)
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 5]
Figure 5
Crystal packing diagram of compound II, viewed along the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity, hydrogen bonds are rendered in blue.

The 4-methyl­pyridine N-oxide (4MePNO) complex, compound III, is a repeating coordination polymer with one unique MnII ion that crystallizes in the monoclinic system, space group P21/n. In the coordination polymer, the manganese atoms are aligned along the b-axis direction. The structure can be formulated as [Mn(4MePNO)2(OAc)4(H2O)]n. The six-coordinate metal center is bridged by two oxygen atoms from μ2-1,1 4MePNO and four μ2-1,3 acetate bridges. The 4MePNO complex mol­ecules alternate above and below the line formed by the manganese atoms. Unlike I and II, compound III only forms intra­molecular hydrogen bonding in the polymeric chain (Table 3[link], Fig. 6[link]). The water observed in the lattice forms a hydrogen bond at 2.21 (2) Å with the O2 atom belonging to one of the acetate μ2-1,3 acetate bridges.

Table 3
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6D⋯O3i 0.84 (2) 2.23 (2) 3.052 (3) 165 (4)
O6—H6E⋯O2 0.84 (2) 2.21 (2) 3.035 (3) 170 (4)
Symmetry code: (i) x, y+1, z.
[Figure 6]
Figure 6
Crystal packing diagram of compound III, viewed along the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity, hydrogen bonds are rendered in blue.

Specific structural details. In I, the bond distances involving Mn1 lie between 2.1822 (15) Å (Mn1—O2) and 2.1207 (16) Å (Mn1—O4) whereas all bond angles are within 2.5° of 90°. These angles and distances are similar to those for other MnII acetate structures (see for example Dave et al., 1993[Dave, B. C., Czernuszewicz, R. S., Bond, M. R. & Carrano, C. J. (1993). Inorg. Chem. 32, 3593-3594.] and Ciunik & Głowiak, 1980[Ciunik, Z. & Głowiak, T. (1980). Acta Cryst. B36, 2029-2033.]). The O1 atom of the PNO ligand bridges Mn1 at 2.168 (2) Å and Mn2 at 2.211 (2) Å which is unremarkable for compounds of MnII and pyridine N-oxide (Sniekers et al., 2017[Sniekers, J., Malaquias, J. C., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2017). Dalton Trans. 46, 2497-2509.]; Mondal et al., 2012[Mondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169-174.]). Mn2 shows a short bond distance to O5 (a μ2-1,3-acetate bridging from Mn1) of 2.1062 (15) Å and a long distance of 2.2671 (14) Å from O8, which is a μ2-1,1-acetate bridging to Mn3. The water mol­ecule (O10), see Table 1[link], is found at 2.1506 (16) Å at a distance similar to that reported previously. (Mondal et al., 2012[Mondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169-174.]) and also hydrogen bonded to O9 (unbound acetate oxygen from μ2-1,1-acetate bridging across Mn2 and Mn3) at 2.652 (2) Å. The O3—Mn2—O10 bond angle is severely distorted from 180° to 162.68 (6)°. The other two trans bond angles around Mn2 are approximately 175°. The Mn3 bond distances span from 2.1338 (15) (Mn3—O7) to 2.2194 (14) Å (Mn3—O8). The O3—Mn3—O8 bond angle is somewhat constrained at 78.19 (5)° whereas the remaining angles are all nearly 90°.

The bond distances involving Mn1 in compound II lie between 2.129 (2) Å (Mn1—O4) and 2.2061 (19) Å (Mn1—O1) which are normal for MnII acetate compounds of this type (Dave et al., 1993[Dave, B. C., Czernuszewicz, R. S., Bond, M. R. & Carrano, C. J. (1993). Inorg. Chem. 32, 3593-3594.] and Ciunik & Głowiak, 1980[Ciunik, Z. & Głowiak, T. (1980). Acta Cryst. B36, 2029-2033.]). The long bond distance is to the oxygen originating from the bridging 2MePNO and is 0.0398 Å longer than the Mn1—O1 PNO bond in I but similar to those reported previously (Sniekers et al., 2017[Sniekers, J., Malaquias, J. C., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2017). Dalton Trans. 46, 2497-2509.]; Mondal et al., 2012[Mondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169-174.]). The bond angles are within 5° of the expected 90° for octa­hedral systems with the most constrained angle being O1—Mn1—O2 [85.03 (7)°]. Mn2 has its shortest bond distance to O6 (a μ2-1,3-acetate bridging from Mn3) of 2.136 (2) Å, whereas its longest distance is 2.239 (2) Å to O10, the terminal water mol­ecule. The μ2-1,1-2MePNO (O1) bond distance to Mn2 is also long [2.2300 (18) Å]. The μ3-1,3,3-acetate also links Mn2 and Mn3 via the O3 atom. The O5—Mn2—O10 bond angle is significantly distorted with a value of 81.63 (8)° as is the O6—Mn2—O10 bond angle of 78.61 (8)°. The μ3-1,3,3-acetate oxygen (O3) forms a long bond with Mn3 as well, observed at 2.3091 (18) Å. The other Mn3—O bond distances are unremarkable at approximately 2.15 Å. The bond angles around Mn3 are all within 4° of 90° in the six-coordinate Mn3 environment.

In compound III, the Mn1—O1 (4MePNO) bond length is the longest of those in this study, with the metal center at 2.203 (3) Å (Sniekers et al., 2017[Sniekers, J., Malaquias, J. C., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2017). Dalton Trans. 46, 2497-2509.]; Mondal et al., 2012[Mondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169-174.]) whereas the acetate Mn1—O bond distances range from 2.134 (3) Å to 2.179 (2) Å. The bond angles around the metal center are all within 5° of 90°, with the acetate O—Mn1—O angles being slightly larger, whereas the O(acetate)—Mn1—O(4MePNO) angles are slightly compressed. [For similar compounds, see for example Ciunik & Głowiak (1980[Ciunik, Z. & Głowiak, T. (1980). Acta Cryst. B36, 2029-2033.]) and Dave et al. (1993[Dave, B. C., Czernuszewicz, R. S., Bond, M. R. & Carrano, C. J. (1993). Inorg. Chem. 32, 3593-3594.]).] The water is in the lattice and forms a hydrogen bond at 2.21 (2) Å with an O2 atom belonging to one of the acetate μ2-1,3 acetate bridges.

3. Supra­molecular features

The packing of I forms a polymeric structure bis­ecting the a axis and b axis. Because of the complexity of the structure, many of the details were outlined above. The structure is not linear but forms a zigzag chain in which the bridg­ing acetates and N-oxide ligands connect the Mn ions. There is no evidence for π stacking but interpolymeric chain hydrogen bonding is present.

Compound II forms a similar polymeric structure to I, with the chain bis­ecting the unit cell at (½, 0, 1) and (½, 1, 0). The chain sets up in a similar fashion as I; however, μ2-1,3 and μ3-1,3,3 are the bridges observed while the μ2-1,1 bridge noted in I is absent.

Compound III forms a polymeric chain which is observed in the b-axis direction. Each manganese(II) atom is bridged by a single 4MePNO and two μ2-1,3 acetate ions. The 4MePNO bridging ligands are alternating up and down in the a-axis direction. There is no evidence for π stacking due to the long distance found in the structure with the aromatic rings at separations of 7.334 (6) Å.

4. Database survey

A search in the Cambridge Structural Database (CSD Version 5.39, November 2017 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for aromatic N-oxides and acetate ligands bound to manganese returned 36 entries. Seven of the entries contain derivatives of picolinic N-oxides, thirteen involve derivatives of dipyridal N-oxide and fifteen include di- or tri-acetate ligands. Similar N-oxides with simple benzoate in the list include pyridine N-oxide (YIYRAA; Sarma et al., 2008[Sarma, R., Karmakar, A. & Baruah, J. B. (2008). Inorg. Chim. Acta, 361, 2081-2086.]), and the p-nitro­benzoate with PNO (TIXKER01 and TIXKER; Sarma et al., 2008[Sarma, R., Karmakar, A. & Baruah, J. B. (2008). Inorg. Chim. Acta, 361, 2081-2086.]). Another report by Sarma and co-workers includes the p-hy­droxy, o-nitro and p-chloro­benzoate derivatives with PNO (POYRAX; Sarma et al., 2009[Sarma, R., Perumal, A. & Baruah, J. B. (2009). J. Coord. Chem. 62, 1513-1524.]).

5. Synthesis and crystallization

The manganese(II) coordination polymers were all synthesized by a similar method. 0.245 g (1.00 mmol) manganese(II) acetate tetra­hydrate (MnAc2·4H2O, FW 245 g mol−1) was dissolved in a minimal amount (20 mL) of methanol. 2 molar equivalents of the appropriate N-oxide (0.191 g pyridine N-oxide, PNO; 0.220 g 2-methyl­pyrdine N-oxide, 2MePNO; 0.220 g 4-methyl­pyridine N-oxide, 4MePNO) were similarly dissolved in 10 mL of methanol. The N-oxide alcoholic solution was added in one portion to the MnII one. The combined reaction mixture was stirred for 30 minutes, filtered and the filtrate was allowed to evaporate by slow diffusion. X-ray quality crystals were obtained by precipitation from the mother liquor. A final wash with a minimal amount of methanol was performed to assist with removal of excess N-oxide.

Compound I. Yield 0.0642 g, 27.0 (%), decomposition/melting temperature = 433–437 K (turns to a brown liquid). Selected IR bands (ATR, FT–IR, KBr composite, cm−1): 3356 (2, br), 3118 (w), 1558 (s), 1495 (m), 1477 (m), 1418 (m), 1424 (m), 1216 (m), 1025 (w), 835 (m), 783 (m), 653 (w).

Compound II. Yield 0.0484 g, 20.4 (%), decomposition/melting temperature. 417–423 K (turns to a brown liquid). Selected IR bands (ATR, FT–IR, KBr composite, cm−1): 3348 (m, br), 1558 (s), 1495 (m), 1417 (s), 1209 (m), 846 (m), 783 (s), 655 (s).

Compound III. Yield 0.0892 g, 29.7 (%), decomposition/melting temperature. 405–411 K (turns to a black liquid). Selected IR bands (ATR, FT–IR, KBr composite, cm−1): 3412 (m, br), 1652 (w), 1574 (s), 1491 (s), 1424 (m), 1213 (s), 833 (m), 763 (s), 668 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All carbon-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for C(H) and CH3 groups, respectively. In order to ensure chemically meaningful O—H distances for the bound water mol­ecules in the compounds, the oxygen-to-hydrogen distances were restrained to a target value of 0.84 (2) Å (using a DFIX command in SHELXL2017; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Uiso(H) = 1.5Ueq(O).

Table 4
Experimental details

  I II III
Crystal data
Chemical formula [Mn4(C2H3O2)8(C5H5NO)2(H2O)2] [Mn4(C2H3O2)8(C6H7NO)2(H2O)2] [Mn(C2H3O2)2(C6H7NO)]·H2O
Mr 918.34 946.40 300.17
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 173 173 173
a, b, c (Å) 19.936 (7), 10.603 (4), 18.692 (7) 9.7704 (3), 10.5882 (7), 11.4720 (2) 11.100 (3), 7.334 (3), 15.9808 (4)
α, β, γ (°) 90, 105.925 (4), 90 65.76 (2), 83.84 (2), 65.512 (15) 90, 96.500 (11), 90
V3) 3800 (2) 982.0 (2) 1292.6 (6)
Z 4 1 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.38 1.34 1.04
Crystal size (mm) 0.4 × 0.4 × 0.2 0.3 × 0.3 × 0.2 0.2 × 0.05 × 0.05
 
Data collection
Diffractometer Rigaku XtaLAB mini Rigaku XtaLAB mini Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.885, 1.00 0.842, 1.00 0.850, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 19620, 4332, 3855 10542, 4503, 3551 13236, 2957, 2224
Rint 0.046 0.058 0.074
(sin θ/λ)max−1) 0.649 0.650 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.08 0.041, 0.101, 1.06 0.045, 0.105, 1.07
No. of reflections 4332 4503 2957
No. of parameters 249 259 173
No. of restraints 2 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.36 0.62, −0.46 0.35, −0.40
Computer programs: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2009) for (I), (II). Cell refinement: CrystalClear (Rigaku, 2009) for (I), (II). Data reduction: CrystalClear (Rigaku, 2009) for (I), (II). For all structures, program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[manganese(II)-µ3-acetato-di-µ2-acetato-[aquamanganese(II)]-µ2-acetato-µ-(pyridine N-oxide)-manganese(II)-µ3-acetato-µ2-acetato-µ-(pyridine N-oxide)-[aquamanganese(II)]-di-µ2-acetato] (I) top
Crystal data top
[Mn4(C2H3O2)8(C5H5NO)2(H2O)2]F(000) = 1872
Mr = 918.34Dx = 1.605 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.936 (7) ÅCell parameters from 5012 reflections
b = 10.603 (4) Åθ = 2.1–27.5°
c = 18.692 (7) ŵ = 1.38 mm1
β = 105.925 (4)°T = 173 K
V = 3800 (2) Å3Prism, colorless
Z = 40.4 × 0.4 × 0.2 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
4332 independent reflections
Radiation source: Sealed Tube3855 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.046
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.1°
profile data from ω–scansh = 2525
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1313
Tmin = 0.885, Tmax = 1.00l = 2424
19620 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0348P)2 + 3.1638P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.31 e Å3
4332 reflectionsΔρmin = 0.36 e Å3
249 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.00109 (13)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.5000000.5000000.5000000.02291 (11)
O10.60564 (7)0.50006 (13)0.57232 (8)0.0254 (3)
C10.60680 (13)0.5206 (2)0.69567 (13)0.0368 (5)
H10.5946020.6050510.6870110.044*
N10.61602 (8)0.44789 (16)0.64043 (9)0.0226 (3)
Mn20.68359 (2)0.53844 (3)0.51070 (2)0.01989 (10)
C20.61555 (15)0.4693 (3)0.76534 (13)0.0455 (6)
H20.6091820.5190440.8039460.055*
O20.45997 (7)0.59052 (14)0.58476 (8)0.0290 (3)
O30.34900 (7)0.64803 (13)0.54422 (8)0.0251 (3)
C30.63378 (13)0.3441 (2)0.77773 (13)0.0398 (6)
H30.6401020.3088560.8246840.048*
Mn30.7500000.2500000.5000000.02146 (11)
C40.64253 (12)0.2717 (2)0.71959 (13)0.0355 (5)
H40.6549630.1872010.7271230.043*
O40.51209 (8)0.68135 (14)0.45732 (9)0.0319 (3)
O50.62046 (8)0.67838 (14)0.44529 (8)0.0287 (3)
C50.63271 (11)0.3254 (2)0.65014 (12)0.0280 (4)
H50.6376470.2769490.6104270.034*
C60.41374 (10)0.67368 (19)0.57075 (11)0.0241 (4)
O60.75532 (7)0.56777 (13)0.44447 (8)0.0269 (3)
C70.43584 (13)0.8095 (2)0.58470 (15)0.0402 (6)
H7A0.4591170.8361060.5486030.060*
H7B0.4670280.8177370.6337390.060*
H7C0.3954510.8612920.5806290.060*
O70.79968 (8)0.37538 (13)0.44121 (8)0.0299 (3)
O80.74244 (7)0.10035 (13)0.41514 (7)0.0239 (3)
C80.56142 (11)0.72708 (19)0.43642 (12)0.0268 (4)
C90.54817 (15)0.8513 (3)0.39541 (19)0.0567 (8)
H9A0.5202550.8372630.3453580.085*
H9C0.5918520.8884720.3945600.085*
H9B0.5239790.9071210.4202640.085*
O90.69630 (12)0.01467 (16)0.31454 (10)0.0552 (6)
C100.79817 (10)0.49193 (19)0.42916 (11)0.0235 (4)
O100.72800 (9)0.68131 (14)0.59148 (9)0.0324 (3)
H10A0.7598 (12)0.645 (3)0.6246 (13)0.049*
H10B0.7398 (15)0.7520 (19)0.5805 (16)0.049*
C110.85076 (14)0.5440 (2)0.39252 (16)0.0435 (6)
H11A0.8330910.5360350.3395020.065*
H11B0.8936270.4977460.4092500.065*
H11C0.8591030.6313140.4054320.065*
C120.70807 (11)0.0878 (2)0.34617 (11)0.0286 (4)
C130.68183 (13)0.2058 (2)0.30226 (12)0.0362 (5)
H13A0.6910760.2774490.3348980.054*
H13B0.6325100.1987750.2798860.054*
H13C0.7052210.2162420.2640850.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0195 (2)0.0200 (2)0.0295 (2)0.00260 (15)0.00725 (17)0.00445 (17)
O10.0230 (7)0.0277 (8)0.0258 (7)0.0009 (6)0.0073 (5)0.0085 (6)
C10.0477 (14)0.0283 (12)0.0336 (12)0.0043 (10)0.0098 (10)0.0067 (9)
N10.0228 (8)0.0231 (8)0.0224 (8)0.0014 (6)0.0069 (6)0.0022 (7)
Mn20.02113 (16)0.01489 (16)0.02513 (17)0.00127 (10)0.00883 (12)0.00102 (11)
C20.0627 (17)0.0480 (15)0.0268 (12)0.0038 (13)0.0141 (11)0.0095 (11)
O20.0275 (8)0.0293 (8)0.0305 (8)0.0055 (6)0.0082 (6)0.0002 (6)
O30.0239 (7)0.0178 (7)0.0331 (8)0.0015 (5)0.0070 (6)0.0026 (6)
C30.0437 (14)0.0487 (15)0.0263 (11)0.0020 (11)0.0087 (10)0.0076 (10)
Mn30.0249 (2)0.0140 (2)0.0275 (2)0.00299 (15)0.01058 (17)0.00005 (16)
C40.0398 (13)0.0320 (12)0.0347 (12)0.0047 (10)0.0102 (10)0.0081 (10)
O40.0289 (8)0.0233 (7)0.0466 (9)0.0034 (6)0.0155 (7)0.0078 (7)
O50.0283 (8)0.0244 (7)0.0350 (8)0.0064 (6)0.0113 (6)0.0075 (6)
C50.0318 (11)0.0255 (10)0.0288 (10)0.0044 (8)0.0117 (8)0.0026 (8)
C60.0266 (10)0.0215 (10)0.0257 (10)0.0009 (8)0.0095 (8)0.0011 (8)
O60.0292 (8)0.0204 (7)0.0361 (8)0.0031 (6)0.0173 (6)0.0035 (6)
C70.0323 (12)0.0270 (12)0.0611 (16)0.0051 (9)0.0124 (11)0.0075 (11)
O70.0394 (9)0.0180 (7)0.0390 (8)0.0044 (6)0.0218 (7)0.0033 (6)
O80.0282 (7)0.0188 (7)0.0248 (7)0.0045 (5)0.0072 (6)0.0000 (5)
C80.0285 (11)0.0204 (10)0.0325 (11)0.0026 (8)0.0101 (8)0.0039 (8)
C90.0467 (16)0.0354 (14)0.096 (2)0.0137 (12)0.0331 (15)0.0358 (15)
O90.0897 (16)0.0254 (9)0.0329 (9)0.0061 (9)0.0127 (9)0.0053 (7)
C100.0256 (10)0.0221 (10)0.0251 (10)0.0022 (8)0.0107 (8)0.0017 (8)
O100.0397 (9)0.0176 (7)0.0364 (9)0.0023 (6)0.0045 (7)0.0003 (6)
C110.0506 (15)0.0286 (12)0.0652 (17)0.0046 (10)0.0394 (13)0.0088 (11)
C120.0334 (11)0.0239 (10)0.0262 (10)0.0025 (8)0.0042 (8)0.0014 (8)
C130.0454 (13)0.0314 (12)0.0294 (11)0.0092 (10)0.0062 (10)0.0042 (9)
Geometric parameters (Å, º) top
Mn1—O1i2.1680 (15)C4—H40.9300
Mn1—O12.1681 (15)C4—C51.381 (3)
Mn1—O2i2.1822 (15)O4—C81.251 (3)
Mn1—O22.1822 (15)O5—C81.254 (2)
Mn1—O4i2.1207 (16)C5—H50.9300
Mn1—O42.1207 (16)C6—C71.508 (3)
O1—N11.351 (2)O6—C101.262 (2)
O1—Mn22.2113 (15)C7—H7A0.9600
C1—H10.9300C7—H7B0.9600
C1—N11.341 (3)C7—H7C0.9600
C1—C21.377 (3)O7—C101.255 (2)
N1—C51.341 (3)O8—C121.290 (2)
Mn2—O3i2.2404 (15)C8—C91.510 (3)
Mn2—O52.1062 (15)C9—H9A0.9600
Mn2—O62.1551 (15)C9—H9C0.9600
Mn2—O8ii2.2671 (14)C9—H9B0.9600
Mn2—O102.1506 (16)O9—C121.228 (3)
C2—H20.9300C10—C111.506 (3)
C2—C31.380 (4)O10—H10A0.848 (17)
O2—C61.250 (2)O10—H10B0.829 (17)
O3—Mn3iii2.2028 (15)C11—H11A0.9600
O3—C61.278 (2)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C3—C41.380 (3)C12—C131.509 (3)
Mn3—O7ii2.1338 (15)C13—H13A0.9600
Mn3—O72.1338 (15)C13—H13B0.9600
Mn3—O82.2194 (14)C13—H13C0.9600
Mn3—O8ii2.2194 (14)
O1i—Mn1—O1180.00 (7)O7—Mn3—O7ii180.0
O1i—Mn1—O2i91.91 (6)O7—Mn3—O891.58 (6)
O1—Mn1—O2i88.09 (6)O7—Mn3—O8ii88.43 (6)
O1i—Mn1—O288.09 (6)O7ii—Mn3—O8ii91.57 (6)
O1—Mn1—O291.91 (6)O7ii—Mn3—O888.43 (6)
O2—Mn1—O2i180.0O8—Mn3—O8ii180.00 (5)
O4i—Mn1—O1i92.47 (6)C3—C4—H4120.2
O4—Mn1—O192.47 (6)C3—C4—C5119.7 (2)
O4i—Mn1—O187.53 (6)C5—C4—H4120.2
O4—Mn1—O1i87.53 (6)C8—O4—Mn1130.47 (13)
O4i—Mn1—O291.36 (6)C8—O5—Mn2139.17 (14)
O4—Mn1—O288.64 (6)N1—C5—C4119.5 (2)
O4—Mn1—O2i91.36 (6)N1—C5—H5120.2
O4i—Mn1—O2i88.64 (6)C4—C5—H5120.2
O4—Mn1—O4i180.0O2—C6—O3122.61 (19)
Mn1—O1—Mn2112.12 (6)O2—C6—C7118.29 (19)
N1—O1—Mn1117.31 (11)O3—C6—C7119.09 (18)
N1—O1—Mn2128.21 (11)C10—O6—Mn2129.45 (13)
N1—C1—H1120.3C6—C7—H7A109.5
N1—C1—C2119.5 (2)C6—C7—H7B109.5
C2—C1—H1120.3C6—C7—H7C109.5
C1—N1—O1118.17 (18)H7A—C7—H7B109.5
C5—N1—O1119.51 (16)H7A—C7—H7C109.5
C5—N1—C1122.28 (19)H7B—C7—H7C109.5
O1—Mn2—O3i85.37 (6)C10—O7—Mn3135.59 (13)
O1—Mn2—O8ii89.66 (5)Mn3—O8—Mn2ii97.00 (6)
O3i—Mn2—O8ii76.44 (5)C12—O8—Mn2ii128.45 (13)
O5—Mn2—O192.21 (6)C12—O8—Mn3134.54 (13)
O5—Mn2—O3i107.68 (6)O4—C8—O5126.06 (19)
O5—Mn2—O687.13 (6)O4—C8—C9116.96 (19)
O5—Mn2—O8ii175.59 (6)O5—C8—C9116.97 (19)
O5—Mn2—O1088.66 (6)C8—C9—H9A109.5
O6—Mn2—O1176.02 (6)C8—C9—H9C109.5
O6—Mn2—O3i91.08 (6)C8—C9—H9B109.5
O6—Mn2—O8ii91.27 (6)H9A—C9—H9C109.5
O10—Mn2—O188.66 (6)H9A—C9—H9B109.5
O10—Mn2—O3i162.77 (6)H9C—C9—H9B109.5
O10—Mn2—O695.25 (6)O6—C10—C11117.96 (18)
O10—Mn2—O8ii87.39 (6)O7—C10—O6124.82 (19)
C1—C2—H2120.1O7—C10—C11117.21 (18)
C1—C2—C3119.9 (2)Mn2—O10—H10A106 (2)
C3—C2—H2120.1Mn2—O10—H10B124 (2)
C6—O2—Mn1123.62 (13)H10A—O10—H10B113 (3)
Mn3iii—O3—Mn2i98.27 (6)C10—C11—H11A109.5
C6—O3—Mn2i120.04 (12)C10—C11—H11B109.5
C6—O3—Mn3iii138.28 (13)C10—C11—H11C109.5
C2—C3—H3120.4H11A—C11—H11B109.5
C2—C3—C4119.2 (2)H11A—C11—H11C109.5
C4—C3—H3120.4H11B—C11—H11C109.5
O3i—Mn3—O3iv180.00 (7)O8—C12—C13117.86 (18)
O3i—Mn3—O8ii78.19 (5)O9—C12—O8123.5 (2)
O3iv—Mn3—O8ii101.81 (5)O9—C12—C13118.66 (19)
O3iv—Mn3—O878.19 (5)C12—C13—H13A109.5
O3i—Mn3—O8101.81 (5)C12—C13—H13B109.5
O7—Mn3—O3i89.75 (6)C12—C13—H13C109.5
O7ii—Mn3—O3iv89.75 (6)H13A—C13—H13B109.5
O7ii—Mn3—O3i90.25 (6)H13A—C13—H13C109.5
O7—Mn3—O3iv90.25 (6)H13B—C13—H13C109.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O9ii0.85 (2)1.85 (2)2.652 (2)157 (3)
O10—H10B···O6v0.83 (2)1.98 (2)2.786 (2)166 (3)
Symmetry codes: (ii) x+3/2, y+1/2, z+1; (v) x+3/2, y+3/2, z+1.
catena-Poly[[manganese(II)]-µ3-acetato-µ2-acetato-µ-(2-methylpyridine N-oxide)-[aquamanganese(II)]-di-µ2-acetato-manganese(II)-di-µ2-acetato-µ3-acetato-[aquamanganese(II)]-µ2-acetato-µ-(2-methylpyridine N-oxide)] (II) top
Crystal data top
[Mn4(C2H3O2)8(C6H7NO)2(H2O)2]Z = 1
Mr = 946.4F(000) = 484
Triclinic, P1Dx = 1.600 Mg m3
a = 9.7704 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5882 (7) ÅCell parameters from 2512 reflections
c = 11.4720 (2) Åθ = 2.0–27.5°
α = 65.76 (2)°µ = 1.34 mm1
β = 83.84 (2)°T = 173 K
γ = 65.512 (15)°Prism, colorless
V = 982.0 (2) Å30.3 × 0.3 × 0.2 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
4503 independent reflections
Radiation source: Sealed Tube3551 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.3°
profile data from ω–scansh = 1212
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1313
Tmin = 0.842, Tmax = 1.00l = 1414
10542 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.5206P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.62 e Å3
4503 reflectionsΔρmin = 0.46 e Å3
259 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0045 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.5000000.5000000.5000000.02633 (15)
C10.9223 (3)0.1967 (3)0.5954 (3)0.0385 (7)
O10.66323 (19)0.2610 (2)0.58767 (17)0.0294 (4)
N10.7920 (3)0.2213 (2)0.6544 (2)0.0306 (5)
C21.0513 (4)0.1617 (4)0.6641 (4)0.0526 (9)
H21.1435470.1478950.6240040.063*
O20.6422 (2)0.5705 (2)0.35280 (18)0.0405 (5)
Mn20.54423 (4)0.10659 (4)0.65107 (4)0.02574 (12)
C31.0472 (4)0.1465 (4)0.7900 (4)0.0559 (9)
H31.1358920.1217100.8367310.067*
O30.5590 (2)0.80401 (19)0.20131 (16)0.0292 (4)
Mn30.5000000.0000001.0000000.02716 (15)
C40.9121 (4)0.1680 (4)0.8465 (3)0.0446 (8)
H40.9074810.1558060.9334300.053*
O40.3972 (3)0.4521 (2)0.37791 (19)0.0434 (5)
O50.3654 (2)0.2403 (2)0.49693 (19)0.0389 (5)
C50.7842 (4)0.2072 (3)0.7767 (3)0.0375 (7)
H50.6904860.2242410.8146780.045*
C60.9159 (4)0.2095 (4)0.4616 (3)0.0518 (9)
H6A0.8665130.1471570.4581090.078*
H6B1.0184580.1741650.4343900.078*
H6C0.8583210.3157280.4043890.078*
O60.7494 (2)0.0675 (2)0.76008 (18)0.0411 (5)
C70.6334 (3)0.6596 (3)0.2404 (2)0.0292 (6)
O70.7340 (2)0.0951 (2)0.96318 (18)0.0391 (5)
O80.4469 (2)0.0610 (2)0.72192 (18)0.0381 (5)
C80.7129 (5)0.5940 (4)0.1464 (3)0.0695 (13)
H8A0.6516880.6509300.0645470.104*
H8C0.7281990.4874560.1796350.104*
H8B0.8108390.6007500.1335540.104*
O90.4385 (3)0.1325 (2)0.93300 (18)0.0417 (5)
C90.3347 (4)0.3642 (3)0.4000 (3)0.0388 (7)
C100.2131 (5)0.4060 (4)0.3031 (4)0.0752 (13)
H10A0.2277130.3163160.2887140.113*
H10B0.2187440.4855020.2220860.113*
H10C0.1138960.4433230.3356460.113*
O100.6635 (2)0.0116 (2)0.50856 (19)0.0347 (5)
H10D0.669 (4)0.076 (2)0.529 (3)0.052*
H10E0.615 (4)0.054 (4)0.436 (2)0.052*
C110.8010 (3)0.1286 (3)0.8738 (3)0.0324 (6)
C120.9586 (4)0.2532 (5)0.9039 (3)0.0574 (10)
H12B1.0287280.2129290.8508720.086*
H12C0.9599340.3363480.8856720.086*
H12A0.9894180.2910800.9946970.086*
C130.4250 (3)0.1437 (3)0.8312 (3)0.0299 (6)
C140.3769 (5)0.2656 (4)0.8398 (3)0.0583 (10)
H14A0.2912050.2209310.7773990.087*
H14C0.3472390.3102850.9264170.087*
H14B0.4611320.3446490.8213080.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0309 (3)0.0219 (3)0.0235 (3)0.0121 (2)0.0010 (2)0.0047 (2)
C10.0297 (15)0.0323 (15)0.0463 (17)0.0089 (13)0.0010 (13)0.0126 (14)
O10.0254 (9)0.0257 (9)0.0335 (10)0.0095 (8)0.0038 (8)0.0082 (8)
N10.0301 (12)0.0259 (11)0.0320 (12)0.0113 (10)0.0046 (10)0.0066 (10)
C20.0262 (15)0.058 (2)0.064 (2)0.0109 (15)0.0015 (15)0.0215 (19)
O20.0388 (11)0.0326 (11)0.0319 (11)0.0104 (9)0.0061 (9)0.0015 (9)
Mn20.0309 (2)0.0255 (2)0.0225 (2)0.01314 (18)0.00076 (16)0.00934 (17)
C30.0438 (19)0.054 (2)0.065 (2)0.0127 (17)0.0211 (17)0.0211 (19)
O30.0372 (10)0.0228 (9)0.0237 (9)0.0106 (8)0.0045 (8)0.0081 (8)
Mn30.0340 (3)0.0254 (3)0.0215 (3)0.0123 (2)0.0022 (2)0.0089 (2)
C40.0488 (19)0.0428 (18)0.0398 (17)0.0160 (16)0.0093 (15)0.0144 (15)
O40.0600 (14)0.0399 (12)0.0350 (11)0.0272 (11)0.0071 (10)0.0100 (10)
O50.0449 (12)0.0278 (10)0.0385 (11)0.0133 (9)0.0110 (9)0.0065 (9)
C50.0430 (17)0.0346 (16)0.0351 (15)0.0177 (14)0.0004 (13)0.0118 (13)
C60.0410 (18)0.060 (2)0.0445 (19)0.0117 (17)0.0085 (15)0.0222 (18)
O60.0430 (12)0.0371 (11)0.0324 (11)0.0075 (10)0.0079 (9)0.0105 (9)
C70.0300 (14)0.0264 (13)0.0290 (14)0.0124 (11)0.0060 (11)0.0092 (11)
O70.0366 (11)0.0430 (12)0.0334 (11)0.0120 (10)0.0040 (9)0.0162 (10)
O80.0544 (13)0.0426 (12)0.0298 (10)0.0322 (11)0.0046 (9)0.0139 (9)
C80.109 (3)0.0298 (17)0.041 (2)0.006 (2)0.019 (2)0.0141 (16)
O90.0666 (15)0.0410 (12)0.0278 (10)0.0306 (11)0.0047 (10)0.0149 (10)
C90.0446 (17)0.0289 (15)0.0403 (16)0.0114 (13)0.0100 (14)0.0121 (13)
C100.090 (3)0.047 (2)0.077 (3)0.030 (2)0.052 (2)0.001 (2)
O100.0417 (11)0.0367 (11)0.0298 (10)0.0172 (10)0.0012 (9)0.0158 (10)
C110.0308 (14)0.0283 (14)0.0371 (15)0.0113 (12)0.0021 (12)0.0120 (13)
C120.0366 (18)0.066 (2)0.051 (2)0.0004 (17)0.0074 (16)0.0263 (19)
C130.0335 (14)0.0277 (14)0.0294 (14)0.0152 (12)0.0017 (11)0.0094 (12)
C140.096 (3)0.062 (2)0.048 (2)0.061 (2)0.019 (2)0.0251 (18)
Geometric parameters (Å, º) top
Mn1—O12.2061 (19)C4—C51.374 (4)
Mn1—O1i2.2061 (19)O4—C91.244 (4)
Mn1—O2i2.159 (2)O5—C91.263 (3)
Mn1—O22.159 (2)C5—H50.9500
Mn1—O42.129 (2)C6—H6A0.9800
Mn1—O4i2.129 (2)C6—H6B0.9800
C1—N11.354 (4)C6—H6C0.9800
C1—C21.389 (4)O6—C111.246 (3)
C1—C61.491 (4)C7—C81.495 (4)
O1—N11.359 (3)O7—C111.253 (3)
O1—Mn22.2300 (18)O8—C131.258 (3)
N1—C51.346 (4)C8—H8A0.9800
C2—H20.9500C8—H8C0.9800
C2—C31.385 (5)C8—H8B0.9800
O2—C71.232 (3)O9—C131.247 (3)
Mn2—O3i2.2224 (18)C9—C101.513 (4)
Mn2—O52.177 (2)C10—H10A0.9800
Mn2—O62.136 (2)C10—H10B0.9800
Mn2—O82.182 (2)C10—H10C0.9800
Mn2—O102.239 (2)O10—H10D0.838 (18)
C3—H30.9500O10—H10E0.846 (18)
C3—C41.379 (5)C11—C121.513 (4)
O3—Mn3ii2.3091 (18)C12—H12B0.9800
O3—C71.286 (3)C12—H12C0.9800
Mn3—O7iii2.157 (2)C12—H12A0.9800
Mn3—O72.157 (2)C13—C141.511 (4)
Mn3—O92.1453 (19)C14—H14A0.9800
Mn3—O9iii2.1452 (19)C14—H14C0.9800
C4—H40.9500C14—H14B0.9800
O1i—Mn1—O1180.0O9—Mn3—O793.91 (8)
O2i—Mn1—O185.03 (7)O9iii—Mn3—O7iii93.91 (8)
O2—Mn1—O1i85.03 (7)O9iii—Mn3—O9180.0
O2—Mn1—O194.97 (7)C3—C4—H4120.1
O2i—Mn1—O1i94.97 (7)C5—C4—C3119.8 (3)
O2—Mn1—O2i180.0C5—C4—H4120.1
O4i—Mn1—O1i91.37 (8)C9—O4—Mn1132.59 (19)
O4—Mn1—O191.37 (8)C9—O5—Mn2133.4 (2)
O4—Mn1—O1i88.63 (8)N1—C5—C4119.8 (3)
O4i—Mn1—O188.63 (8)N1—C5—H5120.1
O4i—Mn1—O2i91.45 (8)C4—C5—H5120.1
O4i—Mn1—O288.55 (8)C1—C6—H6A109.5
O4—Mn1—O291.45 (8)C1—C6—H6B109.5
O4—Mn1—O2i88.55 (8)C1—C6—H6C109.5
O4—Mn1—O4i180.0H6A—C6—H6B109.5
N1—C1—C2117.6 (3)H6A—C6—H6C109.5
N1—C1—C6117.2 (3)H6B—C6—H6C109.5
C2—C1—C6125.2 (3)C11—O6—Mn2136.82 (19)
Mn1—O1—Mn2110.48 (7)O2—C7—O3123.2 (2)
N1—O1—Mn1120.93 (14)O2—C7—C8117.5 (2)
N1—O1—Mn2119.74 (14)O3—C7—C8119.4 (2)
C1—N1—O1118.8 (2)C11—O7—Mn3134.16 (18)
C5—N1—C1122.8 (3)C13—O8—Mn2134.65 (18)
C5—N1—O1118.4 (2)C7—C8—H8A109.5
C1—C2—H2119.5C7—C8—H8C109.5
C3—C2—C1121.0 (3)C7—C8—H8B109.5
C3—C2—H2119.5H8A—C8—H8C109.5
C7—O2—Mn1140.53 (19)H8A—C8—H8B109.5
O1—Mn2—O1088.73 (7)H8C—C8—H8B109.5
O3i—Mn2—O189.31 (7)C13—O9—Mn3139.90 (18)
O3i—Mn2—O10176.15 (7)O4—C9—O5125.4 (3)
O5—Mn2—O197.41 (7)O4—C9—C10118.2 (3)
O5—Mn2—O3i101.91 (7)O5—C9—C10116.4 (3)
O5—Mn2—O887.26 (8)C9—C10—H10A109.5
O5—Mn2—O1081.63 (8)C9—C10—H10B109.5
O6—Mn2—O186.79 (8)C9—C10—H10C109.5
O6—Mn2—O3i97.97 (7)H10A—C10—H10B109.5
O6—Mn2—O5159.71 (8)H10A—C10—H10C109.5
O6—Mn2—O888.10 (8)H10B—C10—H10C109.5
O6—Mn2—O1078.61 (8)Mn2—O10—H10D112 (2)
O8—Mn2—O1174.87 (7)Mn2—O10—H10E115 (2)
O8—Mn2—O3i91.81 (7)H10D—O10—H10E99 (3)
O8—Mn2—O1089.86 (8)O6—C11—O7125.7 (3)
C2—C3—H3120.6O6—C11—C12116.1 (3)
C4—C3—C2118.8 (3)O7—C11—C12118.3 (3)
C4—C3—H3120.6C11—C12—H12B109.5
Mn2i—O3—Mn3ii110.16 (7)C11—C12—H12C109.5
C7—O3—Mn2i117.09 (16)C11—C12—H12A109.5
C7—O3—Mn3ii132.72 (17)H12B—C12—H12C109.5
O3iv—Mn3—O3i180.0H12B—C12—H12A109.5
O7iii—Mn3—O3i88.03 (7)H12C—C12—H12A109.5
O7—Mn3—O3iv88.03 (7)O8—C13—C14117.4 (2)
O7—Mn3—O3i91.97 (7)O9—C13—O8125.2 (3)
O7iii—Mn3—O3iv91.97 (7)O9—C13—C14117.3 (2)
O7—Mn3—O7iii180.0C13—C14—H14A109.5
O9iii—Mn3—O3i88.85 (7)C13—C14—H14C109.5
O9iii—Mn3—O3iv91.15 (7)C13—C14—H14B109.5
O9—Mn3—O3iv88.85 (7)H14A—C14—H14C109.5
O9—Mn3—O3i91.15 (7)H14A—C14—H14B109.5
O9iii—Mn3—O786.09 (8)H14C—C14—H14B109.5
O9—Mn3—O7iii86.09 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z1; (iii) x+1, y, z+2; (iv) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10D···O5v0.84 (2)2.04 (2)2.821 (3)155 (3)
O10—H10E···O8v0.85 (2)1.94 (2)2.727 (3)155 (3)
Symmetry code: (v) x+1, y, z+1.
catena-Poly[[manganese(II)-di-µ2-acetato-µ-(4-methylpyridine N-oxide)] monohydrate] (III) top
Crystal data top
[Mn(C2H3O2)2(C6H7NO)]·H2OF(000) = 620
Mr = 300.17Dx = 1.542 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.100 (3) ÅCell parameters from 2982 reflections
b = 7.334 (3) Åθ = 2.1–27.5°
c = 15.9808 (4) ŵ = 1.04 mm1
β = 96.500 (11)°T = 173 K
V = 1292.6 (6) Å3Prism, colorless
Z = 40.2 × 0.05 × 0.05 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
2224 reflections with I > 2σ(I)
Detector resolution: 13.6612 pixels mm-1Rint = 0.074
profile data from ω–scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1414
Tmin = 0.850, Tmax = 1.00k = 99
13236 measured reflectionsl = 2020
2957 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0269P)2 + 1.0998P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.35 e Å3
2957 reflectionsΔρmin = 0.40 e Å3
173 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0042 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.25529 (4)0.54319 (6)0.75049 (3)0.02337 (15)
O10.35635 (15)0.7980 (2)0.73689 (12)0.0243 (4)
C10.5439 (2)0.8534 (4)0.69051 (19)0.0316 (7)
H10.5058410.8690940.6360760.038*
N10.47864 (19)0.8127 (3)0.75356 (14)0.0235 (5)
C20.6685 (3)0.8721 (4)0.7071 (2)0.0354 (7)
H20.7134280.9028780.6634780.042*
O20.33022 (19)0.4486 (3)0.63859 (13)0.0372 (5)
O30.3188 (2)0.1450 (3)0.63793 (13)0.0389 (5)
C30.7278 (2)0.8459 (4)0.7874 (2)0.0323 (7)
C40.6557 (3)0.8040 (4)0.85053 (19)0.0321 (7)
H40.6917790.7860750.9053300.039*
O40.10483 (18)0.6385 (3)0.66703 (14)0.0402 (6)
O50.09920 (19)0.9411 (3)0.66333 (14)0.0385 (5)
C50.5315 (3)0.7885 (4)0.83299 (18)0.0284 (6)
H50.4843070.7615240.8758950.034*
C60.8641 (3)0.8641 (5)0.8053 (2)0.0455 (8)
H6A0.8848130.9034310.8623980.068*
H6B0.8925370.9520600.7676300.068*
H6C0.9013300.7482290.7972180.068*
C70.3391 (2)0.2954 (4)0.60495 (17)0.0259 (6)
C80.3785 (3)0.2898 (5)0.51770 (19)0.0379 (7)
H8A0.3517890.3986750.4877600.057*
H8B0.3433410.1853220.4881060.057*
H8C0.4652470.2820150.5217010.057*
C90.0622 (2)0.7859 (4)0.63902 (18)0.0271 (6)
C100.0435 (3)0.7767 (5)0.5705 (2)0.0461 (9)
H10A0.0839470.8926100.5659200.069*
H10B0.0993340.6844270.5842380.069*
H10C0.0142790.7473880.5178310.069*
O60.3091 (2)0.7951 (4)0.53409 (15)0.0440 (6)
H6D0.301 (4)0.882 (4)0.567 (2)0.066*
H6E0.313 (4)0.708 (4)0.568 (2)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0222 (2)0.0195 (2)0.0284 (2)0.00149 (16)0.00291 (17)0.00006 (16)
O10.0159 (9)0.0210 (10)0.0355 (11)0.0003 (7)0.0009 (8)0.0011 (8)
C10.0253 (14)0.0377 (18)0.0317 (16)0.0018 (13)0.0033 (12)0.0015 (13)
N10.0167 (10)0.0223 (12)0.0311 (12)0.0014 (9)0.0014 (9)0.0015 (10)
C20.0279 (15)0.0411 (19)0.0388 (17)0.0032 (14)0.0105 (13)0.0054 (15)
O20.0438 (13)0.0300 (12)0.0403 (13)0.0022 (10)0.0155 (10)0.0046 (9)
O30.0518 (13)0.0287 (12)0.0396 (12)0.0006 (10)0.0192 (11)0.0044 (10)
C30.0227 (14)0.0291 (17)0.0445 (18)0.0001 (12)0.0006 (13)0.0065 (13)
C40.0298 (15)0.0320 (17)0.0327 (16)0.0002 (12)0.0047 (13)0.0015 (13)
O40.0329 (11)0.0293 (12)0.0547 (14)0.0023 (9)0.0114 (10)0.0081 (10)
O50.0343 (12)0.0250 (12)0.0529 (14)0.0027 (9)0.0093 (10)0.0067 (10)
C50.0283 (15)0.0279 (16)0.0289 (15)0.0011 (12)0.0031 (12)0.0002 (12)
C60.0270 (16)0.047 (2)0.061 (2)0.0010 (15)0.0000 (15)0.0082 (18)
C70.0215 (13)0.0306 (16)0.0259 (14)0.0000 (11)0.0036 (11)0.0001 (12)
C80.0426 (18)0.0417 (19)0.0307 (16)0.0055 (14)0.0097 (14)0.0014 (14)
C90.0221 (14)0.0310 (16)0.0284 (15)0.0022 (12)0.0033 (12)0.0028 (12)
C100.043 (2)0.043 (2)0.047 (2)0.0048 (16)0.0164 (17)0.0023 (16)
O60.0536 (15)0.0473 (16)0.0306 (12)0.0011 (13)0.0023 (11)0.0039 (10)
Geometric parameters (Å, º) top
Mn1—O1i2.206 (2)C4—C51.380 (4)
Mn1—O12.203 (2)O4—C91.243 (3)
Mn1—O22.170 (2)O5—C91.257 (3)
Mn1—O3ii2.179 (2)C5—H50.9300
Mn1—O42.134 (2)C6—H6A0.9600
Mn1—O5i2.136 (2)C6—H6B0.9600
O1—N11.358 (3)C6—H6C0.9600
C1—H10.9300C7—C81.508 (4)
C1—N11.339 (4)C8—H8A0.9600
C1—C21.386 (4)C8—H8B0.9600
N1—C51.348 (4)C8—H8C0.9600
C2—H20.9300C9—C101.513 (4)
C2—C31.387 (4)C10—H10A0.9600
O2—C71.254 (3)C10—H10B0.9600
O3—C71.254 (3)C10—H10C0.9600
C3—C41.391 (4)O6—H6D0.841 (19)
C3—C61.514 (4)O6—H6E0.839 (18)
C4—H40.9300
O1—Mn1—O1i176.46 (6)C5—C4—C3120.9 (3)
O2—Mn1—O1i94.96 (8)C5—C4—H4119.5
O2—Mn1—O186.72 (8)C9—O4—Mn1138.5 (2)
O2—Mn1—O3ii178.58 (8)C9—O5—Mn1ii135.55 (19)
O3ii—Mn1—O1i86.37 (8)N1—C5—C4119.9 (3)
O3ii—Mn1—O191.92 (8)N1—C5—H5120.0
O4—Mn1—O191.80 (8)C4—C5—H5120.0
O4—Mn1—O1i85.20 (8)C3—C6—H6A109.5
O4—Mn1—O286.30 (9)C3—C6—H6B109.5
O4—Mn1—O3ii93.32 (9)C3—C6—H6C109.5
O4—Mn1—O5i177.62 (9)H6A—C6—H6B109.5
O5i—Mn1—O190.27 (8)H6A—C6—H6C109.5
O5i—Mn1—O1i92.69 (8)H6B—C6—H6C109.5
O5i—Mn1—O294.99 (9)O2—C7—C8117.7 (3)
O5i—Mn1—O3ii85.44 (9)O3—C7—O2125.5 (3)
Mn1—O1—Mn1ii112.64 (8)O3—C7—C8116.7 (3)
N1—O1—Mn1123.84 (15)C7—C8—H8A109.5
N1—O1—Mn1ii118.48 (15)C7—C8—H8B109.5
N1—C1—H1120.3C7—C8—H8C109.5
N1—C1—C2119.4 (3)H8A—C8—H8B109.5
C2—C1—H1120.3H8A—C8—H8C109.5
C1—N1—O1118.9 (2)H8B—C8—H8C109.5
C1—N1—C5121.5 (2)O4—C9—O5125.3 (3)
C5—N1—O1119.5 (2)O4—C9—C10117.0 (3)
C1—C2—H2119.3O5—C9—C10117.6 (3)
C1—C2—C3121.5 (3)C9—C10—H10A109.5
C3—C2—H2119.3C9—C10—H10B109.5
C7—O2—Mn1134.09 (19)C9—C10—H10C109.5
C7—O3—Mn1i138.4 (2)H10A—C10—H10B109.5
C2—C3—C4116.8 (3)H10A—C10—H10C109.5
C2—C3—C6121.5 (3)H10B—C10—H10C109.5
C4—C3—C6121.8 (3)H6D—O6—H6E100 (4)
C3—C4—H4119.5
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6D···O3iii0.84 (2)2.23 (2)3.052 (3)165 (4)
O6—H6E···O20.84 (2)2.21 (2)3.035 (3)170 (4)
Symmetry code: (iii) x, y+1, z.
 

Funding information

The authors would like to thank Armstrong State University (now Georgia Southern University), Department of Chemistry and Physics for financial support of this work.

References

First citationCiunik, Z. & Głowiak, T. (1980). Acta Cryst. B36, 2029–2033.  CrossRef IUCr Journals Web of Science Google Scholar
First citationDave, B. C., Czernuszewicz, R. S., Bond, M. R. & Carrano, C. J. (1993). Inorg. Chem. 32, 3593–3594.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434–1438.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, J., Chen, L., Cui, H., Zhang, Y., Zhang, L. & Su, C.-Y. (2014). Chem. Soc. Rev. 43, 6011–6061.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169–174.  Web of Science CrossRef Google Scholar
First citationRen, X.-H., Wang, P., Cheng, J.-Y. & Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145–151.  Web of Science CrossRef Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSarma, R. & Baruah, J. B. (2011). Solid State Sci. 13, 1692–1700.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, R., Karmakar, A. & Baruah, J. B. (2008). Inorg. Chim. Acta, 361, 2081–2086.  Web of Science CrossRef Google Scholar
First citationSarma, R., Perumal, A. & Baruah, J. B. (2009). J. Coord. Chem. 62, 1513–1524.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSniekers, J., Malaquias, J. C., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2017). Dalton Trans. 46, 2497–2509.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds