research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of dipotassium N-carbodi­thio­ato-L-prolinate trihydrate

CROSSMARK_Color_square_no_text.svg

aETH Zurich, Laboratory for Inorganic Chemistry, Vladimir-Prelog-Weg 1-5, 10, 8093 Zurich, Switzerland
*Correspondence e-mail: liebing@inorg.chem.ethz.ch

Edited by M. Zeller, Purdue University, USA (Received 17 August 2017; accepted 18 August 2017; online 25 August 2017)

The mol­ecular and crystal structure of the L-proline-derived di­thio­carbamate–carboxyl­ate compound poly[tri-μ-aqua-(μ-2-carboxyl­atopyrrolidine-1-carbodi­thio­ato)dipotassium], [K2(C6H7NO2S2)(H2O)3]n or K2(SSC–NC4H7–COO)·3H2O, has been determined. The di­thio­carbamate moiety displays a unique coordination mode, comprising a `side-on' π-coordinated K+ cation besides a commonly σ-chelated K+ cation. By bridging coordination of the CSS group, COO group and water mol­ecules, the K+ cations are linked into a two-dimensional coordination polymer extending parallel to the ab plane. These layers are again inter­connected by O—H⋯S hydrogen bonds.

1. Chemical context

Natural amino acids react readily with carbon di­sulfide in an alkaline environment to give di­thio­carbamate-functionalized carboxyl­ates. Since the first report on a series of barium salts in the 1950s (Zahradnik, 1956[Zahradnik, R. (1956). Chem. Listy Vedu Prum. 50, 1892-1898.]), numerous transition metal complexes have been explored. More recently, various late transition metal complexes of this family have been investigated due to their biological activity (e.g. Giovagnini et al., 2005[Giovagnini, L., Ronconi, L., Aldinucci, D., Lorenzon, D., Sitran, S. & Fregona, D. (2005). J. Med. Chem. 48, 1588-1595.]; Cachapa et al., 2006[Cachapa, A., Mederos, A., Gili, P., Hernández-Molina, R., Domínguez, S., Chinea, E., López Rodríguez, M., Feliz, M., Llusar, R., Brito, F., Ruiz de Galarreta, C. M., Tarbraue, C. & Gallardo, G. (2006). Polyhedron, 25, 3366-3378.]; Nagy et al., 2012[Nagy, E. M., Sitran, S., Montopoli, M., Favaro, M., Marchiò, L., Caparrotta, L. & Fregona, D. (2012). J. Inorg. Biochem. 117, 131-139.]). In most cases, the di­thio­carbamate moiety acts as a classical small-bite chelate ligand, while the carboxyl­ate group (often esterified) does not contribute to metal coordination. The structural chemistry of main group derivatives of di­thio­carbamate-derived amino acids is much less explored, even though alkali metal and alkaline earth metal salts are frequently used as precursors for other metal complexes. A key inter­mediate in our ongoing reasearch on coordination polymers with di­thio­carbamate–carboxyl­ates is the L-proline-derived potassium salt K2(SSC–NC4H7–COO). This compound crystallizes from aqueous solution as a trihydrate, which has been structurally characterized in the course of this work.

[Scheme 1]

2. Structural commentary

The title compound, K2(SSC–NC4H7–COO)·3H2O, crystallized as colourless plates in the ortho­rhom­bic space group P212121, with one formula moiety in the asymmetric unit (Fig. 1[link]). One K atom (K2) is bonded in a typical chelating fashion by the CSS group, while K1 is coordinated `side-on' to the CSS group, certainly under participation of the delocalized π electrons. This rather uncommon coordination mode might be supported by additional coordination of a carboxyl­ate O atom (O1) to K1. K1 adopts a low-symmetric seven-coordination by four carboxyl­ate O atoms, two H2O mol­ecules and the π-coordinating CSS group. K2 is eight-coordinated by three S atoms and five H2O mol­ecules (Fig. 2[link]). Consequently, the full coordination mode of the carboxyl­ate group is μ3-κ4O,O′:O:O′, and the di­thio­carbamate group adopts a μ3-κ6S,S′,C:S,S′:S coordination. One H2O mol­ecule displays a μ3-coordination (O3) and the remaining two H2O mol­ecules are coordinating in a μ-bridging mode (O4 and O5). The K—S distances at the σ-chelated K+ cation (K2) are 3.2176 (8) and 3.2650 (9) Å, while the K—S separations at the π-coordinated K+ cation (K1) are significantly longer at 3.2956 (9) and 3.4463 (8) Å. The coordination mode of the di­thio­carbamate group in the title compound [see (C) in Fig. 3[link]] is unique, to our knowledge. The most frequently observed coordination pattern in di­thio­carbamates of the heavier alkali metals (K, Rb and Cs) is a symmetric double-chelating mode, leading to a puckered S2M2 ring (e.g. Howie et al., 2008[Howie, A. R., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626-1637.]; Reyes-Martínez et al., 2009[Reyes-Martínez, R., Höpfl, H., Godoy-Alcántar, C., Medrano, F. & Tlahuext, H. (2009). CrystEngComm, 11, 2417-2424.]; Mafud, 2012[Mafud, A. C. (2012). Acta Cryst. E68, m1025.]; see (B) in Fig. 3[link]]. Nonetheless, the values of the K—S separations in the title compound cover the same range as observed in the reference compounds. A simple chelating coordination with significantly shorter K—S contacts is realized when the K+ cation is coordinatively highly saturated, as has been observed in a crown ether complex [Arman et al., 2013[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479-m480.]; see (A) in Fig. 3[link]]. In the title compound, three of the four K—O(carboxyl­ate) contacts are in a range 2.676 (2)–2.802 (2) Å, which is consistent with the values observed in other potassium carboxyl­ates (e.g. Ilczyszyn et al., 2009[Ilczyszyn, M. M., Lis, T., Wierzejewska, M. & Zatajska, M. (2009). J. Mol. Struct. 919, 303-311.]; Liebing et al., 2016[Liebing, P., Zaeni, A., Olbrich, F. & Edelmann, F. T. (2016). Acta Cryst. E72, 1757-1761.]). However, one contact (K1′—O1) is strongly elongated to 3.358 (2) Å. The K—O(H2O) bond lengths cover a range of 2.723 (2)–3.065 (3) Å.

[Figure 1]
Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level and H atoms attached to C atoms have been omitted for clarity. Adjacent symmetry-related K+ cations are illustrated as semi-transparent spheres.
[Figure 2]
Figure 2
Illustration of the coordination environment of the two K+ cations.
[Figure 3]
Figure 3
The different coordination modes of the di­thio­carbamate group in potassium complexes: single-chelating (A), symmetric double-chelating (B) and single-chelating combined with π-coordination (this work; C).

3. Supra­molecular features

As a result of the bridging coordination of the carboxyl­ate group, the di­thio­carbamate group and the water mol­ecules, a two-dimensional polymeric structure parallel to the ab plane is built (Figs. 4[link] and 5[link]). This arrangement is likely supported by O3—H⋯O1i, O3—H⋯S2ii, O4—H⋯O2iii and O5—H⋯O1 hydrogen bonds within the layer (Table 1[link]). The layer surfaces are defined by the hydro­phobic hydro­carbon backbones, but additionally the two-dimensional arrays are apparently inter­connected by O5—H⋯S1iv hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H9⋯O1i 0.83 (2) 1.93 (2) 2.752 (3) 170 (4)
O3—H8⋯S2ii 0.81 (2) 2.57 (2) 3.3123 (19) 153 (3)
O4—H11⋯O2iii 0.80 (2) 2.22 (2) 3.000 (3) 166 (4)
O5—H13⋯O1 0.81 (2) 1.99 (3) 2.724 (3) 150 (3)
O5—H12⋯S1iv 0.81 (2) 2.55 (2) 3.341 (2) 163 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
Supramolecular crystal structure comprising polymeric layers extending parallel to (001), viewed in a projection on (100). The bold black lines mark the unit-cell dimensions.
[Figure 5]
Figure 5
The supra­molecular layer illustrated in Fig. 4[link], viewed in a projection on (010).

4. Database survey

For other potassium di­thio­carbamates, see e.g. Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode AGEHIF (Arman et al., 2013[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479-m480.]), KOLLIH (Howie et al., 2008[Howie, A. R., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626-1637.]), LEHRUN (Mafud, 2012[Mafud, A. C. (2012). Acta Cryst. E68, m1025.]).

For other potassium carboxyl­ates, see e.g. CONWOS (Ilczyszyn et al., 2009[Ilczyszyn, M. M., Lis, T., Wierzejewska, M. & Zatajska, M. (2009). J. Mol. Struct. 919, 303-311.]), and BIFMIN01 and BIFMUZ01 (Liebing et al., 2016[Liebing, P., Zaeni, A., Olbrich, F. & Edelmann, F. T. (2016). Acta Cryst. E72, 1757-1761.]).

5. Synthesis and crystallization

A slight excess of carbon di­sulfide (approximately 4 ml, 0.06 mol) was added to a solution of L-proline (5.76 g, 0.05 mol) and potassium hydroxide (5.61 g, 0.10 mol) in 30 ml water and the resulting solution was stirred vigorously overnight. The yellow solution obtained was filtered and reduced to dryness in vacuo. The crystalline residue was washed with several portions of tetra­hydro­furan and diethyl ether, and dried in vacuo, providing analytically pure K2(SSC–NC4H7–COO)·3H2O in almost qu­anti­tative (>95%) yield as colourless to light-brown low-melting plates, which are very soluble in water. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of a concentrated aqueous solution at room temperature. IR: 3372 (s br), 3226 (sh br), 2985 (m), 2949 (m), 2875 (w), 1641 (sh), 1603 (sh), 1587 (s), 1497 (s), 1443 (s), 1374 (s), 1338 (m), 1316 (w), 1290 (s), 1257 (m), 1230 (w), 1176 (m), 1155 (s), 1083 (w), 1050 (w), 1003 (m), 948 (m), 918 (m), 899 (w), 846 (m), 794 (m), 666 (s br), 562 (s), 479 (s), 446 (m) cm−1. 1H NMR [400 MHz, D2O, 298 (2) K]: δ 1.89–1.98 (3 × m, 3H; 3-CH2 + 4-CH2), 2.24 (m, 1H; 3-CH2), 3.75 (m, 1H; 5-CH2), 3.83 (m, 1H; 5-CH2), 4.72 (dd, J1 = 8.7, J2 = 3.2 Hz, 1H; 2-CH). 13C NMR [100 MHz, D2O, 298 (2) K]: δ 24.6 (4-CH2), 31.5 (3-CH2), 55.7 (5-CH2), 69.5 (2-CH), 179.9 (COO), 205.8 (CSS).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on C atoms were fixed geometrically and refined using a riding model, with Uiso(H) = 1.2Ueq(C). C—H distances within the CH2 groups were constrained to 0.99 Å and that within the CH group to 1.00 Å. The water H-atom sites were located in difference Fourier maps and refined using restraints on the O—H distance [target value = 0.84 (2) Å]. The corresponding Uiso(H) values were set at 1.5Ueq(O). The reflection (002) disagreed strongly with the structural model and was therefore omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula [K2(C6H7NO2S2)(H2O)3]
Mr 321.49
Crystal system, space group Orthorhombic, P212121
Temperature (K) 153
a, b, c (Å) 7.1700 (3), 8.9723 (4), 19.8379 (7)
V3) 1276.20 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.44 × 0.10 × 0.07
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Numerical (X-AREA and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.741, 0.935
No. of measured, independent and observed [I > 2σ(I)] reflections 8831, 2794, 2511
Rint 0.038
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.042, 0.97
No. of reflections 2794
No. of parameters 164
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.22
Absolute structure Flack x determined using 979 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (4)
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[tri-µ-aqua-(µ-2-carboxylatopyrrolidine-1-carbodithioato)dipotassium] top
Crystal data top
[K2(C6H7NO2S2)(H2O)3]Dx = 1.673 Mg m3
Mr = 321.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 10736 reflections
a = 7.1700 (3) Åθ = 2.5–29.2°
b = 8.9723 (4) ŵ = 1.07 mm1
c = 19.8379 (7) ÅT = 153 K
V = 1276.20 (9) Å3Plate, colorless
Z = 40.44 × 0.10 × 0.07 mm
F(000) = 664
Data collection top
Stoe IPDS 2T
diffractometer
2794 independent reflections
Radiation source: fine-focus sealed tube2511 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.038
ω scanθmax = 27.0°, θmin = 2.5°
Absorption correction: numerical
(X-AREA and X-RED; Stoe & Cie, 2002)
h = 99
Tmin = 0.741, Tmax = 0.935k = 1111
8831 measured reflectionsl = 2225
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0175P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.25 e Å3
2794 reflectionsΔρmin = 0.22 e Å3
164 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0051 (7)
Primary atom site location: heavy-atom methodAbsolute structure: Flack x determined using 979 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0231 (3)0.2133 (3)0.89993 (13)0.0120 (5)
C20.0116 (3)0.3153 (3)0.83918 (13)0.0103 (5)
H10.0988140.3977150.8518160.012*
C30.2180 (4)0.3035 (3)0.74906 (14)0.0140 (6)
H30.3485360.2681340.7516360.017*
H20.2057120.3726180.7103950.017*
C40.0837 (4)0.1734 (3)0.74238 (15)0.0157 (6)
H50.1353070.0825390.7636490.019*
H40.0560060.1521750.6944390.019*
C50.0907 (4)0.2267 (3)0.77943 (14)0.0156 (6)
H60.1665260.1413240.7951800.019*
H70.1683140.2908720.7501110.019*
C60.2657 (3)0.4759 (3)0.84517 (12)0.0098 (5)
N0.1619 (3)0.3766 (2)0.81226 (11)0.0092 (4)
O10.1821 (2)0.1556 (2)0.90730 (10)0.0157 (4)
O20.1122 (2)0.1894 (2)0.93751 (12)0.0207 (4)
O30.7663 (3)0.5383 (3)0.98964 (10)0.0217 (4)
H80.856 (4)0.512 (4)0.9680 (15)0.033*
H90.747 (4)0.471 (4)1.0179 (15)0.033*
O40.9025 (3)0.8561 (2)0.92654 (13)0.0280 (5)
H100.999 (4)0.821 (4)0.912 (2)0.042*
H110.914 (5)0.943 (3)0.934 (2)0.042*
O50.4779 (3)0.0059 (2)0.85399 (10)0.0240 (5)
H130.373 (3)0.038 (4)0.8575 (18)0.036*
H120.505 (4)0.005 (4)0.8144 (12)0.036*
K10.53230 (8)0.28003 (6)0.93500 (3)0.01712 (14)
K20.54335 (7)0.76029 (6)0.93744 (3)0.01595 (13)
S10.47870 (8)0.52667 (8)0.81344 (3)0.01487 (14)
S20.18705 (8)0.54540 (7)0.92079 (3)0.01487 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0121 (11)0.0107 (12)0.0133 (13)0.0024 (9)0.0008 (10)0.0016 (9)
C20.0068 (11)0.0108 (11)0.0134 (13)0.0003 (9)0.0006 (10)0.0007 (9)
C30.0154 (14)0.0153 (13)0.0112 (14)0.0017 (10)0.0030 (10)0.0030 (11)
C40.0192 (14)0.0133 (13)0.0145 (15)0.0047 (10)0.0023 (10)0.0031 (11)
C50.0151 (12)0.0151 (14)0.0167 (15)0.0028 (10)0.0038 (10)0.0007 (11)
C60.0097 (10)0.0096 (11)0.0100 (12)0.0016 (10)0.0005 (8)0.0021 (11)
N0.0095 (9)0.0086 (10)0.0096 (11)0.0024 (8)0.0003 (8)0.0004 (8)
O10.0135 (8)0.0164 (9)0.0171 (11)0.0057 (8)0.0000 (8)0.0034 (8)
O20.0127 (8)0.0312 (12)0.0183 (11)0.0002 (7)0.0040 (9)0.0082 (10)
O30.0206 (9)0.0208 (10)0.0237 (11)0.0048 (8)0.0084 (8)0.0098 (10)
O40.0223 (10)0.0214 (11)0.0403 (16)0.0048 (8)0.0009 (10)0.0010 (12)
O50.0233 (9)0.0330 (13)0.0158 (10)0.0126 (9)0.0033 (8)0.0009 (9)
K10.0115 (2)0.0201 (3)0.0197 (3)0.0003 (2)0.0003 (3)0.0014 (2)
K20.0146 (3)0.0140 (3)0.0192 (3)0.0005 (2)0.0023 (3)0.0006 (2)
S10.0125 (3)0.0187 (3)0.0134 (3)0.0058 (3)0.0023 (2)0.0005 (3)
S20.0135 (3)0.0182 (3)0.0129 (3)0.0022 (3)0.0020 (2)0.0062 (3)
Geometric parameters (Å, º) top
C1—O21.242 (3)O3—K13.060 (2)
C1—O11.261 (3)O3—H80.81 (2)
C1—C21.533 (4)O3—H90.83 (2)
C1—K1i3.276 (3)O4—K22.723 (2)
C2—N1.462 (3)O4—K2iii3.065 (3)
C2—C51.536 (4)O4—H100.81 (2)
C2—H11.0000O4—H110.80 (2)
C3—N1.471 (3)O5—K2iv2.796 (2)
C3—C41.519 (4)O5—K12.964 (2)
C3—H30.9900O5—H130.81 (2)
C3—H20.9900O5—H120.81 (2)
C4—C51.527 (4)K1—O2v2.6758 (19)
C4—H50.9900K1—O2vi2.747 (2)
C4—H40.9900K1—C1vi3.276 (3)
C5—H60.9900K1—S13.2956 (9)
C5—H70.9900K1—O1vi3.358 (2)
C6—N1.332 (3)K1—S23.4463 (8)
C6—S11.714 (2)K1—H92.83 (4)
C6—S21.719 (3)K1—H132.90 (4)
C6—K13.150 (2)K2—O5vii2.796 (2)
O1—K12.8023 (19)K2—O3viii3.050 (2)
O1—K1i3.358 (2)K2—O4viii3.065 (3)
O2—K1ii2.6758 (19)K2—S23.2176 (8)
O2—K1i2.747 (2)K2—S13.2650 (9)
O3—K22.756 (2)K2—S2iii3.4656 (9)
O3—K2iii3.050 (2)S2—K2viii3.4656 (9)
O2—C1—O1124.5 (2)C6—K1—K257.29 (5)
O2—C1—C2116.6 (2)C1vi—K1—K288.33 (4)
O1—C1—C2118.9 (2)S1—K1—K248.625 (16)
O2—C1—K1i54.47 (14)O1vi—K1—K279.14 (4)
O1—C1—K1i82.72 (15)S2—K1—K247.420 (14)
C2—C1—K1i141.07 (16)O2v—K1—K1vi35.39 (5)
N—C2—C1111.93 (19)O2vi—K1—K1vi77.43 (4)
N—C2—C5103.1 (2)O1—K1—K1vi141.94 (4)
C1—C2—C5110.9 (2)O5—K1—K1vi108.66 (4)
N—C2—H1110.2O3—K1—K1vi56.26 (4)
C1—C2—H1110.2C6—K1—K1vi152.21 (5)
C5—C2—H1110.2C1vi—K1—K1vi55.88 (5)
N—C3—C4104.1 (2)S1—K1—K1vi126.83 (2)
N—C3—H3110.9O1vi—K1—K1vi39.01 (3)
C4—C3—H3110.9S2—K1—K1vi135.23 (3)
N—C3—H2110.9K2—K1—K1vi95.725 (18)
C4—C3—H2110.9O2v—K1—H969.9 (7)
H3—C3—H2109.0O2vi—K1—H967.0 (6)
C3—C4—C5103.7 (2)O1—K1—H9147.4 (6)
C3—C4—H5111.0O5—K1—H9152.8 (7)
C5—C4—H5111.0O3—K1—H915.6 (5)
C3—C4—H4111.0C6—K1—H9108.6 (6)
C5—C4—H4111.0C1vi—K1—H954.5 (5)
H5—C4—H4109.0S1—K1—H994.6 (5)
C4—C5—C2103.4 (2)O1vi—K1—H935.0 (5)
C4—C5—H6111.1S2—K1—H991.1 (6)
C2—C5—H6111.1K2—K1—H951.5 (6)
C4—C5—H7111.1K1vi—K1—H945.5 (6)
C2—C5—H7111.1O2v—K1—H1399.1 (5)
H6—C5—H7109.0O2vi—K1—H13114.5 (7)
N—C6—S1119.70 (18)O1—K1—H1340.8 (5)
N—C6—S2119.16 (17)O5—K1—H1315.8 (4)
S1—C6—S2121.09 (15)O3—K1—H13166.5 (6)
N—C6—K1104.05 (16)C6—K1—H1383.0 (6)
S1—C6—K179.34 (8)C1vi—K1—H13122.4 (7)
S2—C6—K184.71 (9)S1—K1—H1394.0 (7)
C6—N—C2123.2 (2)O1vi—K1—H13138.6 (7)
C6—N—C3124.3 (2)S2—K1—H13101.0 (5)
C2—N—C3112.12 (18)K2—K1—H13139.7 (7)
C1—O1—K1132.01 (16)K1vi—K1—H13122.3 (6)
C1—O1—K1i75.41 (15)H9—K1—H13167.8 (8)
K1—O1—K1i92.03 (5)O4—K2—O373.12 (7)
C1—O2—K1ii132.87 (17)O4—K2—O5vii82.11 (7)
C1—O2—K1i103.94 (16)O3—K2—O5vii152.81 (6)
K1ii—O2—K1i110.25 (8)O4—K2—O3viii117.80 (6)
K2—O3—K2iii97.35 (7)O3—K2—O3viii128.88 (4)
K2—O3—K195.52 (6)O5vii—K2—O3viii72.82 (6)
K2iii—O3—K1166.87 (8)O4—K2—O4viii119.29 (6)
K2—O3—H8118 (2)O3—K2—O4viii67.29 (6)
K2iii—O3—H885 (3)O5vii—K2—O4viii137.28 (6)
K1—O3—H892 (3)O3viii—K2—O4viii64.51 (6)
K2—O3—H9133 (2)O4—K2—S2158.71 (6)
K2iii—O3—H9103 (2)O3—K2—S293.79 (5)
K1—O3—H966 (2)O5vii—K2—S2106.15 (5)
H8—O3—H9106 (3)O3viii—K2—S283.48 (4)
K2—O4—K2iii97.70 (8)O4viii—K2—S267.94 (5)
K2—O4—H10135 (3)O4—K2—S1106.09 (6)
K2iii—O4—H1084 (3)O3—K2—S184.35 (5)
K2—O4—H11113 (2)O5vii—K2—S192.06 (5)
K2iii—O4—H1198 (3)O3viii—K2—S1130.18 (4)
H10—O4—H11111 (4)O4viii—K2—S1113.44 (5)
K2iv—O5—K1108.11 (6)S2—K2—S154.915 (17)
K2iv—O5—H13113 (3)O4—K2—S2iii67.95 (6)
K1—O5—H1377 (3)O3—K2—S2iii83.46 (5)
K2iv—O5—H12116 (3)O5vii—K2—S2iii97.70 (5)
K1—O5—H12126 (3)O3viii—K2—S2iii60.71 (4)
H13—O5—H12110 (3)O4viii—K2—S2iii63.57 (5)
O2v—K1—O2vi111.87 (5)S2—K2—S2iii128.38 (2)
O2v—K1—O1137.40 (6)S1—K2—S2iii167.58 (2)
O2vi—K1—O183.24 (6)O4—K2—K1109.40 (5)
O2v—K1—O583.31 (6)O3—K2—K144.96 (5)
O2vi—K1—O5122.17 (6)O5vii—K2—K1141.10 (5)
O1—K1—O556.29 (5)O3viii—K2—K1125.84 (4)
O2v—K1—O372.61 (6)O4viii—K2—K170.31 (4)
O2vi—K1—O378.76 (6)S2—K2—K152.061 (16)
O1—K1—O3149.61 (6)S1—K2—K149.238 (17)
O5—K1—O3153.24 (6)S2iii—K2—K1121.17 (2)
O2v—K1—C6139.31 (7)O4—K2—K2iii44.10 (5)
O2vi—K1—C6103.67 (6)O3—K2—K2iii43.88 (5)
O1—K1—C664.38 (6)O5vii—K2—K2iii120.53 (5)
O5—K1—C694.38 (6)O3viii—K2—K2iii106.88 (4)
O3—K1—C696.35 (6)O4viii—K2—K2iii75.86 (5)
O2v—K1—C1vi90.35 (7)S2—K2—K2iii133.26 (3)
O2vi—K1—C1vi21.59 (6)S1—K2—K2iii121.19 (2)
O1—K1—C1vi100.67 (6)S2iii—K2—K2iii46.809 (17)
O5—K1—C1vi123.68 (6)K1—K2—K2iii88.808 (18)
O3—K1—C1vi69.09 (6)O4—K2—K2viii146.64 (6)
C6—K1—C1vi122.90 (6)O3—K2—K2viii103.43 (5)
O2v—K1—S1109.19 (5)O5vii—K2—K2viii103.43 (4)
O2vi—K1—S1124.25 (4)O3viii—K2—K2viii38.77 (4)
O1—K1—S191.12 (4)O4viii—K2—K2viii38.20 (4)
O5—K1—S198.34 (4)S2—K2—K2viii51.744 (13)
O3—K1—S179.31 (4)S1—K2—K2viii106.540 (19)
C6—K1—S130.73 (4)S2iii—K2—K2viii78.70 (2)
C1vi—K1—S1135.80 (5)K1—K2—K2viii87.075 (19)
O2v—K1—O1vi74.35 (6)K2iii—K2—K2viii110.46 (3)
O2vi—K1—O1vi41.03 (5)O4—K2—K1vii72.51 (5)
O1—K1—O1vi122.54 (5)O3—K2—K1vii137.42 (5)
O5—K1—O1vi133.64 (5)O5vii—K2—K1vii37.15 (4)
O3—K1—O1vi50.52 (5)O3viii—K2—K1vii53.25 (4)
C6—K1—O1vi128.70 (6)O4viii—K2—K1vii110.14 (5)
C1vi—K1—O1vi21.87 (5)S2—K2—K1vii125.77 (2)
S1—K1—O1vi127.12 (4)S1—K2—K1vii129.17 (2)
O2v—K1—S2153.59 (5)S2iii—K2—K1vii60.694 (17)
O2vi—K1—S274.66 (4)K1—K2—K1vii177.62 (2)
O1—K1—S267.40 (4)K2iii—K2—K1vii93.565 (18)
O5—K1—S2115.75 (4)K2viii—K2—K1vii91.962 (18)
O3—K1—S284.23 (4)C6—S1—K291.16 (9)
C6—K1—S229.79 (5)C6—S1—K169.92 (8)
C1vi—K1—S293.14 (5)K2—S1—K182.14 (2)
S1—K1—S252.585 (17)C6—S2—K292.67 (8)
O1vi—K1—S2100.79 (4)C6—S2—K165.51 (8)
O2v—K1—K2106.61 (4)K2—S2—K180.519 (19)
O2vi—K1—K284.08 (4)C6—S2—K2viii171.04 (10)
O1—K1—K2114.65 (4)K2—S2—K2viii81.447 (18)
O5—K1—K2146.95 (4)K1—S2—K2viii119.65 (2)
O3—K1—K239.52 (4)
O2—C1—C2—N160.5 (2)C4—C3—N—C28.5 (3)
O1—C1—C2—N21.9 (3)O2—C1—O1—K1116.4 (2)
K1i—C1—C2—N95.0 (3)C2—C1—O1—K166.3 (3)
O2—C1—C2—C584.9 (3)K1i—C1—O1—K179.32 (18)
O1—C1—C2—C592.6 (3)O2—C1—O1—K1i37.0 (2)
K1i—C1—C2—C5150.4 (2)C2—C1—O1—K1i145.6 (2)
N—C3—C4—C528.1 (3)O1—C1—O2—K1ii176.93 (17)
C3—C4—C5—C237.1 (3)C2—C1—O2—K1ii0.5 (3)
N—C2—C5—C431.5 (3)K1i—C1—O2—K1ii135.8 (2)
C1—C2—C5—C488.5 (3)O1—C1—O2—K1i47.3 (3)
S1—C6—N—C2173.28 (17)C2—C1—O2—K1i135.35 (18)
S2—C6—N—C24.1 (3)N—C6—S1—K2178.61 (19)
K1—C6—N—C287.7 (2)S2—C6—S1—K24.09 (15)
S1—C6—N—C30.5 (3)K1—C6—S1—K281.19 (4)
S2—C6—N—C3176.82 (19)N—C6—S1—K1100.2 (2)
K1—C6—N—C385.1 (2)S2—C6—S1—K177.11 (14)
C1—C2—N—C668.8 (3)N—C6—S2—K2178.53 (19)
C5—C2—N—C6171.9 (2)S1—C6—S2—K24.15 (15)
C1—C2—N—C3104.8 (2)K1—C6—S2—K278.32 (4)
C5—C2—N—C314.5 (3)N—C6—S2—K1103.2 (2)
C4—C3—N—C6165.0 (2)S1—C6—S2—K174.17 (14)
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x1, y, z; (iii) x+1/2, y+3/2, z+2; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1/2, y+1/2, z+2; (vii) x, y+1, z; (viii) x1/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H9···O1vi0.83 (2)1.93 (2)2.752 (3)170 (4)
O3—H8···S2v0.81 (2)2.57 (2)3.3123 (19)153 (3)
O4—H11···O2ix0.80 (2)2.22 (2)3.000 (3)166 (4)
O5—H13···O10.81 (2)1.99 (3)2.724 (3)150 (3)
O5—H12···S1x0.81 (2)2.55 (2)3.341 (2)163 (3)
Symmetry codes: (v) x+1, y, z; (vi) x+1/2, y+1/2, z+2; (ix) x+1, y+1, z; (x) x+1, y1/2, z+3/2.
 

Acknowledgements

General financial support of this work by the Otto-von-Guericke-Universität Magdeburg, Germany, is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479–m480.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCachapa, A., Mederos, A., Gili, P., Hernández-Molina, R., Domínguez, S., Chinea, E., López Rodríguez, M., Feliz, M., Llusar, R., Brito, F., Ruiz de Galarreta, C. M., Tarbraue, C. & Gallardo, G. (2006). Polyhedron, 25, 3366–3378.  CSD CrossRef CAS Google Scholar
First citationGiovagnini, L., Ronconi, L., Aldinucci, D., Lorenzon, D., Sitran, S. & Fregona, D. (2005). J. Med. Chem. 48, 1588–1595.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHowie, A. R., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626–1637.  CSD CrossRef CAS Google Scholar
First citationIlczyszyn, M. M., Lis, T., Wierzejewska, M. & Zatajska, M. (2009). J. Mol. Struct. 919, 303–311.  CSD CrossRef CAS Google Scholar
First citationLiebing, P., Zaeni, A., Olbrich, F. & Edelmann, F. T. (2016). Acta Cryst. E72, 1757–1761.  CSD CrossRef IUCr Journals Google Scholar
First citationMafud, A. C. (2012). Acta Cryst. E68, m1025.  CSD CrossRef IUCr Journals Google Scholar
First citationNagy, E. M., Sitran, S., Montopoli, M., Favaro, M., Marchiò, L., Caparrotta, L. & Fregona, D. (2012). J. Inorg. Biochem. 117, 131–139.  CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Google Scholar
First citationReyes-Martínez, R., Höpfl, H., Godoy-Alcántar, C., Medrano, F. & Tlahuext, H. (2009). CrystEngComm, 11, 2417–2424.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZahradnik, R. (1956). Chem. Listy Vedu Prum. 50, 1892–1898.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds