research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a dimeric β-diketiminate magnesium complex

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
*Correspondence e-mail: boere@uleth.ca

Edited by M. Zeller, Purdue University, USA (Received 20 October 2016; accepted 28 October 2016; online 4 November 2016)

The solid-state structure of a dimeric β-diketiminate magnesium(II) complex is discussed. The compound, di-μ-iodido-bis­[(­{4-amino-1,5-bis­[2,6-bis­(propan-2-yl)phen­yl]pent-3-en-2-yl­idene}aza­nido-κ2N,N′)magnesium(II)] toluene sesquisolvate, [Mg2(C29H41N2)2I2]·1.5C7H8, crystallizes as two independent mol­ecules, each with 2/m crystallographic site symmetry, located at Wyckoff sites 2c and 2d. These have symmetry-equivalent magnesium atoms bridged by μ-iodide ligands with very similar Mg—I distances. The two Mg atoms are located slightly below (∼0.5 Å) the least-squares plane defined by N–C—C–N atoms in the ligand scaffold, and are approximately tetra­hedrally coordinated. One and one-half toluene solvent mol­ecules are disordered with respect to mirror-site symmetry at Wyckoff sites 4i and 2a, respectively. In the former case, two toluene mol­ecules inter­act in an off-center parallel stacking arrangement; the shortest C to C′ (ππ) distance of 3.72 (1) Å was measured for this inter­action.

1. Chemical context

The ubiquity of β-diketiminate (Nacnac) ancillary ligands likely stems from the analogous acetyl­acetonato (acac) ligands in coordination chemistry. This nitro­gen analogue of acac allows for modular electronic and steric tuning of the ligand framework by altering groups on the N atoms, which engenders marked stability in low-oxidation-state metals as described in the literature, notably by the late Professor Lappert (Bourget-Merle et al., 2002[Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031-3066.]). Whereas the chemistry of group 2 metals is largely defined by the +2 oxidation state, a landmark contribition by Cameron Jones and co-workers, describing an MgI complex bearing a Nacnac ligand, and containing a covalent magnesium–magnesium bond [Mg—Mg = 2.8457 (8) Å] was reported (Green et al., 2007[Green, S. P., Jones, C. & Stasch, A. (2007). Science, 318, 1754-1757.]). Important precursors in the synthesis of these MgII compounds are dimeric hydride- and iodide-bridged MgIII complexes bearing Nacnac ligands of varying steric bulk. Notably, only one other β-diketiminate-stabilized Mg2I2 complex has been characterized crystallographically (Bonyhady et al., 2010[Bonyhady, S. J., Jones, C., Nembenna, S., Stasch, A., Edwards, A. J. & McIntyre, G. J. (2010). Chem. Eur. J. 16, 938-955.]). This report describes a previously unreported Mg2I2 complex which crystallizes as two independent dimers, suitable for direct comparison of metrical data.

2. Structural commentary

The title compound (Fig. 1[link]) is reported as crystallographically independent dimers in the monoclinic space group C2/m. Each dimer has 2/m symmetry, thus only ¼ of each mol­ecule is unique.

[Scheme 1]
[Figure 1]
Figure 1
Displacement ellipsoids diagram (50% probability level) of the molecular structure of the title compound, showing the two independent metal environments for Mg1 (a) and Mg2 (b), each with site symmetry of 2/m. Each metal is associated with one iodine and half a Nacnac ligand that are crystallographically independent. Hydrogen atoms and disordered toluene mol­ecules have been omitted for clarity.

Both Mg2I2 fragments are crystallographically orthogonal to the coordinating Nacnac ligand scaffolds. The magnesium atoms are located 0.512 (4) Å and 0.473 (3) Å out of the mean least-square plane defined by (N1–C1–C1–N1) or (N2–C21–C21–N2), which suggests predominantly κ2 bonding. Chelate-ring atoms C2 and C22 deviate from these planes by 0.127 (4) and 0.111 (4) Å, respectively. The coordination geometry is best described as stated; however, there are reports of low-lying p orbitals contributing to more pronounced deviations of the metal from the calculated plane of the ligand (Randall et al., 2000[Randall, D. W., George, S. D., Holland, P. L., Hedman, B., Hodgson, K. O., Tolman, W. B. & Solomon, E. I. (2000). J. Am. Chem. Soc. 122, 11632-11648.]). The geometry about each magnesium atom is pseudo-tetra­hedral; the average tetra­hedral angle is 106.6°. The backbone of the ligand is not strictly planar; identical torsion angles were measured [Mg1—N1—C1—C2 = 10.2 (3) and Mg2—N2—C21—C22 = 10.1 (3)°]. Mg—I bond lengths [Mg1—I1 = 2.7718 (9) Å, Mg2—I2 = 2.7581 (9) Å] are comparable to those previously reported in a similar structure [Mg1—I1 = 2.7471 (10), Mg1—I1′ = 2.7667 (11) Å; Bonyhady et al., 2010[Bonyhady, S. J., Jones, C., Nembenna, S., Stasch, A., Edwards, A. J. & McIntyre, G. J. (2010). Chem. Eur. J. 16, 938-955.]]. Likewise, the Mg—I—Mg' angles compare well with the previously reported structure, and are equal within error in the present crystal [Mg1—I1—Mg1′ = 83.62 (3), I1—Mg1—I1′ = 96.38 (3)° and Mg2—I2—Mg2′ = 83.14 (3), I2—Mg2—I2′ = 96.86 (3)°].

3. Synthesis and crystallization

Under a dry, argon atmosphere, an oven-dried Schlenk flask was charged with lithium DipNacnac (3.71 g, 8.74 mmol), MgI2 (2.45 g, 8.80 mmol), and a magnetic stir bar. Diethyl ether (70 mL, dried over sodium benzo­phenone ket­yl) was condensed into the flask at 195 K by vacuum transfer, providing a cloudy beige solution. The reaction mixture was warmed to 273 K and stirred for three h. The flask was then warmed to room temperature and all volatiles were removed under reduced pressure. The resulting white residue was reconstituted in toluene and passed through a fine porosity frit, affording a clear-yellow filtrate. The filtrate was concentrated under vacuum and single crystals suitable for diffraction were grown from this concentrated toluene solution at 238 K. 1H NMR (CDCl3): δ 7.12 (t, 3JHH = 7.6 Hz, 4H, aromatic CH), 6.97 (d, 3JHH = 7.6 Hz, 8H, aromatic CH), 4.76 (s, 2H, NC(CH3)CH), 3.02 (sp, 3JHH = 6.8 Hz, 8H, CH(CH3)2), 1.57 (s, 12H, NC(CH3)CH), 1.04 [d, 3JHH = 6.8 Hz, 24H, CH(CH3)(CH3)], 0.78 [d, 3JHH = 6.8 Hz, 24H, CH(CH3)(CH3)]. 13C{1H} NMR (CDCl3): δ 169.9 (NC(CH3)CH), 143.6 (aromatic C), 142.6 (aromatic C), 125.6 (aromatic CH), 123.8 (aromatic CH), 94.8 (NC(CH3)CH), 28.0 (CH(CH3)2), 25.6 (CH(CH3)(CH3)), 24.7 (CH(CH3)(CH3)), 24.4 (NC(CH3)CH). Analysis calculated for C58H82I2Mg2N4: C, 61.23; H, 7.26; N, 4.92. Found: C, 61.06; H, 6.98; N, 5.14.

4. Refinement

In the crystal, toluene mol­ecules occupy Wyckoff special sites 2a and 4i and are disordered w.r.t. the 2/m and m symmetry, respectively; surprisingly both lie with their mol­ecular planes perpendicular to the crystallographic mirror. Both toluene mol­ecules are (at least approximately) coplanar with the typical orientations where the methyl carbons C47 and C57 lie close to C44 and C54 of the rings, consistent with inter­actions of aromatic solvents (Martinez & Iverson, 2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 26, 413-418.]). These disordered groups also have large displacement parameters indicative of considerable freedom of motion within the solvent cavities. Anisotropic refinement proceeded after applying similarity, ring flatness and approximate isotropic displacement restraints on all the solvent carbon atoms (with s.u. of 0.1 on each restraint). In addition the C41–C47 distance was constrained to 1.45±0.01 Å and the displacement ellipsoids of C54 and C57 were constrained to be the same. A more technical description is provided in the CIF file and an archival RES file has been provided. Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Mg2(C29H41N2)2I2]·1.5C7H8
Mr 1275.89
Crystal system, space group Monoclinic, C2/m
Temperature (K) 173
a, b, c (Å) 19.1596 (15), 21.0532 (16), 16.5711 (13)
β (°) 99.9350 (8)
V3) 6584.1 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.02
Crystal size (mm) 0.30 × 0.25 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.])
Tmin, Tmax 0.685, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 40851, 8630, 7569
Rint 0.039
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.087, 1.06
No. of reflections 8630
No. of parameters 425
No. of restraints 150
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.10, −0.85
Computer programs: APEX2 and SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-µ-iodido-bis[({4-amino-1,5-bis[2,6-bis(propan-2-yl)phenyl]pent-3-en-2-ylidene}azanido-κ2N,N')magnesium(II] toluene sesquisolvate top
Crystal data top
[Mg2(C29H41N2)2I2]·1.5C7H8F(000) = 2652
Mr = 1275.89Dx = 1.287 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 19.1596 (15) ÅCell parameters from 9807 reflections
b = 21.0532 (16) Åθ = 2.2–29.0°
c = 16.5711 (13) ŵ = 1.02 mm1
β = 99.9350 (8)°T = 173 K
V = 6584.1 (9) Å3Plate, colourless
Z = 40.3 × 0.25 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8630 independent reflections
Radiation source: fine-focus sealed tube, Bruker D87569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 66.06 pixels mm-1θmax = 29.2°, θmin = 1.5°
φ and ω scansh = 2625
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2828
Tmin = 0.685, Tmax = 0.746l = 2122
40851 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.047P)2 + 7.993P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
8630 reflectionsΔρmax = 1.10 e Å3
425 parametersΔρmin = 0.85 e Å3
150 restraints
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a fine glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. During refinement, peaks corresponding to about two toluene solvent molecules were found in two different locations in the lattice. The first is disposed about a site of mirror symmetry, whilst the second has 2/m symmetry. Both have been sucessfully modelled as a head-to-tail two-part disorders. Both were treated using the PART-1 instruction in SHELXL. The correctness of the model was checked by Platon 'squeeze' calculation (with the toluene molecules removed from the model). This confirmed the two cavities at (0 0 0) holding one solvent and at (0.5 0 0.5) holding two toluenes. The total electron count was 282 in excellent agreement with the model. The solvent disorder model is therefore considered to be acceptable and the observed large displacement elipsoids for solvent accord with the large cavities that they occupy [note that two toluene molecules occupy the large cavity (vol 420 A3) at (0.5 0 0.5) and are related centrosymmetrically]. In view of the satisfactory disorder model, the 'squeezed' alternative has not pursued further.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.46274 (2)0.50000.37517 (2)0.03058 (6)
Mg10.59211 (4)0.50000.48017 (5)0.02150 (16)
N10.65995 (8)0.57257 (7)0.47110 (9)0.0224 (3)
C10.72901 (10)0.56076 (9)0.49351 (11)0.0257 (4)
C20.75816 (14)0.50000.51065 (17)0.0284 (5)
H20.80580.50000.53870.034*
C30.78216 (11)0.61457 (10)0.50034 (14)0.0358 (4)
H3A0.76720.64540.45640.054*
H3B0.82890.59760.49540.054*
H3C0.78480.63550.55360.054*
C40.63813 (10)0.63530 (8)0.44142 (11)0.0253 (3)
C50.62373 (12)0.64509 (10)0.35578 (12)0.0355 (4)
C60.60249 (12)0.70552 (11)0.32644 (14)0.0410 (5)
H60.59300.71280.26900.049*
C70.59498 (11)0.75462 (10)0.37861 (14)0.0392 (5)
H70.58090.79540.35730.047*
C80.60787 (11)0.74456 (9)0.46182 (13)0.0340 (4)
H80.60200.77870.49750.041*
C90.62950 (9)0.68511 (9)0.49528 (12)0.0264 (4)
C100.63386 (19)0.59313 (12)0.29663 (14)0.0576 (8)
H100.63250.55170.32580.069*
C110.7059 (2)0.5988 (2)0.27163 (19)0.0821 (11)
H11A0.71100.64120.24900.123*
H11B0.71040.56660.23010.123*
H11C0.74290.59220.31960.123*
C120.5753 (2)0.59180 (17)0.22101 (17)0.0808 (12)
H12A0.52930.58610.23820.121*
H12B0.58380.55650.18540.121*
H12C0.57550.63190.19100.121*
C130.64282 (10)0.67773 (9)0.58785 (12)0.0275 (4)
H130.66310.63450.60170.033*
C140.69583 (12)0.72759 (10)0.62973 (13)0.0361 (4)
H14A0.73950.72550.60650.054*
H14B0.70680.71890.68870.054*
H14C0.67500.77010.62070.054*
C150.57359 (12)0.68351 (11)0.62128 (14)0.0383 (5)
H15A0.55470.72660.61150.058*
H15B0.58250.67490.68030.058*
H15C0.53920.65280.59350.058*
I20.51634 (2)1.00000.12648 (2)0.03119 (6)
Mg20.59599 (4)1.00000.00282 (5)0.02144 (16)
N20.66642 (8)0.92871 (7)0.00180 (9)0.0225 (3)
C210.72597 (10)0.93959 (9)0.02728 (11)0.0253 (3)
C220.74947 (14)1.00000.04657 (16)0.0272 (5)
H220.78701.00000.07740.033*
C230.77445 (12)0.88511 (10)0.03973 (15)0.0384 (5)
H23A0.75250.85970.08690.058*
H23B0.78240.85840.00940.058*
H23C0.81990.90190.04980.058*
C240.65529 (10)0.86588 (8)0.03156 (11)0.0250 (3)
C250.62506 (10)0.81781 (9)0.02154 (13)0.0297 (4)
C260.61649 (12)0.75767 (9)0.01142 (15)0.0377 (5)
H260.59630.72440.02370.045*
C270.63679 (13)0.74582 (10)0.09373 (15)0.0409 (5)
H270.63150.70440.11450.049*
C280.66474 (12)0.79370 (10)0.14621 (14)0.0377 (5)
H280.67780.78510.20310.045*
C290.67400 (11)0.85467 (9)0.11669 (12)0.0303 (4)
C300.60077 (12)0.82777 (10)0.11274 (13)0.0347 (4)
H300.61220.87240.12630.042*
C310.52111 (13)0.81844 (13)0.13632 (16)0.0476 (6)
H31A0.49680.84500.10130.071*
H31B0.50940.77370.12900.071*
H31C0.50590.83060.19380.071*
C320.63876 (16)0.78248 (14)0.16440 (17)0.0569 (7)
H32A0.62630.79390.22240.085*
H32B0.62400.73870.15660.085*
H32C0.69010.78610.14690.085*
C330.70560 (13)0.90637 (10)0.17521 (13)0.0397 (5)
H330.68980.94800.14930.048*
C340.67992 (17)0.90348 (13)0.25765 (15)0.0532 (7)
H34A0.69780.86470.28680.080*
H34B0.62800.90330.24830.080*
H34C0.69750.94060.29060.080*
C350.78677 (15)0.90533 (15)0.18808 (17)0.0580 (7)
H35A0.80250.91410.13600.087*
H35B0.80400.86340.20820.087*
H35C0.80580.93780.22830.087*
C410.9540 (5)0.4720 (3)0.3549 (5)0.102 (3)0.5
C421.0143 (4)0.5045 (4)0.3919 (5)0.187 (5)0.5
H421.05420.48160.41920.225*0.5
C431.0160 (4)0.5704 (4)0.3890 (5)0.152 (5)0.5
H431.05720.59260.41430.182*0.5
C440.9576 (5)0.6039 (3)0.3491 (6)0.121 (5)0.5
H440.95880.64900.34710.145*0.5
C450.8974 (4)0.5714 (5)0.3120 (5)0.126 (4)0.5
H450.85740.59420.28480.151*0.5
C460.8956 (3)0.5054 (5)0.3149 (4)0.144 (3)0.5
H460.85440.48320.28960.173*0.5
C470.9551 (10)0.4064 (6)0.3783 (11)0.182 (8)0.5
H47A0.98140.38180.34320.273*0.5
H47B0.90650.39040.37210.273*0.5
H47C0.97830.40220.43560.273*0.5
C510.4909 (5)0.5329 (5)0.0100 (9)0.062 (3)0.25
C520.4451 (7)0.5090 (8)0.0664 (8)0.089 (4)0.25
H520.41800.53320.09830.107*0.25
C530.4504 (9)0.4432 (8)0.0627 (11)0.096 (4)0.25
H530.42480.41810.09530.115*0.25
C540.4909 (5)0.4132 (9)0.0138 (13)0.094 (3)0.25
H540.48630.36830.01500.113*0.25
C550.5385 (7)0.4335 (7)0.0385 (9)0.065 (3)0.25
H550.56620.40740.06750.078*0.25
C560.5355 (5)0.5010 (10)0.0379 (6)0.060 (2)0.25
H560.56320.52490.06940.072*0.25
C570.4909 (5)0.6025 (7)0.0146 (16)0.094 (3)0.25
H57A0.53970.61820.02030.141*0.25
H57B0.47040.61600.06210.141*0.25
H57C0.46270.61990.03550.141*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02707 (10)0.04085 (11)0.02362 (9)0.0000.00375 (6)0.000
Mg10.0218 (4)0.0190 (4)0.0237 (4)0.0000.0038 (3)0.000
N10.0245 (7)0.0217 (7)0.0208 (7)0.0015 (5)0.0030 (5)0.0019 (5)
C10.0250 (8)0.0290 (9)0.0231 (8)0.0044 (7)0.0044 (7)0.0005 (7)
C20.0193 (11)0.0334 (14)0.0308 (13)0.0000.0001 (10)0.000
C30.0269 (9)0.0334 (10)0.0468 (12)0.0079 (8)0.0060 (8)0.0005 (9)
C40.0250 (8)0.0240 (8)0.0257 (8)0.0053 (7)0.0012 (7)0.0060 (7)
C50.0450 (12)0.0328 (10)0.0274 (9)0.0100 (9)0.0021 (8)0.0079 (8)
C60.0444 (12)0.0425 (12)0.0325 (10)0.0090 (10)0.0031 (9)0.0178 (9)
C70.0333 (10)0.0321 (10)0.0489 (13)0.0017 (8)0.0021 (9)0.0189 (9)
C80.0300 (10)0.0258 (9)0.0444 (11)0.0017 (7)0.0015 (8)0.0078 (8)
C90.0219 (8)0.0238 (8)0.0323 (9)0.0010 (6)0.0010 (7)0.0054 (7)
C100.111 (2)0.0386 (12)0.0219 (10)0.0106 (14)0.0087 (12)0.0047 (9)
C110.103 (3)0.104 (3)0.0386 (15)0.033 (2)0.0097 (16)0.0168 (16)
C120.131 (3)0.077 (2)0.0299 (13)0.055 (2)0.0009 (16)0.0018 (13)
C130.0289 (9)0.0227 (8)0.0301 (9)0.0018 (7)0.0031 (7)0.0005 (7)
C140.0353 (11)0.0335 (10)0.0365 (11)0.0024 (8)0.0024 (8)0.0025 (8)
C150.0336 (10)0.0384 (11)0.0448 (12)0.0001 (9)0.0120 (9)0.0006 (9)
I20.02600 (10)0.04328 (11)0.02399 (9)0.0000.00348 (6)0.000
Mg20.0217 (4)0.0177 (4)0.0251 (4)0.0000.0045 (3)0.000
N20.0246 (7)0.0191 (7)0.0239 (7)0.0018 (5)0.0046 (6)0.0003 (5)
C210.0259 (8)0.0256 (8)0.0249 (8)0.0041 (7)0.0053 (7)0.0017 (7)
C220.0268 (12)0.0301 (13)0.0270 (12)0.0000.0110 (10)0.000
C230.0348 (11)0.0321 (10)0.0521 (13)0.0071 (8)0.0181 (9)0.0028 (9)
C240.0255 (8)0.0183 (8)0.0325 (9)0.0047 (6)0.0083 (7)0.0017 (7)
C250.0301 (9)0.0231 (8)0.0378 (10)0.0021 (7)0.0117 (8)0.0028 (7)
C260.0415 (11)0.0208 (9)0.0536 (13)0.0003 (8)0.0158 (10)0.0038 (8)
C270.0461 (12)0.0221 (9)0.0580 (14)0.0059 (8)0.0184 (11)0.0093 (9)
C280.0425 (12)0.0298 (10)0.0418 (11)0.0093 (9)0.0096 (9)0.0125 (9)
C290.0322 (10)0.0243 (9)0.0339 (10)0.0058 (7)0.0048 (8)0.0049 (7)
C300.0392 (11)0.0309 (10)0.0351 (10)0.0042 (8)0.0096 (8)0.0097 (8)
C310.0404 (12)0.0484 (13)0.0522 (14)0.0062 (10)0.0029 (11)0.0091 (11)
C320.0612 (17)0.0616 (17)0.0517 (15)0.0024 (13)0.0203 (13)0.0234 (13)
C330.0564 (13)0.0305 (10)0.0279 (10)0.0045 (9)0.0047 (9)0.0059 (8)
C340.0751 (19)0.0495 (14)0.0329 (12)0.0168 (13)0.0028 (12)0.0024 (10)
C350.0578 (16)0.0669 (18)0.0445 (14)0.0163 (14)0.0046 (12)0.0016 (12)
C410.115 (6)0.089 (5)0.118 (6)0.009 (5)0.062 (5)0.015 (4)
C420.155 (7)0.176 (8)0.213 (8)0.027 (10)0.018 (7)0.015 (10)
C430.136 (8)0.139 (8)0.163 (8)0.019 (7)0.022 (7)0.026 (7)
C440.151 (9)0.084 (6)0.136 (8)0.002 (6)0.051 (7)0.035 (6)
C450.092 (6)0.149 (8)0.143 (8)0.001 (6)0.042 (6)0.035 (6)
C460.104 (5)0.161 (7)0.176 (7)0.022 (9)0.048 (5)0.012 (9)
C470.231 (16)0.135 (11)0.221 (15)0.011 (11)0.150 (13)0.034 (11)
C510.051 (6)0.070 (5)0.054 (6)0.014 (5)0.019 (4)0.011 (5)
C520.071 (6)0.085 (7)0.095 (6)0.007 (5)0.032 (5)0.006 (6)
C530.072 (6)0.112 (7)0.093 (7)0.002 (6)0.017 (5)0.001 (6)
C540.078 (5)0.107 (6)0.084 (6)0.001 (5)0.022 (4)0.001 (5)
C550.047 (5)0.081 (6)0.059 (5)0.015 (5)0.011 (4)0.016 (5)
C560.049 (4)0.077 (5)0.046 (4)0.000 (6)0.010 (3)0.001 (6)
C570.078 (5)0.107 (6)0.084 (6)0.001 (5)0.022 (4)0.001 (5)
Geometric parameters (Å, º) top
I1—Mg12.7718 (9)C24—C291.414 (3)
I1—Mg1i2.7785 (9)C25—C261.400 (3)
Mg1—I1i2.7785 (9)C25—C301.517 (3)
Mg1—N1ii2.0283 (16)C26—H260.9500
Mg1—N12.0283 (16)C26—C271.375 (3)
N1—C11.335 (2)C27—H270.9500
N1—C41.446 (2)C27—C281.378 (3)
C1—C21.405 (2)C28—H280.9500
C1—C31.514 (3)C28—C291.396 (3)
C2—C1ii1.405 (2)C29—C331.513 (3)
C2—H20.9500C30—H301.0000
C3—H3A0.9800C30—C311.522 (3)
C3—H3B0.9800C30—C321.545 (3)
C3—H3C0.9800C31—H31A0.9800
C4—C51.413 (3)C31—H31B0.9800
C4—C91.405 (3)C31—H31C0.9800
C5—C61.397 (3)C32—H32A0.9800
C5—C101.504 (3)C32—H32B0.9800
C6—H60.9500C32—H32C0.9800
C6—C71.371 (4)C33—H331.0000
C7—H70.9500C33—C341.531 (3)
C7—C81.375 (3)C33—C351.533 (4)
C8—H80.9500C34—H34A0.9800
C8—C91.402 (3)C34—H34B0.9800
C9—C131.519 (3)C34—H34C0.9800
C10—H101.0000C35—H35A0.9800
C10—C111.513 (5)C35—H35B0.9800
C10—C121.531 (4)C35—H35C0.9800
C11—H11A0.9800C41—C421.3900
C11—H11B0.9800C41—C461.3900
C11—H11C0.9800C41—C471.433 (8)
C12—H12A0.9800C42—H420.9500
C12—H12B0.9800C42—C431.3900
C12—H12C0.9800C43—H430.9500
C13—H131.0000C43—C441.3900
C13—C141.540 (3)C44—H440.9500
C13—C151.528 (3)C44—C451.3900
C14—H14A0.9800C45—H450.9500
C14—H14B0.9800C45—C461.3900
C14—H14C0.9800C46—H460.9500
C15—H15A0.9800C47—H47A0.9800
C15—H15B0.9800C47—H47B0.9800
C15—H15C0.9800C47—H47C0.9800
I2—Mg22.7581 (9)C51—C521.476 (14)
I2—Mg2iii2.7627 (9)C51—C561.430 (13)
Mg2—I2iii2.7627 (9)C51—C571.468 (15)
Mg2—Mg2iii3.6634 (17)C52—H520.9500
Mg2—N2iv2.0203 (16)C52—C531.391 (17)
Mg2—N22.0203 (16)C53—H530.9500
N2—C211.333 (2)C53—C541.370 (16)
N2—C241.440 (2)C54—H540.9500
C21—C221.404 (2)C54—C551.427 (16)
C21—C231.512 (3)C55—H550.9500
C22—C21iv1.404 (2)C55—C561.423 (18)
C22—H220.9500C56—H560.9500
C23—H23A0.9800C57—H57A0.9800
C23—H23B0.9800C57—H57B0.9800
C23—H23C0.9800C57—H57C0.9800
C24—C251.399 (3)
Mg1—I1—Mg1i83.62 (3)C25—C24—N2121.24 (16)
I1—Mg1—I1i96.38 (3)C25—C24—C29120.85 (17)
N1ii—Mg1—I1117.94 (5)C29—C24—N2117.89 (16)
N1—Mg1—I1117.94 (5)C24—C25—C26118.20 (19)
N1ii—Mg1—I1i113.99 (5)C24—C25—C30123.29 (17)
N1—Mg1—I1i113.99 (5)C26—C25—C30118.51 (18)
N1—Mg1—N1ii97.76 (9)C25—C26—H26119.4
C1—N1—Mg1117.15 (12)C27—C26—C25121.3 (2)
C1—N1—C4118.66 (15)C27—C26—H26119.4
C4—N1—Mg1124.19 (12)C26—C27—H27119.8
N1—C1—C2124.49 (18)C26—C27—C28120.39 (19)
N1—C1—C3120.20 (17)C28—C27—H27119.8
C2—C1—C3115.30 (17)C27—C28—H28119.6
C1—C2—C1ii131.1 (2)C27—C28—C29120.7 (2)
C1ii—C2—H2114.4C29—C28—H28119.6
C1—C2—H2114.4C24—C29—C33121.59 (17)
C1—C3—H3A109.5C28—C29—C24118.52 (19)
C1—C3—H3B109.5C28—C29—C33119.86 (19)
C1—C3—H3C109.5C25—C30—H30108.2
H3A—C3—H3B109.5C25—C30—C31111.07 (19)
H3A—C3—H3C109.5C25—C30—C32111.9 (2)
H3B—C3—H3C109.5C31—C30—H30108.2
C5—C4—N1118.02 (17)C31—C30—C32109.01 (19)
C9—C4—N1121.63 (15)C32—C30—H30108.2
C9—C4—C5120.33 (17)C30—C31—H31A109.5
C4—C5—C10121.58 (19)C30—C31—H31B109.5
C6—C5—C4118.5 (2)C30—C31—H31C109.5
C6—C5—C10119.88 (19)H31A—C31—H31B109.5
C5—C6—H6119.2H31A—C31—H31C109.5
C7—C6—C5121.5 (2)H31B—C31—H31C109.5
C7—C6—H6119.2C30—C32—H32A109.5
C6—C7—H7120.1C30—C32—H32B109.5
C6—C7—C8119.75 (19)C30—C32—H32C109.5
C8—C7—H7120.1H32A—C32—H32B109.5
C7—C8—H8119.2H32A—C32—H32C109.5
C7—C8—C9121.6 (2)H32B—C32—H32C109.5
C9—C8—H8119.2C29—C33—H33107.3
C4—C9—C13123.19 (16)C29—C33—C34112.9 (2)
C8—C9—C4118.29 (18)C29—C33—C35111.3 (2)
C8—C9—C13118.51 (18)C34—C33—H33107.3
C5—C10—H10107.6C34—C33—C35110.5 (2)
C5—C10—C11110.4 (2)C35—C33—H33107.3
C5—C10—C12112.8 (3)C33—C34—H34A109.5
C11—C10—H10107.6C33—C34—H34B109.5
C11—C10—C12110.6 (2)C33—C34—H34C109.5
C12—C10—H10107.6H34A—C34—H34B109.5
C10—C11—H11A109.5H34A—C34—H34C109.5
C10—C11—H11B109.5H34B—C34—H34C109.5
C10—C11—H11C109.5C33—C35—H35A109.5
H11A—C11—H11B109.5C33—C35—H35B109.5
H11A—C11—H11C109.5C33—C35—H35C109.5
H11B—C11—H11C109.5H35A—C35—H35B109.5
C10—C12—H12A109.5H35A—C35—H35C109.5
C10—C12—H12B109.5H35B—C35—H35C109.5
C10—C12—H12C109.5C42—C41—C46120.0
H12A—C12—H12B109.5C42—C41—C47112.5 (10)
H12A—C12—H12C109.5C46—C41—C47126.2 (10)
H12B—C12—H12C109.5C41—C42—H42120.0
C9—C13—H13108.4C41—C42—C43120.0
C9—C13—C14111.60 (16)C43—C42—H42120.0
C9—C13—C15110.67 (16)C42—C43—H43120.0
C14—C13—H13108.4C42—C43—C44120.0
C15—C13—H13108.4C44—C43—H43120.0
C15—C13—C14109.19 (17)C43—C44—H44120.0
C13—C14—H14A109.5C45—C44—C43120.0
C13—C14—H14B109.5C45—C44—H44120.0
C13—C14—H14C109.5C44—C45—H45120.0
H14A—C14—H14B109.5C44—C45—C46120.0
H14A—C14—H14C109.5C46—C45—H45120.0
H14B—C14—H14C109.5C41—C46—H46120.0
C13—C15—H15A109.5C45—C46—C41120.0
C13—C15—H15B109.5C45—C46—H46120.0
C13—C15—H15C109.5C41—C47—H47A109.5
H15A—C15—H15B109.5C41—C47—H47B109.5
H15A—C15—H15C109.5C41—C47—H47C109.5
H15B—C15—H15C109.5H47A—C47—H47B109.5
Mg2—I2—Mg2iii83.14 (3)H47A—C47—H47C109.5
I2—Mg2—I2iii96.86 (3)H47B—C47—H47C109.5
I2—Mg2—Mg2iii48.48 (2)C56—C51—C52132.0 (13)
I2iii—Mg2—Mg2iii48.37 (2)C56—C51—C57120.2 (13)
N2iv—Mg2—I2117.53 (5)C57—C51—C52107.6 (11)
N2—Mg2—I2iii115.19 (5)C51—C52—H52127.6
N2iv—Mg2—I2iii115.19 (5)C53—C52—C51104.8 (14)
N2—Mg2—I2117.53 (5)C53—C52—H52127.6
N2—Mg2—Mg2iii131.99 (5)C52—C53—H53118.7
N2iv—Mg2—Mg2iii131.99 (5)C54—C53—C52122.6 (17)
N2iv—Mg2—N295.95 (9)C54—C53—H53118.7
C21—N2—Mg2119.35 (12)C53—C54—H54112.5
C21—N2—C24117.92 (15)C53—C54—C55135.0 (16)
C24—N2—Mg2122.73 (12)C55—C54—H54112.5
N2—C21—C22124.47 (18)C54—C55—H55127.3
N2—C21—C23120.22 (17)C56—C55—C54105.4 (14)
C22—C21—C23115.29 (18)C56—C55—H55127.3
C21iv—C22—C21129.8 (2)C51—C56—H56120.0
C21iv—C22—H22115.1C55—C56—C51120.1 (14)
C21—C22—H22115.1C55—C56—H56120.0
C21—C23—H23A109.5C51—C57—H57A109.5
C21—C23—H23B109.5C51—C57—H57B109.5
C21—C23—H23C109.5C51—C57—H57C109.5
H23A—C23—H23B109.5H57A—C57—H57B109.5
H23A—C23—H23C109.5H57A—C57—H57C109.5
H23B—C23—H23C109.5H57B—C57—H57C109.5
Mg1—N1—C1—C210.2 (3)N2—C24—C29—C330.7 (3)
Mg1—N1—C1—C3171.06 (14)C21—N2—C24—C2585.5 (2)
Mg1—N1—C4—C582.4 (2)C21—N2—C24—C2996.2 (2)
Mg1—N1—C4—C995.97 (18)C23—C21—C22—C21iv165.7 (2)
N1—C1—C2—C1ii15.0 (5)C24—N2—C21—C22169.8 (2)
N1—C4—C5—C6179.90 (18)C24—N2—C21—C238.7 (3)
N1—C4—C5—C102.8 (3)C24—C25—C26—C270.3 (3)
N1—C4—C9—C8179.70 (17)C24—C25—C30—C31116.3 (2)
N1—C4—C9—C130.6 (3)C24—C25—C30—C32121.6 (2)
C1—N1—C4—C596.9 (2)C24—C29—C33—C34143.1 (2)
C1—N1—C4—C984.7 (2)C24—C29—C33—C3592.0 (2)
C3—C1—C2—C1ii163.7 (2)C25—C24—C29—C283.0 (3)
C4—N1—C1—C2169.2 (2)C25—C24—C29—C33178.97 (19)
C4—N1—C1—C39.5 (3)C25—C26—C27—C281.5 (3)
C4—C5—C6—C70.5 (3)C26—C25—C30—C3163.3 (3)
C4—C5—C10—C1195.4 (3)C26—C25—C30—C3258.8 (3)
C4—C5—C10—C12140.3 (2)C26—C27—C28—C291.0 (3)
C4—C9—C13—C14125.58 (19)C27—C28—C29—C241.2 (3)
C4—C9—C13—C15112.6 (2)C27—C28—C29—C33179.3 (2)
C5—C4—C9—C81.3 (3)C28—C29—C33—C3438.8 (3)
C5—C4—C9—C13178.97 (18)C28—C29—C33—C3586.1 (3)
C5—C6—C7—C80.6 (3)C29—C24—C25—C262.5 (3)
C6—C5—C10—C1181.8 (3)C29—C24—C25—C30177.08 (18)
C6—C5—C10—C1242.4 (3)C30—C25—C26—C27179.3 (2)
C6—C7—C8—C90.8 (3)C41—C42—C43—C440.0
C7—C8—C9—C40.2 (3)C42—C41—C46—C450.0
C7—C8—C9—C13179.91 (19)C42—C43—C44—C450.0
C8—C9—C13—C1454.1 (2)C43—C44—C45—C460.0
C8—C9—C13—C1567.7 (2)C44—C45—C46—C410.0
C9—C4—C5—C61.5 (3)C46—C41—C42—C430.0
C9—C4—C5—C10178.7 (2)C47—C41—C42—C43167.4 (8)
C10—C5—C6—C7177.8 (2)C47—C41—C46—C45165.6 (10)
Mg2—N2—C21—C2210.1 (3)C51—C52—C53—C540.5 (14)
Mg2—N2—C21—C23171.40 (15)C52—C51—C56—C552.8 (17)
Mg2—N2—C24—C2594.59 (19)C52—C53—C54—C554 (3)
Mg2—N2—C24—C2983.62 (19)C53—C54—C55—C564 (2)
N2—C21—C22—C21iv12.9 (4)C54—C55—C56—C510.4 (13)
N2—C24—C25—C26179.31 (17)C56—C51—C52—C532.7 (14)
N2—C24—C25—C301.1 (3)C57—C51—C52—C53176.9 (10)
N2—C24—C29—C28178.82 (17)C57—C51—C56—C55176.4 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x, y+2, z.
 

Acknowledgements

This research was generously supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The APEXII diffractometer at the University of Lethbridge X-ray Diffraction Facility was purchased with the help of NSERC and the University of Lethbridge.

References

First citationBonyhady, S. J., Jones, C., Nembenna, S., Stasch, A., Edwards, A. J. & McIntyre, G. J. (2010). Chem. Eur. J. 16, 938–955.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031–3066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationGreen, S. P., Jones, C. & Stasch, A. (2007). Science, 318, 1754–1757.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 26, 413–418.  Google Scholar
First citationRandall, D. W., George, S. D., Holland, P. L., Hedman, B., Hodgson, K. O., Tolman, W. B. & Solomon, E. I. (2000). J. Am. Chem. Soc. 122, 11632–11648.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds