research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­methyl 3,4,5,6-tetra­phenyl­cyclo­hexa-3,5-diene-1,2-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by M. Zeller, Purdue University, USA (Received 8 June 2016; accepted 10 June 2016; online 14 June 2016)

In the title compound, C34H28O4, the cyclo­hexa­diene ring has a screw-boat conformation with a torsion angle between the double bonds being on average ca 15° [15.2 (3) and −15.3 (3) in the two independent mol­ecules]. All four phenyl rings in both mol­ecules are arranged in a propeller-like conformation. The two mol­ecules exhibit S,R- and R,S- chirality, respectively, and are connected via C—H⋯O inter­molecular inter­actions. In turn, these weakly bound dimers form the mol­ecular crystal.

1. Chemical context

Addition reactions of tetra­phenyl­cyclo­penta­dienone, often abbreviated to `tetra­cyclone', were reviewed by Allen (1945[Allen, C. F. H. (1945). Chem. Rev. 37, 209-268.], 1962[Allen, C. F. H. (1962). Chem. Rev. 62, 653-664.]). Tetra­cyclone reacts with unsaturated anhydrides, acids and esters, forming a number of polyfunctional carbonyl-bridge compounds. These species easily loose carbon monoxide to form di­hydro­benzene (cyclo­hexa­diene) derivatives. It was found that the use of maleic and fumaric esters yields various stereoisomers. The photochemical behavior of these compounds was studied (Fuchs & Yankelievich, 1968[Fuchs, B. & Yankelevich, S. (1968). Isr. J. Chem. 6, 511-515.]), showing a number of products including dimethyl tetra­phenyl­phthalate. The relative simplicity of these reactions and the rich organic chemistry and spectroscopy of appropriate products make them attractive for use in undergraduate organic chemistry teaching laboratories.

[Scheme 1]

This study provides an opportunity to investigate the geometry of 1,3-cyclo­hexa­diene rings surrounded by bulky substituents with no strong inter­molecular inter­actions.

2. Database survey

Conjugation of two double bonds favors a coplanar π-system with a dihedral angle close to zero. However, in cyclic 1,3-cyclo­hexa­diene mol­ecules angle strain and steric effects promote a non-planar structure (Rabideau & Sygula, 1989[Rabideau, P. W. & Sygula, A. (1989). The conformational analysis of cyclohexenes, cyclohexadienes and related hydroaromatic compounds, edited by P. W. Rabideau, pp. 67-53. New York: VCH.]). Even for non-cyclic systems, because of steric effects, the geometry of the higher energy non-trans conformer of 1,3-butadiene in the gas phase is non-planar s-gauche (De Maré et al., 1997[De Maré, G. R., Panchenko, Y. N. & Vander Auwera, J. (1997). J. Phys. Chem. A, 101, 3998-4004.]). Addition of bulky substituents to the 1,3-butadiene mol­ecule changes the conformational preference from trans to gauche even in the ground state.

The geometry of unsubstituted 1,3-cyclo­hexa­diene was studied using electron diffraction in the gas phase (Traetteberg, 1968[Traetteberg, M. (1968). Acta Chem. Scand. 22, 2305-2312.]; Rabideau & Sygula, 1989[Rabideau, P. W. & Sygula, A. (1989). The conformational analysis of cyclohexenes, cyclohexadienes and related hydroaromatic compounds, edited by P. W. Rabideau, pp. 67-53. New York: VCH.]) showing a dihedral angle of around 18°. The crystal structure of solid unsubstituted 1,3-cyclo­hexa­diene is not reported. However, the 1,3-cyclo­hexa­diene mol­ecule has been incorporated into microporous vanadium benzene­dicarboxyl­ate (Wang et al., 2011[Wang, X., Eckert, J., Liu, L. & Jacobson, A. J. (2011). Inorg. Chem. 50, 2028-2036.]) showing an almost flat conformation with a dihedral angle of 3.9° (refcode IXODUV). There are a large number of known 1,3-cyclo­hexa­diene complexes with various metals, all with a mostly planar diene fragment. There are seventeen reported hexa­substituted 1,3-cyclo­hexa­diene structures deposited in the Cambridge Structural Database (CSD Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Of these structures, nine show a practically flat butadiene fragment with dihedral angles less than 3°. Two more (refcodes ONIWUE and TESNIT) show dihedral angles of 4.5 and 4.7°, respectively. Only four structures demonstrate dihedral angles similar to that of free 1,3-cyclo­hexa­diene in the gas phase: GABGEQ (18.8°), HEUZOX (22.5°), JEKFUB (18.6°) and PUBMEG (20.1°). This last structure of trans-dimethyl 3,4,5,6-tetra­methyl­cyclo­hexa-3,5-diene-1,2-di­carboxyl­ate (Takahashi et al., 1998[Takahashi, T., Xi, Z., Yamazaki, A., Liu, Y., Nakajima, K. & Kotora, M. (1998). J. Am. Chem. Soc. 120, 1672-1680.]) is the closest to the title compound, with a cis conformation as for the title compound.

3. Structural commentary

There are two independent mol­ecules (Figs. 1[link] and 2[link]) in the asymmetric unit of the title compound, with S,R-chirality and R,S-chirality, respectively (Figs. 1[link], 2[link]). After inversion they demonstrate a good overlay (Fig. 3[link]) with an average deviation of 0.14 Å.

[Figure 1]
Figure 1
Numbering scheme of the title compound with 50% probability elipsoids (S,R-isomer).
[Figure 2]
Figure 2
Numbering scheme of the title compound with 50% probability elipsoids (R,S-isomer).
[Figure 3]
Figure 3
Overlay of the two independent mol­ecules, after inversion.

The cyclo­hexa­diene rings (see Fig. 4[link], Table 1[link]) are non-planar in a screw-boat conformation (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]) with puckering parameters (C1–C6) Q = 0.437 (2) Å, θ = 115.8 (3)° and φ = 213.1 (3); (C101–C106) Q = 0.463 (2) Å, θ = 63.7 (2)° and φ = 33.5 (3)°.

Table 1
Deviation from the mean plane of cyclo­hexa­diene ring (Å)

C1 −0.269 (2) C101 −0.286 (2)
C2 +0.280 (2) C102 +0.298 (2)
C3 −0.089 (2) C103 −0.096 (2)
C4 −0.112 (2) C104 −0.114 (2)
C5 +0.126 (2) C105 +0.131 (2)
C6 +0.064 (2) C106 +0.067 (2)
[Figure 4]
Figure 4
Cyclo­hexa­diene ring with 50% probability elipsoids.

Torsion angles between Csp3 atoms indicate a gauche conformation; the dihedral angles between the two double bonds are 15.2 (3) and −15.3 (3) for the two independent mol­ecules (see Table 2[link]). These values are practically the same as observed for free 1,3-cyclo­hexa­diene in the gas phase: one can argue that the much lower values reported for 1,3-cyclo­hexa­dienes in the crystal state are caused by inter­molecular inter­actions which may favor a flat butadiene fragment.

Table 2
Selected torsion angles (°)

C4—C3—C2—C1 −35.7 (3) C105—C104—C103—C102 −5.2 (3)
C4—C5—C6—C1 0.7 (3) C5—C4—C3—C2 4.3 (3)
C3—C4—C5—C6 15.2 (3) C5—C6—C1—C2 −32.9 (3)
C3—C2—C1—C6 48.2 (2) C106—C101—C102—C103 −51.3 (2)
C101—C102—C103—C104 38.2 (3) C102—C101—C106—C105 35.2 (3)
C104—C105—C106—C101 −1.3 (3) C103—C104—C105—C106 −15.3 (3)

All six substituents are practically flat. Both ester fragments are almost perpendicular to the mean plane of the cyclo­hexa­diene ring (Table 3[link]). All four phenyl rings in both mol­ecules are arranged in a propeller-like formation with angles between 46 and 74° (see Table 3[link] for exact numbers) from the mean plane of the cyclo­hexa­diene ring. This propeller-like formation is probably inherited from the precursor tetra­cyclone mol­ecule (refcode KIKTUT02; Pal et al., 2014[Pal, R., Mukherjee, S., Chandrasekhar, S. & Guru Row, T. N. (2014). J. Phys. Chem. A, 118, 3479-3489.]). Because of the large angles between the planes of the double bonds and each phenyl ring, very little conjugation may be expected. Therefore, substituents serve mainly as bulky decoration, protecting the cyclo­hexa­diene ring from external steric influences.

Table 3
Dihedral angles between cyclo­hexa­diene mean plane and substituent mean planes (°)

Atoms angle atoms angle
C8/O2/C7/O1 79.35 (9) C108–O101 71.07 (10)
C10/O4/C9/O3 97.38 (13) C110–O104 97.82 (14)
C11–C16 59.72 (8) C111–C116 57.22 (8)
C17–C22 46.53 (7) C117–C122 46.12 (8)
C23–C28 56.38 (8) C123–C128 56.89 (8)
C29–C34 69.88 (8) C129–C134 73.46 (8)

4. Supra­molecular features

There are no usual hydrogen-bonding or stacking inter­actions in this structure.

Two hydrogen atoms of the cyclo­hexa­diene group (H101 and H102) form short contacts (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]) with carbonyl oxygen atoms of another mol­ecule (Table 4[link], Fig. 5[link]). The corresponding hydrogen atoms of the other mol­ecule (H1 and H2) do not have acceptors available for such bonding. These inter­molecular inter­actions, however weak they are, keep together a pair of mol­ecules with opposite chirality. Two short intra­molecular C—H⋯O contacts within each mol­ecule are also observed and may influence the mol­ecular conformation. There are no other bonding short contacts between the weakly bound dimers and they form a usual mol­ecular crystal.

Table 4
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C101—H101⋯O2 0.99 (3) 2.39 (3) 3.384 (3) 176 (2)
C102—H102⋯O4 0.96 (3) 2.48 (3) 3.242 (3) 136 (2)
C16—H16⋯O4 0.95 2.59 3.407 (3) 145
C116—H116⋯O104 0.95 2.54 3.388 (3) 148
[Figure 5]
Figure 5
Short C—H⋯O contacts connecting two mol­ecules into a weakly bonded dimer in the crystal.

5. Synthesis and crystallization

The title compound was obtained by reaction of tetra­phenyl­cyclo­penta­dienone (common name tetra­cyclone) with di­methyl­maleate following Allen & Sheps (1934[Allen, C. F. H. & Sheps, L. J. (1934). Can. J. Res. 11, 171-179.]). GC–MS analysis of the colorless crystalline product dissolved in di­chloro­methane shows one main compound with a parent peak at 500 which is consistent with the formula weight of the title compound. Because all precursor compounds were non-chiral and synthetic conditions should not induce chirality, we expected to see a racemic product. Crystallization from aceto­nitrile resulted in several hexa­gonal flakes, mostly with inter­grown smaller crystals. Several crystals were tested, all resulting in essentially the same chiral trigonal structure. The highest quality structure, from a partial racemically twinned crystal, is reported here.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The structure was refined as a two-component inversion twin. Cyclo­hexa­diene hydrogen atoms H1, H2, H101 and H102 were refined in isotropic approximation with Uiso = 1.2Uiso(C). All aromatic hydrogen atoms were refined with riding coordinates with C—H = 0.95–0.98 Å and Uiso = 1.2Uiso(C). Idealized methyl groups were refined as rotating groups with Uiso = 1.5Uiso(C).

Table 5
Experimental details

Crystal data
Chemical formula C34H28O4
Mr 500.56
Crystal system, space group Trigonal, P32
Temperature (K) 173
a, c (Å) 10.8330 (12), 39.169 (5)
V3) 3980.8 (12)
Z 6
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.59 × 0.34 × 0.13
 
Data collection
Diffractometer Bruker Photon-100 CMOS
Absorption correction Multi-scan (SADABS; Bruker,2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]/5)
Tmin, Tmax 0.669, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 53613, 10773, 10345
Rint 0.043
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.05
No. of reflections 10773
No. of parameters 702
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.15
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.38 (16)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), XL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: XT (Sheldrick, 2015); program(s) used to refine structure: XL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) top
Crystal data top
C34H28O4Dx = 1.253 Mg m3
Mr = 500.56Cu Kα radiation, λ = 1.54178 Å
Trigonal, P32Cell parameters from 9883 reflections
a = 10.8330 (12) Åθ = 3.4–78.4°
c = 39.169 (5) ŵ = 0.65 mm1
V = 3980.8 (12) Å3T = 173 K
Z = 6Plate, colourless
F(000) = 15840.59 × 0.34 × 0.13 mm
Data collection top
Bruker Photon-100 CMOS
diffractometer
10345 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.043
φ and ω scansθmax = 79.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker,2014/5)
h = 1312
Tmin = 0.669, Tmax = 0.754k = 1313
53613 measured reflectionsl = 4848
10773 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4031P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.19 e Å3
10773 reflectionsΔρmin = 0.15 e Å3
702 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.38 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

1. Twinned data refinement Scales: 0.62 (16) 0.38 (16) 2. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 3.a Aromatic/amide H refined with riding coordinates: C21(H21), C34(H34), C18(H18), C30(H30), C134(H134), C24(H24), C22(H22), C12(H12), C133(H133), C16(H16), C112(H112), C130(H130), C28(H28), C124(H124), C113(H113), C119(H119), C19(H19), C131(H131), C15(H15), C118(H118), C120(H120), C31(H31), C114(H114), C116(H116), C25(H25), C27(H27), C121(H121), C122(H122), C128(H128), C13(H13), C20(H20), C132(H132), C26(H26), C14(H14), C33(H33), C32(H32), C126(H126), C127(H127), C115(H115), C125(H125) 3.b Idealised Me refined as rotating group: C8(H8A,H8B,H8C), C110(H11A,H11B,H11C), C10(H10A,H10B,H10C), C108(H10D,H10E, H10F)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.79329 (17)0.30493 (18)0.54107 (4)0.0438 (4)
O1010.96274 (18)0.63537 (17)0.51401 (4)0.0443 (4)
O1031.02631 (18)0.4316 (2)0.41723 (4)0.0475 (4)
O20.56790 (17)0.38169 (16)0.51915 (4)0.0434 (4)
O10.3803 (2)0.25072 (18)0.48545 (4)0.0458 (4)
O30.64592 (18)0.29005 (17)0.58294 (4)0.0452 (4)
O1021.09927 (18)0.5677 (2)0.48612 (5)0.0540 (4)
O1041.03157 (19)0.27494 (18)0.45336 (5)0.0508 (4)
C90.6769 (2)0.2477 (2)0.55396 (5)0.0345 (4)
C1230.7593 (2)0.5516 (2)0.37918 (6)0.0363 (4)
C290.2698 (2)0.2158 (2)0.56419 (5)0.0329 (4)
C70.4665 (2)0.2687 (2)0.51152 (5)0.0355 (4)
C40.4035 (2)0.0443 (2)0.58720 (5)0.0346 (4)
C30.5035 (2)0.0149 (2)0.56313 (5)0.0340 (4)
C230.2515 (2)0.0341 (2)0.62110 (5)0.0354 (4)
C1090.9775 (2)0.3424 (2)0.44350 (6)0.0356 (4)
C1010.8547 (2)0.4732 (2)0.46876 (5)0.0327 (4)
H1010.772 (3)0.452 (3)0.4837 (7)0.039*
C1040.6822 (2)0.3191 (2)0.41216 (5)0.0333 (4)
C1050.7663 (2)0.4780 (2)0.41074 (5)0.0328 (4)
C1070.9869 (2)0.5616 (2)0.49006 (5)0.0362 (4)
C50.3298 (2)0.0406 (2)0.58914 (5)0.0333 (4)
C1060.8498 (2)0.5531 (2)0.43712 (5)0.0318 (4)
C1020.8425 (2)0.3301 (2)0.45915 (5)0.0327 (4)
H1020.829 (3)0.276 (3)0.4797 (7)0.039*
C20.5490 (2)0.1126 (2)0.53935 (5)0.0335 (4)
H20.586 (3)0.095 (3)0.5182 (7)0.040*
C60.3366 (2)0.1245 (2)0.56296 (5)0.0322 (4)
C1290.9408 (2)0.7112 (2)0.43578 (6)0.0342 (4)
C110.5749 (2)0.1004 (2)0.55719 (6)0.0371 (4)
C210.4450 (3)0.2535 (3)0.65930 (7)0.0527 (6)
H210.51990.25130.67240.063*
C340.3107 (3)0.3209 (2)0.58899 (6)0.0397 (5)
H340.38190.33490.60520.048*
C180.2271 (3)0.2583 (2)0.62137 (6)0.0418 (5)
H180.15160.26020.60860.050*
C1030.7127 (2)0.2471 (2)0.43591 (5)0.0337 (4)
C1110.6241 (2)0.0917 (2)0.44298 (6)0.0359 (4)
C300.1673 (2)0.1994 (3)0.54024 (6)0.0434 (5)
H300.13970.12940.52280.052*
C1341.0485 (2)0.7733 (2)0.41147 (6)0.0401 (5)
H1341.06510.71450.39630.048*
C10.4199 (2)0.1303 (2)0.53089 (5)0.0326 (4)
H10.357 (3)0.052 (3)0.5158 (7)0.039*
C170.3680 (2)0.1561 (2)0.61388 (5)0.0375 (4)
C240.1072 (3)0.0091 (2)0.62101 (7)0.0448 (5)
H240.05480.03820.60030.054*
C220.4763 (3)0.1550 (3)0.63322 (6)0.0440 (5)
H220.57280.08610.62860.053*
C120.4937 (3)0.2481 (2)0.55401 (6)0.0440 (5)
H120.39300.29410.55630.053*
C1331.1322 (3)0.9209 (3)0.40914 (7)0.0529 (6)
H1331.20550.96230.39250.063*
C1170.5695 (2)0.2447 (2)0.38556 (6)0.0371 (4)
C160.7221 (3)0.0358 (3)0.55332 (7)0.0479 (5)
H160.77940.06490.55510.057*
C1120.4757 (2)0.0265 (2)0.44520 (6)0.0387 (4)
H1120.43050.08030.44030.046*
C1300.9202 (3)0.7994 (2)0.45808 (6)0.0429 (5)
H1300.84890.75870.47520.051*
C280.3246 (3)0.0744 (3)0.65205 (6)0.0469 (5)
H280.42320.10380.65260.056*
C1240.7148 (3)0.6522 (2)0.38033 (7)0.0473 (5)
H1240.68500.67250.40140.057*
C1130.3938 (3)0.1154 (3)0.45445 (6)0.0458 (5)
H1130.29310.15800.45570.055*
C1190.3685 (3)0.2182 (3)0.35267 (7)0.0509 (6)
H1190.29840.24460.34850.061*
C190.1960 (3)0.3573 (3)0.64730 (7)0.0493 (6)
H190.09970.42670.65200.059*
C1311.0040 (3)0.9472 (3)0.45532 (8)0.0554 (7)
H1310.98851.00710.47030.066*
C150.7860 (3)0.1173 (3)0.54693 (8)0.0566 (7)
H150.88660.07200.54450.068*
C1180.4674 (2)0.2838 (2)0.37867 (6)0.0422 (5)
H1180.46540.35630.39190.051*
C1200.3719 (3)0.1143 (3)0.33279 (7)0.0559 (7)
H1200.30490.07010.31480.067*
C310.1052 (3)0.2850 (3)0.54173 (8)0.0554 (7)
H310.03530.27320.52540.066*
C1140.4573 (3)0.1955 (3)0.46184 (8)0.0539 (6)
H1140.40100.29240.46850.065*
C1160.6871 (3)0.0096 (3)0.45039 (8)0.0498 (6)
H1160.78780.05140.44930.060*
C250.0393 (3)0.0097 (3)0.65115 (9)0.0627 (8)
H250.05910.03810.65080.075*
C270.2558 (4)0.0723 (3)0.68193 (7)0.0617 (8)
H270.30710.10000.70280.074*
C1210.4727 (3)0.0754 (3)0.33914 (7)0.0529 (6)
H1210.47510.00430.32540.063*
C80.4058 (4)0.3808 (3)0.46891 (7)0.0588 (7)
H8A0.33980.35740.44970.088*
H8B0.50410.43260.46050.088*
H8C0.39090.44030.48530.088*
C1220.5707 (3)0.1388 (2)0.36532 (6)0.0439 (5)
H1220.63910.11010.36960.053*
C1280.8006 (3)0.5232 (3)0.34810 (6)0.0479 (5)
H1280.83020.45430.34680.058*
C130.5581 (3)0.3293 (3)0.54756 (7)0.0509 (6)
H130.50120.43000.54560.061*
C200.3049 (4)0.3547 (3)0.66614 (7)0.0543 (7)
H200.28370.42250.68380.065*
C1321.1094 (3)1.0066 (3)0.43078 (8)0.0598 (8)
H1321.16621.10730.42890.072*
C260.1132 (4)0.0303 (3)0.68154 (8)0.0677 (9)
H260.06600.02900.70210.081*
C140.7037 (3)0.2644 (3)0.54406 (8)0.0543 (6)
H140.74770.31990.53970.065*
C330.2479 (3)0.4054 (3)0.59017 (7)0.0517 (6)
H330.27620.47680.60720.062*
C320.1450 (3)0.3866 (3)0.56682 (8)0.0562 (7)
H320.10150.44400.56800.067*
C1101.1609 (3)0.4582 (4)0.40345 (8)0.0621 (7)
H11A1.18300.51660.38280.093*
H11B1.15510.36730.39780.093*
H11C1.23620.50870.42040.093*
C100.7575 (3)0.4261 (3)0.59574 (8)0.0578 (7)
H10A0.76950.50230.58020.087*
H10B0.84720.42480.59720.087*
H10C0.73140.44330.61850.087*
C1260.7558 (3)0.6936 (4)0.32010 (9)0.0718 (10)
H1260.75450.74190.30000.086*
C1270.7991 (3)0.5949 (4)0.31868 (7)0.0664 (9)
H1270.82840.57500.29750.080*
C1150.6036 (3)0.1331 (3)0.45941 (9)0.0614 (7)
H1150.64770.18820.46400.074*
C1081.0862 (4)0.7347 (3)0.53338 (8)0.0646 (8)
H10D1.15540.80850.51810.097*
H10E1.12960.68400.54410.097*
H10F1.05720.77920.55110.097*
C1250.7142 (3)0.7225 (3)0.35077 (10)0.0658 (9)
H1250.68460.79150.35180.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0354 (8)0.0405 (8)0.0537 (9)0.0178 (7)0.0057 (7)0.0050 (7)
O1010.0495 (9)0.0365 (8)0.0416 (8)0.0175 (7)0.0063 (7)0.0078 (6)
O1030.0415 (9)0.0614 (11)0.0440 (8)0.0289 (8)0.0093 (7)0.0128 (8)
O20.0400 (8)0.0322 (8)0.0563 (9)0.0169 (7)0.0008 (7)0.0066 (7)
O10.0583 (10)0.0419 (8)0.0412 (8)0.0280 (8)0.0065 (7)0.0010 (7)
O30.0464 (9)0.0379 (8)0.0429 (8)0.0148 (7)0.0022 (7)0.0064 (6)
O1020.0349 (9)0.0540 (10)0.0670 (11)0.0177 (8)0.0096 (8)0.0159 (9)
O1040.0415 (9)0.0425 (9)0.0731 (11)0.0245 (8)0.0025 (8)0.0080 (8)
C90.0395 (11)0.0308 (10)0.0378 (10)0.0210 (9)0.0015 (8)0.0038 (8)
C1230.0285 (9)0.0275 (9)0.0447 (11)0.0079 (8)0.0063 (8)0.0014 (8)
C290.0314 (10)0.0299 (9)0.0387 (11)0.0162 (8)0.0053 (8)0.0043 (8)
C70.0397 (11)0.0367 (11)0.0360 (10)0.0234 (9)0.0049 (8)0.0009 (8)
C40.0363 (10)0.0277 (9)0.0409 (10)0.0169 (8)0.0010 (8)0.0003 (8)
C30.0368 (10)0.0275 (9)0.0407 (10)0.0183 (8)0.0017 (8)0.0001 (8)
C230.0407 (11)0.0270 (9)0.0424 (10)0.0199 (8)0.0063 (9)0.0054 (8)
C1090.0333 (10)0.0300 (10)0.0405 (10)0.0136 (8)0.0048 (8)0.0036 (8)
C1010.0309 (10)0.0283 (9)0.0352 (10)0.0120 (8)0.0012 (8)0.0001 (7)
C1040.0298 (9)0.0275 (9)0.0386 (10)0.0113 (8)0.0011 (8)0.0011 (8)
C1050.0297 (9)0.0271 (9)0.0391 (10)0.0123 (8)0.0010 (8)0.0006 (8)
C1070.0366 (11)0.0293 (10)0.0372 (10)0.0122 (8)0.0012 (8)0.0024 (8)
C50.0320 (9)0.0275 (9)0.0403 (10)0.0148 (8)0.0005 (8)0.0008 (8)
C1060.0285 (9)0.0267 (9)0.0390 (10)0.0129 (8)0.0015 (8)0.0013 (7)
C1020.0317 (10)0.0280 (9)0.0352 (10)0.0127 (8)0.0014 (8)0.0018 (8)
C20.0366 (10)0.0293 (10)0.0371 (10)0.0185 (9)0.0029 (8)0.0003 (8)
C60.0297 (9)0.0285 (9)0.0379 (10)0.0141 (8)0.0003 (8)0.0017 (7)
C1290.0310 (9)0.0279 (9)0.0407 (11)0.0124 (8)0.0076 (8)0.0002 (8)
C110.0409 (11)0.0331 (10)0.0435 (11)0.0231 (9)0.0053 (9)0.0023 (8)
C210.0789 (19)0.0489 (14)0.0456 (13)0.0434 (14)0.0060 (12)0.0020 (11)
C340.0435 (11)0.0334 (10)0.0439 (11)0.0206 (9)0.0057 (9)0.0020 (8)
C180.0512 (13)0.0328 (10)0.0444 (11)0.0232 (10)0.0078 (10)0.0023 (9)
C1030.0296 (9)0.0273 (9)0.0407 (10)0.0117 (8)0.0004 (8)0.0021 (8)
C1110.0333 (10)0.0287 (10)0.0399 (10)0.0111 (8)0.0013 (8)0.0005 (8)
C300.0386 (11)0.0473 (12)0.0462 (12)0.0230 (10)0.0007 (9)0.0023 (10)
C1340.0330 (10)0.0325 (11)0.0479 (12)0.0111 (9)0.0018 (9)0.0046 (9)
C10.0341 (10)0.0282 (9)0.0362 (10)0.0162 (8)0.0013 (8)0.0001 (8)
C170.0475 (12)0.0311 (10)0.0413 (11)0.0253 (9)0.0055 (9)0.0008 (8)
C240.0429 (12)0.0338 (11)0.0601 (14)0.0211 (10)0.0096 (10)0.0063 (10)
C220.0540 (13)0.0405 (12)0.0479 (12)0.0314 (11)0.0010 (10)0.0019 (9)
C120.0470 (13)0.0328 (11)0.0551 (13)0.0221 (10)0.0115 (10)0.0026 (9)
C1330.0401 (13)0.0383 (12)0.0644 (16)0.0076 (10)0.0075 (11)0.0143 (11)
C1170.0306 (10)0.0291 (9)0.0405 (10)0.0065 (8)0.0004 (8)0.0038 (8)
C160.0426 (12)0.0359 (11)0.0693 (16)0.0228 (10)0.0041 (11)0.0035 (11)
C1120.0350 (10)0.0323 (11)0.0439 (11)0.0132 (9)0.0009 (9)0.0015 (9)
C1300.0483 (13)0.0372 (11)0.0466 (12)0.0240 (10)0.0086 (10)0.0053 (9)
C280.0597 (15)0.0412 (12)0.0442 (12)0.0284 (11)0.0031 (11)0.0043 (10)
C1240.0358 (11)0.0352 (11)0.0671 (15)0.0149 (10)0.0128 (10)0.0014 (10)
C1130.0353 (11)0.0368 (12)0.0510 (13)0.0072 (9)0.0015 (10)0.0045 (10)
C1190.0336 (11)0.0499 (14)0.0525 (13)0.0083 (10)0.0045 (10)0.0143 (11)
C190.0654 (16)0.0325 (11)0.0494 (13)0.0240 (11)0.0166 (11)0.0035 (9)
C1310.0707 (18)0.0381 (12)0.0644 (16)0.0325 (13)0.0281 (14)0.0136 (11)
C150.0479 (14)0.0536 (15)0.0787 (18)0.0331 (13)0.0109 (13)0.0082 (13)
C1180.0325 (10)0.0364 (11)0.0482 (12)0.0100 (9)0.0028 (9)0.0057 (9)
C1200.0425 (13)0.0533 (15)0.0414 (12)0.0010 (11)0.0077 (10)0.0037 (11)
C310.0486 (14)0.0681 (17)0.0632 (16)0.0395 (13)0.0062 (12)0.0192 (14)
C1140.0485 (14)0.0295 (11)0.0682 (16)0.0079 (10)0.0093 (12)0.0084 (10)
C1160.0372 (12)0.0345 (12)0.0738 (17)0.0150 (10)0.0039 (11)0.0053 (11)
C250.0582 (16)0.0410 (13)0.093 (2)0.0279 (12)0.0374 (16)0.0202 (14)
C270.099 (2)0.0475 (14)0.0420 (13)0.0394 (16)0.0096 (14)0.0059 (11)
C1210.0499 (14)0.0384 (12)0.0451 (12)0.0032 (11)0.0017 (11)0.0038 (10)
C80.079 (2)0.0536 (15)0.0515 (14)0.0394 (15)0.0100 (13)0.0079 (11)
C1220.0402 (12)0.0330 (11)0.0464 (12)0.0093 (9)0.0002 (9)0.0011 (9)
C1280.0423 (12)0.0469 (13)0.0429 (12)0.0136 (11)0.0050 (9)0.0004 (10)
C130.0634 (16)0.0358 (12)0.0622 (15)0.0314 (12)0.0172 (12)0.0056 (11)
C200.090 (2)0.0389 (12)0.0417 (12)0.0383 (14)0.0087 (12)0.0054 (10)
C1320.0591 (16)0.0268 (11)0.0795 (19)0.0111 (11)0.0274 (14)0.0048 (12)
C260.102 (3)0.0474 (15)0.0592 (17)0.0412 (16)0.0416 (18)0.0158 (13)
C140.0666 (17)0.0505 (14)0.0664 (16)0.0446 (14)0.0177 (13)0.0105 (12)
C330.0654 (16)0.0380 (12)0.0602 (15)0.0322 (12)0.0197 (13)0.0059 (11)
C320.0607 (16)0.0552 (15)0.0737 (17)0.0447 (14)0.0236 (14)0.0229 (13)
C1100.0464 (14)0.082 (2)0.0612 (16)0.0350 (14)0.0173 (12)0.0150 (14)
C100.0629 (17)0.0386 (12)0.0589 (15)0.0156 (12)0.0056 (12)0.0118 (11)
C1260.0500 (16)0.0654 (19)0.0699 (19)0.0064 (14)0.0224 (14)0.0262 (15)
C1270.0517 (15)0.074 (2)0.0434 (13)0.0089 (15)0.0114 (11)0.0078 (13)
C1150.0510 (15)0.0342 (12)0.096 (2)0.0194 (11)0.0111 (14)0.0103 (13)
C1080.0704 (19)0.0515 (15)0.0595 (16)0.0213 (15)0.0239 (14)0.0203 (13)
C1250.0434 (14)0.0411 (14)0.103 (3)0.0135 (12)0.0251 (15)0.0133 (14)
Geometric parameters (Å, º) top
O4—C91.203 (3)C133—H1330.9500
O101—C1071.340 (3)C133—C1321.368 (5)
O101—C1081.443 (3)C117—C1181.395 (3)
O103—C1091.327 (3)C117—C1221.400 (3)
O103—C1101.442 (3)C16—H160.9500
O2—C71.204 (3)C16—C151.389 (4)
O1—C71.331 (3)C112—H1120.9500
O1—C81.446 (3)C112—C1131.385 (3)
O3—C91.329 (3)C130—H1300.9500
O3—C101.451 (3)C130—C1311.396 (4)
O102—C1071.196 (3)C28—H280.9500
O104—C1091.206 (3)C28—C271.382 (4)
C9—C21.537 (3)C124—H1240.9500
C123—C1051.493 (3)C124—C1251.388 (4)
C123—C1241.395 (3)C113—H1130.9500
C123—C1281.383 (3)C113—C1141.380 (4)
C29—C61.489 (3)C119—H1190.9500
C29—C341.390 (3)C119—C1181.389 (3)
C29—C301.396 (3)C119—C1201.384 (5)
C7—C11.524 (3)C19—H190.9500
C4—C31.349 (3)C19—C201.381 (4)
C4—C51.491 (3)C131—H1310.9500
C4—C171.496 (3)C131—C1321.381 (5)
C3—C21.529 (3)C15—H150.9500
C3—C111.492 (3)C15—C141.388 (4)
C23—C51.494 (3)C118—H1180.9500
C23—C241.390 (3)C120—H1200.9500
C23—C281.393 (3)C120—C1211.376 (4)
C109—C1021.529 (3)C31—H310.9500
C101—H1010.99 (3)C31—C321.375 (5)
C101—C1071.514 (3)C114—H1140.9500
C101—C1061.527 (3)C114—C1151.381 (4)
C101—C1021.536 (3)C116—H1160.9500
C104—C1051.493 (3)C116—C1151.390 (4)
C104—C1031.356 (3)C25—H250.9500
C104—C1171.497 (3)C25—C261.378 (5)
C105—C1061.346 (3)C27—H270.9500
C5—C61.348 (3)C27—C261.374 (5)
C106—C1291.490 (3)C121—H1210.9500
C102—H1020.96 (3)C121—C1221.386 (4)
C102—C1031.533 (3)C8—H8A0.9800
C2—H20.98 (3)C8—H8B0.9800
C2—C11.539 (3)C8—H8C0.9800
C6—C11.530 (3)C122—H1220.9500
C129—C1341.391 (3)C128—H1280.9500
C129—C1301.392 (3)C128—C1271.394 (4)
C11—C121.394 (3)C13—H130.9500
C11—C161.393 (3)C13—C141.376 (4)
C21—H210.9500C20—H200.9500
C21—C221.391 (4)C132—H1320.9500
C21—C201.383 (4)C26—H260.9500
C34—H340.9500C14—H140.9500
C34—C331.388 (3)C33—H330.9500
C18—H180.9500C33—C321.376 (4)
C18—C171.397 (3)C32—H320.9500
C18—C191.391 (3)C110—H11A0.9800
C103—C1111.489 (3)C110—H11B0.9800
C111—C1121.398 (3)C110—H11C0.9800
C111—C1161.396 (3)C10—H10A0.9800
C30—H300.9500C10—H10B0.9800
C30—C311.393 (4)C10—H10C0.9800
C134—H1340.9500C126—H1260.9500
C134—C1331.392 (3)C126—C1271.368 (6)
C1—H10.98 (3)C126—C1251.373 (6)
C17—C221.392 (3)C127—H1270.9500
C24—H240.9500C115—H1150.9500
C24—C251.389 (4)C108—H10D0.9800
C22—H220.9500C108—H10E0.9800
C12—H120.9500C108—H10F0.9800
C12—C131.392 (3)C125—H1250.9500
C107—O101—C108115.4 (2)C15—C16—C11120.6 (2)
C109—O103—C110115.50 (19)C15—C16—H16119.7
C7—O1—C8115.0 (2)C111—C112—H112119.5
C9—O3—C10114.9 (2)C113—C112—C111120.9 (2)
O4—C9—O3124.1 (2)C113—C112—H112119.5
O4—C9—C2123.3 (2)C129—C130—H130119.9
O3—C9—C2112.58 (18)C129—C130—C131120.2 (2)
C124—C123—C105121.3 (2)C131—C130—H130119.9
C128—C123—C105120.1 (2)C23—C28—H28119.5
C128—C123—C124118.6 (2)C27—C28—C23120.9 (3)
C34—C29—C6120.32 (19)C27—C28—H28119.5
C34—C29—C30118.8 (2)C123—C124—H124120.0
C30—C29—C6120.9 (2)C125—C124—C123120.0 (3)
O2—C7—O1123.8 (2)C125—C124—H124120.0
O2—C7—C1124.2 (2)C112—C113—H113119.7
O1—C7—C1112.05 (18)C114—C113—C112120.6 (2)
C3—C4—C5120.32 (19)C114—C113—H113119.7
C3—C4—C17122.02 (19)C118—C119—H119119.9
C5—C4—C17117.58 (18)C120—C119—H119119.9
C4—C3—C2119.78 (18)C120—C119—C118120.1 (3)
C4—C3—C11124.55 (19)C18—C19—H19120.0
C11—C3—C2115.66 (18)C20—C19—C18120.0 (3)
C24—C23—C5122.0 (2)C20—C19—H19120.0
C24—C23—C28118.4 (2)C130—C131—H131120.0
C28—C23—C5119.6 (2)C132—C131—C130120.0 (3)
O103—C109—C102112.96 (17)C132—C131—H131120.0
O104—C109—O103123.5 (2)C16—C15—H15119.8
O104—C109—C102123.5 (2)C14—C15—C16120.4 (3)
C107—C101—H101106.2 (15)C14—C15—H15119.8
C107—C101—C106112.23 (17)C117—C118—H118119.6
C107—C101—C102110.49 (17)C119—C118—C117120.8 (2)
C106—C101—H101109.1 (15)C119—C118—H118119.6
C106—C101—C102111.29 (17)C119—C120—H120120.2
C102—C101—H101107.2 (16)C121—C120—C119119.7 (2)
C105—C104—C117117.26 (18)C121—C120—H120120.2
C103—C104—C105120.32 (18)C30—C31—H31120.0
C103—C104—C117122.36 (19)C32—C31—C30120.0 (3)
C104—C105—C123118.82 (18)C32—C31—H31120.0
C106—C105—C123120.74 (18)C113—C114—H114120.4
C106—C105—C104120.42 (18)C113—C114—C115119.2 (2)
O101—C107—C101110.97 (18)C115—C114—H114120.4
O102—C107—O101123.7 (2)C111—C116—H116119.8
O102—C107—C101125.4 (2)C115—C116—C111120.5 (2)
C4—C5—C23118.71 (18)C115—C116—H116119.8
C6—C5—C4120.79 (19)C24—C25—H25119.7
C6—C5—C23120.48 (18)C26—C25—C24120.6 (3)
C105—C106—C101118.93 (18)C26—C25—H25119.7
C105—C106—C129121.73 (18)C28—C27—H27119.9
C129—C106—C101119.31 (17)C26—C27—C28120.3 (3)
C109—C102—C101114.49 (17)C26—C27—H27119.9
C109—C102—H102103.6 (16)C120—C121—H121119.6
C109—C102—C103111.72 (17)C120—C121—C122120.7 (3)
C101—C102—H102108.5 (16)C122—C121—H121119.6
C103—C102—C101109.15 (17)O1—C8—H8A109.5
C103—C102—H102109.1 (16)O1—C8—H8B109.5
C9—C2—H2103.9 (16)O1—C8—H8C109.5
C9—C2—C1113.86 (16)H8A—C8—H8B109.5
C3—C2—C9111.29 (17)H8A—C8—H8C109.5
C3—C2—H2108.7 (16)H8B—C8—H8C109.5
C3—C2—C1109.97 (17)C117—C122—H122119.8
C1—C2—H2108.8 (16)C121—C122—C117120.4 (2)
C29—C6—C1118.19 (17)C121—C122—H122119.8
C5—C6—C29122.85 (18)C123—C128—H128119.7
C5—C6—C1118.93 (18)C123—C128—C127120.6 (3)
C134—C129—C106119.5 (2)C127—C128—H128119.7
C134—C129—C130118.7 (2)C12—C13—H13119.9
C130—C129—C106121.7 (2)C14—C13—C12120.3 (2)
C12—C11—C3120.1 (2)C14—C13—H13119.9
C16—C11—C3121.59 (19)C21—C20—H20120.0
C16—C11—C12118.3 (2)C19—C20—C21120.0 (2)
C22—C21—H21120.0C19—C20—H20120.0
C20—C21—H21120.0C133—C132—C131120.2 (2)
C20—C21—C22120.0 (3)C133—C132—H132119.9
C29—C34—H34119.9C131—C132—H132119.9
C33—C34—C29120.2 (2)C25—C26—H26120.2
C33—C34—H34119.9C27—C26—C25119.6 (2)
C17—C18—H18119.6C27—C26—H26120.2
C19—C18—H18119.6C15—C14—H14120.3
C19—C18—C17120.8 (2)C13—C14—C15119.5 (2)
C104—C103—C102119.08 (18)C13—C14—H14120.3
C104—C103—C111124.94 (19)C34—C33—H33119.7
C111—C103—C102115.87 (18)C32—C33—C34120.6 (2)
C112—C111—C103120.8 (2)C32—C33—H33119.7
C116—C111—C103120.99 (19)C31—C32—C33120.0 (2)
C116—C111—C112118.0 (2)C31—C32—H32120.0
C29—C30—H30119.8C33—C32—H32120.0
C31—C30—C29120.4 (2)O103—C110—H11A109.5
C31—C30—H30119.8O103—C110—H11B109.5
C129—C134—H134119.8O103—C110—H11C109.5
C129—C134—C133120.5 (2)H11A—C110—H11B109.5
C133—C134—H134119.8H11A—C110—H11C109.5
C7—C1—C2110.82 (17)H11B—C110—H11C109.5
C7—C1—C6110.29 (16)O3—C10—H10A109.5
C7—C1—H1107.3 (16)O3—C10—H10B109.5
C2—C1—H1107.5 (16)O3—C10—H10C109.5
C6—C1—C2111.88 (17)H10A—C10—H10B109.5
C6—C1—H1108.9 (16)H10A—C10—H10C109.5
C18—C17—C4121.7 (2)H10B—C10—H10C109.5
C22—C17—C4119.9 (2)C127—C126—H126120.2
C22—C17—C18118.3 (2)C127—C126—C125119.6 (3)
C23—C24—H24119.9C125—C126—H126120.2
C25—C24—C23120.2 (3)C128—C127—H127119.8
C25—C24—H24119.9C126—C127—C128120.4 (3)
C21—C22—C17120.8 (3)C126—C127—H127119.8
C21—C22—H22119.6C114—C115—C116120.8 (2)
C17—C22—H22119.6C114—C115—H115119.6
C11—C12—H12119.6C116—C115—H115119.6
C13—C12—C11120.9 (2)O101—C108—H10D109.5
C13—C12—H12119.6O101—C108—H10E109.5
C134—C133—H133119.9O101—C108—H10F109.5
C132—C133—C134120.3 (3)H10D—C108—H10E109.5
C132—C133—H133119.9H10D—C108—H10F109.5
C118—C117—C104121.9 (2)H10E—C108—H10F109.5
C118—C117—C122118.2 (2)C124—C125—H125119.6
C122—C117—C104119.8 (2)C126—C125—C124120.8 (3)
C11—C16—H16119.7C126—C125—H125119.6
O4—C9—C2—C3112.9 (2)C102—C103—C111—C11642.2 (3)
O4—C9—C2—C1122.1 (2)C2—C3—C11—C12129.8 (2)
O103—C109—C102—C10152.7 (2)C2—C3—C11—C1647.6 (3)
O103—C109—C102—C10372.0 (2)C6—C29—C34—C33179.7 (2)
O2—C7—C1—C244.6 (3)C6—C29—C30—C31179.8 (2)
O2—C7—C1—C679.8 (3)C129—C134—C133—C1320.0 (4)
O1—C7—C1—C2136.50 (18)C129—C130—C131—C1321.1 (4)
O1—C7—C1—C699.1 (2)C11—C3—C2—C989.4 (2)
O3—C9—C2—C364.5 (2)C11—C3—C2—C1143.46 (19)
O3—C9—C2—C160.5 (2)C11—C12—C13—C140.3 (4)
O104—C109—C102—C101129.4 (2)C11—C16—C15—C140.5 (4)
O104—C109—C102—C103105.9 (2)C34—C29—C6—C559.7 (3)
C9—C2—C1—C746.1 (2)C34—C29—C6—C1118.4 (2)
C9—C2—C1—C677.4 (2)C34—C29—C30—C311.3 (3)
C123—C105—C106—C101179.44 (18)C34—C33—C32—C311.0 (4)
C123—C105—C106—C1291.4 (3)C18—C17—C22—C210.2 (3)
C123—C124—C125—C1260.6 (4)C18—C19—C20—C210.1 (4)
C123—C128—C127—C1260.5 (4)C103—C104—C105—C123163.0 (2)
C29—C6—C1—C721.4 (3)C103—C104—C105—C10615.3 (3)
C29—C6—C1—C2145.28 (18)C103—C104—C117—C118132.3 (2)
C29—C34—C33—C320.2 (4)C103—C104—C117—C12251.8 (3)
C29—C30—C31—C320.2 (4)C103—C111—C112—C113174.8 (2)
C4—C3—C2—C991.4 (2)C103—C111—C116—C115175.3 (3)
C4—C3—C2—C135.7 (3)C111—C112—C113—C1140.3 (4)
C4—C3—C11—C1249.4 (3)C111—C116—C115—C1141.2 (5)
C4—C3—C11—C16133.2 (3)C30—C29—C6—C5121.4 (2)
C4—C5—C6—C29177.45 (19)C30—C29—C6—C160.5 (3)
C4—C5—C6—C10.7 (3)C30—C29—C34—C331.4 (3)
C4—C17—C22—C21176.8 (2)C30—C31—C32—C331.0 (4)
C3—C4—C5—C23163.1 (2)C134—C129—C130—C1311.7 (3)
C3—C4—C5—C615.2 (3)C134—C133—C132—C1310.6 (4)
C3—C4—C17—C18132.3 (2)C17—C4—C3—C2172.26 (19)
C3—C4—C17—C2251.2 (3)C17—C4—C3—C118.6 (3)
C3—C2—C1—C7171.79 (17)C17—C4—C5—C2313.6 (3)
C3—C2—C1—C648.2 (2)C17—C4—C5—C6168.1 (2)
C3—C11—C12—C13178.3 (2)C17—C18—C19—C200.4 (3)
C3—C11—C16—C15178.3 (2)C24—C23—C5—C4122.2 (2)
C23—C5—C6—C290.8 (3)C24—C23—C5—C659.5 (3)
C23—C5—C6—C1178.93 (18)C24—C23—C28—C270.3 (3)
C23—C24—C25—C260.9 (4)C24—C25—C26—C270.5 (4)
C23—C28—C27—C260.1 (4)C22—C21—C20—C190.5 (4)
C109—C102—C103—C10489.5 (2)C12—C11—C16—C150.9 (4)
C109—C102—C103—C11194.1 (2)C12—C13—C14—C150.1 (4)
C101—C106—C129—C134115.8 (2)C117—C104—C105—C12314.3 (3)
C101—C106—C129—C13064.9 (3)C117—C104—C105—C106167.5 (2)
C101—C102—C103—C10438.2 (3)C117—C104—C103—C102171.84 (19)
C101—C102—C103—C111138.24 (19)C117—C104—C103—C11112.1 (3)
C104—C105—C106—C1011.3 (3)C16—C11—C12—C130.8 (4)
C104—C105—C106—C129176.77 (18)C16—C15—C14—C130.1 (4)
C104—C103—C111—C11243.7 (3)C112—C111—C116—C1150.5 (4)
C104—C103—C111—C116141.7 (2)C112—C113—C114—C1151.0 (4)
C104—C117—C118—C119176.6 (2)C130—C129—C134—C1331.2 (3)
C104—C117—C122—C121175.8 (2)C130—C131—C132—C1330.1 (4)
C105—C123—C124—C125177.7 (2)C28—C23—C5—C458.8 (3)
C105—C123—C128—C127177.8 (2)C28—C23—C5—C6119.5 (2)
C105—C104—C103—C1025.2 (3)C28—C23—C24—C250.8 (3)
C105—C104—C103—C111170.81 (19)C28—C27—C26—C250.0 (4)
C105—C104—C117—C11850.5 (3)C124—C123—C105—C104122.2 (2)
C105—C104—C117—C122125.3 (2)C124—C123—C105—C10659.6 (3)
C105—C106—C129—C13462.2 (3)C124—C123—C128—C1270.7 (3)
C105—C106—C129—C130117.1 (2)C113—C114—C115—C1161.4 (5)
C107—C101—C106—C105159.64 (19)C119—C120—C121—C1220.2 (4)
C107—C101—C106—C12918.4 (3)C19—C18—C17—C4177.1 (2)
C107—C101—C102—C10950.6 (2)C19—C18—C17—C220.6 (3)
C107—C101—C102—C103176.70 (17)C118—C117—C122—C1210.2 (3)
C5—C4—C3—C24.3 (3)C118—C119—C120—C1210.7 (4)
C5—C4—C3—C11174.8 (2)C120—C119—C118—C1171.2 (4)
C5—C4—C17—C1851.0 (3)C120—C121—C122—C1170.6 (4)
C5—C4—C17—C22125.4 (2)C116—C111—C112—C1130.1 (3)
C5—C23—C24—C25178.2 (2)C8—O1—C7—O27.3 (3)
C5—C23—C28—C27178.7 (2)C8—O1—C7—C1171.6 (2)
C5—C6—C1—C7156.78 (19)C122—C117—C118—C1190.7 (3)
C5—C6—C1—C232.9 (3)C128—C123—C105—C10459.4 (3)
C106—C101—C107—O10191.5 (2)C128—C123—C105—C106118.9 (2)
C106—C101—C107—O10287.5 (3)C128—C123—C124—C1250.7 (3)
C106—C101—C102—C10974.7 (2)C20—C21—C22—C170.4 (4)
C106—C101—C102—C10351.3 (2)C110—O103—C109—O1047.8 (3)
C106—C129—C134—C133178.2 (2)C110—O103—C109—C102174.3 (2)
C106—C129—C130—C131177.7 (2)C10—O3—C9—O49.6 (3)
C102—C101—C107—O101143.65 (18)C10—O3—C9—C2173.1 (2)
C102—C101—C107—O10237.3 (3)C127—C126—C125—C1240.4 (4)
C102—C101—C106—C10535.2 (3)C108—O101—C107—O1025.3 (3)
C102—C101—C106—C129142.85 (18)C108—O101—C107—C101173.7 (2)
C102—C103—C111—C112132.4 (2)C125—C126—C127—C1280.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C101—H101···O20.99 (3)2.39 (3)3.384 (3)176 (2)
C102—H102···O40.96 (3)2.48 (3)3.242 (3)136 (2)
C16—H16···O40.952.593.407 (3)145
C116—H116···O1040.952.543.388 (3)148
Deviation from the mean plane of cyclohexadiene ring (Å) top
C1-0.269 (2)C101-0.286 (2)
C2+0.280 (2)C102+0.298 (2)
C3-0.089 (2)C103-0.096 (2)
C4-0.112 (2)C104-0.114 (2)
C5+0.126 (2)C105+0.131 (2)
C6+0.064 (2)C106+0.067 (2)
Dihedral angles between cyclohexadiene mean plane and substituent mean planes (° ) top
Atomsangleatomsangle
C8/O2/C7/O179.35 (9)C108–O10171.07 (10)
C10/O4/C9/O397.38 (13)C110–O10497.82 (14)
C11–C1659.72 (8)C111–C11657.22 (8)
C17–C2246.53 (7)C117–C12246.12 (8)
C23–C2856.38 (8)C123–C12856.89 (8)
C29–C3469.88 (8)C129–C13473.46 (8)
 

Acknowledgements

Financial support from the State University of New York for the acquisition and maintenance of X-ray diffractometer is gratefully acknowledged.

References

First citationAllen, C. F. H. (1945). Chem. Rev. 37, 209–268.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAllen, C. F. H. (1962). Chem. Rev. 62, 653–664.  CrossRef CAS Web of Science Google Scholar
First citationAllen, C. F. H. & Sheps, L. J. (1934). Can. J. Res. 11, 171–179.  CrossRef CAS Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Maré, G. R., Panchenko, Y. N. & Vander Auwera, J. (1997). J. Phys. Chem. A, 101, 3998–4004.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuchs, B. & Yankelevich, S. (1968). Isr. J. Chem. 6, 511–515.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPal, R., Mukherjee, S., Chandrasekhar, S. & Guru Row, T. N. (2014). J. Phys. Chem. A, 118, 3479–3489.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRabideau, P. W. & Sygula, A. (1989). The conformational analysis of cyclohexenes, cyclohexadienes and related hydroaromatic compounds, edited by P. W. Rabideau, pp. 67–53. New York: VCH.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, T., Xi, Z., Yamazaki, A., Liu, Y., Nakajima, K. & Kotora, M. (1998). J. Am. Chem. Soc. 120, 1672–1680.  Web of Science CSD CrossRef CAS Google Scholar
First citationTraetteberg, M. (1968). Acta Chem. Scand. 22, 2305–2312.  CAS Google Scholar
First citationWang, X., Eckert, J., Liu, L. & Jacobson, A. J. (2011). Inorg. Chem. 50, 2028–2036.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds