organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6,7-di­chloro-4-oxo-4H-chromene-3-carbaldehyde

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by M. Zeller, Youngstown State University, USA (Received 17 July 2015; accepted 4 August 2015; online 12 August 2015)

In the title compound, C10H4Cl2O3, a dichlorinated 3-formyl­chromone, the non-H atoms of the 4H-chromene ring are essentially coplanar (r.m.s. = 0.0188 Å), with the largest deviation from the least-squares plane [0.043 (2) Å] being for the pyran C=O C atom. The α,β-unsaturated carbonyl O atom deviates from the least-square plane by 0.124 (2) Å. The dihedral angle between the chromone and formyl least-square planes is 6.76 (3)°. In the crystal, mol­ecules are linked through C—H⋯O hydrogen bonds between the translation-symmetry and inversion-symmetry equivalents to form tetrads, which are further assembled by stacking inter­actions [centroid–centroid distance between the benzene rings = 3.769 (2) Å]. van der Waals contacts are found between the Cl atoms at the 6-position and the Cl atoms at 7-position of the glide-reflection-symmetry equivalents [Cl⋯Cl = 3.4785 (16) Å, C—Cl⋯Cl = 160.23 (7)° and Cl⋯Cl—C = 122.59 (7)°].

1. Related literature

For related structures, see: Ishikawa & Motohashi (2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]); Ishikawa (2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o514.],b[Ishikawa, Y. (2014b). Acta Cryst. E70, o831.], 2015[Ishikawa, Y. (2015). Acta Cryst. E71, 902-905.]). For halogen bonding and halogen⋯halogen interactions, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Metrangolo & Resnati (2014[Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.]); Mukherjee & Desiraju (2014[Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]); Persch et al. (2015[Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed. 54, 3290-3327.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H4Cl2O3

  • Mr = 243.05

  • Monoclinic, P 21 /c

  • a = 3.7695 (13) Å

  • b = 6.1465 (16) Å

  • c = 39.431 (13) Å

  • β = 90.72 (3)°

  • V = 913.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 140 K

  • 0.30 × 0.25 × 0.10 mm

2.2. Data collection

  • Rigaku AFC–7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.574, Tmax = 0.934

  • 5075 measured reflections

  • 2089 independent reflections

  • 1747 reflections with F2 > 2.0σ(F2)

  • Rint = 0.052

  • 3 standard reflections every 150 reflections intensity decay: 0.6%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.04

  • 2089 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3i 0.95 2.34 3.187 (3) 148 (1)
C7—H3⋯O2ii 0.95 2.26 3.129 (2) 151 (1)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y+1, z.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: CrystalStructure (Rigaku, 2015[Rigaku (2015). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Halogen bonding is an electrostatic interaction between an electrophilic region of a halogen atom and a nucleophilic region of an atom, and has attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014, Persch et al., 2015). This is characterized by a short contact between the two atoms.

I have reported the crystal structures of chlorinated 3-formylchromones 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b), 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2015). As for the monochlorinated 3-formylchromones, van der Waals contacts are observed between the formyl oxygen atom and the chlorine atom at 6-position in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1a), and between the chlorine atoms at 7-position in 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1b). On the other hand, as for the dichlorinated 3-formylchromones, halogen bonds are observed between the formyl oxygen atom and the chlorine atom at 8-position in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig. 1c), and between the formyl oxygen atom and the chlorine atom at 7-position in 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1d). As part of my investigation into these types of chemical bonding, I herein report the crystal structure of a dichlorinated 3-formylchromone 6,7-dichloro-4-oxo-4H-chromene-3-carbaldehyde. The main objective of this study is to reveal the interaction modes of the chlorine substituents of the title compound in the solid state.

The mean deviation of the least-square plane for the non-hydrogen atoms of the 4H-chromene ring is 0.0188 Å, and the largest deviation is 0.043 (2) Å for the C3 atom (Fig. 2). The α,β-unsaturated carbonyl O2 atom deviates from the least-square plane by 0.124 (2) Å. The dihedral angle between the chromene least-square plane and the formyl C2–C10–O3 plane is 6.76 (3)°.

In the crystal, the molecules are linked through C–H···O hydrogen bonds between the translation-symmetryi and inversion-symmetry equivalentsii,iii to form tetrads [i: x – 1, y + 1, z, ii: –x + 1, –y, –z + 1, iii: –x + 2, –y + 1, –z + 1], which are further assembled by stacking interactions [centroid–centroid distance between the benzene rings of the 4H-chromene units = 3.769 (2) Å], as shown in Fig. 3.

Van der Waals contacts are found between the chlorine atoms at 6-position and the chlorine atoms at 7-position of the glide-reflection-symmetry equivalentsiv [Cl1···Cl2iv = 3.4785 (16) Å, C5–Cl1···Cl2iv = 160.23 (7)°, Cl1···Cl2iv–C6iv = 122.59 (7)°, iv: –x + 1, y – 1/2, –z + 1/2], as shown in Fig. 1e. Thus, short contacts are observed for the chlorine atoms in the title compound. The interaction modes of the chlorine atoms in these dichlorinated 3-formylchromones might depend on how strongly the chlorine atoms interact with the oxygen and other vicinal chlorine atoms intramolecularly. These findings could be helpful to rational drug design considering halogen bonding.

Related literature top

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014a,b, 2015). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014); Wilcken et al. (2013); Sirimulla et al. (2013); Persch et al. (2015).

Experimental top

To a solution of 4',5'-dichloro-2'-hydroxyacetophenone (4.8 mmol) in N,N-dimethylformamide (15 ml) was added dropwise POCl3 (12.0 mmol) at 0 °C. After the mixture was stirred for 14 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water and dried in vacuo (yield: 65%). 1H NMR (400 MHz, CDCl3): δ = 7.71 (s, 1H), 8.37 (s, 1H), 8.52 (s, 1H), 10.35 (s, 1H). Single crystals suitable for X-ray diffraction were obtained from a 1,2-dichloroethane solution of the title compound at room temperature.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. One reflection (­–3 0 2) was omitted because of systematic error.

Structure description top

Halogen bonding is an electrostatic interaction between an electrophilic region of a halogen atom and a nucleophilic region of an atom, and has attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014, Persch et al., 2015). This is characterized by a short contact between the two atoms.

I have reported the crystal structures of chlorinated 3-formylchromones 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b), 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2015). As for the monochlorinated 3-formylchromones, van der Waals contacts are observed between the formyl oxygen atom and the chlorine atom at 6-position in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1a), and between the chlorine atoms at 7-position in 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1b). On the other hand, as for the dichlorinated 3-formylchromones, halogen bonds are observed between the formyl oxygen atom and the chlorine atom at 8-position in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig. 1c), and between the formyl oxygen atom and the chlorine atom at 7-position in 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1d). As part of my investigation into these types of chemical bonding, I herein report the crystal structure of a dichlorinated 3-formylchromone 6,7-dichloro-4-oxo-4H-chromene-3-carbaldehyde. The main objective of this study is to reveal the interaction modes of the chlorine substituents of the title compound in the solid state.

The mean deviation of the least-square plane for the non-hydrogen atoms of the 4H-chromene ring is 0.0188 Å, and the largest deviation is 0.043 (2) Å for the C3 atom (Fig. 2). The α,β-unsaturated carbonyl O2 atom deviates from the least-square plane by 0.124 (2) Å. The dihedral angle between the chromene least-square plane and the formyl C2–C10–O3 plane is 6.76 (3)°.

In the crystal, the molecules are linked through C–H···O hydrogen bonds between the translation-symmetryi and inversion-symmetry equivalentsii,iii to form tetrads [i: x – 1, y + 1, z, ii: –x + 1, –y, –z + 1, iii: –x + 2, –y + 1, –z + 1], which are further assembled by stacking interactions [centroid–centroid distance between the benzene rings of the 4H-chromene units = 3.769 (2) Å], as shown in Fig. 3.

Van der Waals contacts are found between the chlorine atoms at 6-position and the chlorine atoms at 7-position of the glide-reflection-symmetry equivalentsiv [Cl1···Cl2iv = 3.4785 (16) Å, C5–Cl1···Cl2iv = 160.23 (7)°, Cl1···Cl2iv–C6iv = 122.59 (7)°, iv: –x + 1, y – 1/2, –z + 1/2], as shown in Fig. 1e. Thus, short contacts are observed for the chlorine atoms in the title compound. The interaction modes of the chlorine atoms in these dichlorinated 3-formylchromones might depend on how strongly the chlorine atoms interact with the oxygen and other vicinal chlorine atoms intramolecularly. These findings could be helpful to rational drug design considering halogen bonding.

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014a,b, 2015). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014); Wilcken et al. (2013); Sirimulla et al. (2013); Persch et al. (2015).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2015); software used to prepare material for publication: CrystalStructure (Rigaku, 2015).

Figures top
[Figure 1] Fig. 1. Sphere models of the crystal structures of (a) 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), (b) 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b), (c) 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013), (d) 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2015) and (e) the title compound (this work).
[Figure 2] Fig. 2. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A packing view of the title compound. C–H···O hydrogen bonds are represented by dashed lines.
6,7-Dichloro-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H4Cl2O3F(000) = 488.00
Mr = 243.05Dx = 1.767 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 3.7695 (13) ÅCell parameters from 25 reflections
b = 6.1465 (16) Åθ = 15.2–17.2°
c = 39.431 (13) ŵ = 0.69 mm1
β = 90.72 (3)°T = 140 K
V = 913.5 (5) Å3Plate, yellow
Z = 40.30 × 0.25 × 0.10 mm
Data collection top
Rigaku AFC–7R
diffractometer
Rint = 0.052
ω scansθmax = 27.8°, θmin = 3.1°
Absorption correction: ψ scan
(North et al., 1968)
h = 42
Tmin = 0.574, Tmax = 0.934k = 77
5075 measured reflectionsl = 5050
2089 independent reflections3 standard reflections every 150 reflections
1747 reflections with F2 > 2.0σ(F2) intensity decay: 0.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.5553P]
where P = (Fo2 + 2Fc2)/3
2089 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.36 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H4Cl2O3V = 913.5 (5) Å3
Mr = 243.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7695 (13) ŵ = 0.69 mm1
b = 6.1465 (16) ÅT = 140 K
c = 39.431 (13) Å0.30 × 0.25 × 0.10 mm
β = 90.72 (3)°
Data collection top
Rigaku AFC–7R
diffractometer
1747 reflections with F2 > 2.0σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.574, Tmax = 0.9343 standard reflections every 150 reflections
5075 measured reflections intensity decay: 0.6%
2089 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2089 reflectionsΔρmin = 0.36 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.55004 (14)0.47912 (8)0.27821 (2)0.02586 (15)
Cl20.92228 (14)0.92474 (8)0.29767 (2)0.02698 (15)
O10.8830 (4)0.6908 (2)0.41933 (3)0.0230 (3)
O20.3678 (4)0.1171 (2)0.40111 (3)0.0274 (3)
O30.7039 (5)0.2474 (3)0.49732 (4)0.0373 (4)
C10.8118 (6)0.5474 (3)0.44408 (5)0.0224 (4)
H10.87960.58640.46660.027*
C20.6523 (5)0.3530 (3)0.43968 (4)0.0208 (4)
C30.5328 (5)0.2856 (3)0.40621 (5)0.0199 (4)
C40.5555 (5)0.3935 (3)0.34486 (4)0.0192 (4)
H20.44300.26040.33890.023*
C50.6442 (5)0.5401 (3)0.31980 (5)0.0197 (4)
C60.8083 (5)0.7381 (3)0.32843 (4)0.0189 (4)
C70.8846 (5)0.7862 (3)0.36175 (5)0.0199 (4)
H30.99620.91960.36780.024*
C80.6295 (5)0.4389 (3)0.37891 (4)0.0180 (4)
C90.7948 (5)0.6354 (3)0.38648 (4)0.0188 (4)
C100.5952 (6)0.2085 (3)0.46908 (5)0.0278 (5)
H40.46570.07770.46550.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0352 (3)0.0278 (3)0.0144 (2)0.0004 (2)0.00603 (19)0.00328 (17)
Cl20.0343 (3)0.0257 (3)0.0209 (2)0.0016 (2)0.0012 (2)0.00378 (18)
O10.0335 (8)0.0206 (7)0.0148 (6)0.0087 (6)0.0050 (5)0.0014 (5)
O20.0360 (9)0.0226 (7)0.0234 (7)0.0121 (6)0.0061 (6)0.0005 (6)
O30.0558 (11)0.0357 (9)0.0200 (7)0.0143 (8)0.0102 (7)0.0052 (6)
C10.0285 (11)0.0233 (9)0.0153 (8)0.0030 (8)0.0021 (7)0.0011 (7)
C20.0253 (10)0.0205 (9)0.0166 (9)0.0041 (8)0.0024 (7)0.0002 (7)
C30.0229 (10)0.0192 (9)0.0175 (9)0.0013 (7)0.0018 (7)0.0019 (7)
C40.0224 (10)0.0177 (8)0.0174 (8)0.0008 (7)0.0033 (7)0.0037 (7)
C50.0223 (9)0.0217 (9)0.0149 (8)0.0018 (7)0.0029 (7)0.0034 (7)
C60.0219 (10)0.0186 (9)0.0161 (8)0.0004 (7)0.0016 (7)0.0021 (7)
C70.0222 (10)0.0175 (8)0.0197 (9)0.0029 (7)0.0023 (7)0.0020 (7)
C80.0209 (9)0.0170 (8)0.0161 (8)0.0013 (7)0.0029 (7)0.0017 (6)
C90.0225 (9)0.0193 (8)0.0146 (8)0.0012 (7)0.0035 (7)0.0034 (7)
C100.0370 (12)0.0265 (10)0.0199 (9)0.0081 (9)0.0032 (8)0.0023 (8)
Geometric parameters (Å, º) top
Cl1—C51.7148 (19)C3—C81.480 (3)
Cl2—C61.7275 (19)C4—C51.381 (3)
O1—C11.344 (2)C4—C81.396 (2)
O1—C91.376 (2)C4—H20.9500
O2—C31.223 (2)C5—C61.405 (3)
O3—C101.206 (2)C6—C71.374 (2)
C1—C21.348 (3)C7—C91.391 (3)
C1—H10.9500C7—H30.9500
C2—C31.450 (2)C8—C91.390 (3)
C2—C101.478 (3)C10—H40.9500
C1—O1—C9118.23 (15)C7—C6—C5120.28 (17)
O1—C1—C2125.47 (16)C7—C6—Cl2118.54 (15)
O1—C1—H1117.3C5—C6—Cl2121.18 (14)
C2—C1—H1117.3C6—C7—C9118.52 (17)
C1—C2—C3120.25 (17)C6—C7—H3120.7
C1—C2—C10120.05 (17)C9—C7—H3120.7
C3—C2—C10119.69 (17)C9—C8—C4117.65 (17)
O2—C3—C2122.92 (17)C9—C8—C3120.72 (16)
O2—C3—C8123.27 (16)C4—C8—C3121.63 (16)
C2—C3—C8113.81 (16)O1—C9—C8121.32 (16)
C5—C4—C8120.70 (17)O1—C9—C7115.91 (16)
C5—C4—H2119.7C8—C9—C7122.76 (16)
C8—C4—H2119.7O3—C10—C2123.64 (19)
C4—C5—C6120.10 (16)O3—C10—H4118.2
C4—C5—Cl1119.51 (14)C2—C10—H4118.2
C6—C5—Cl1120.40 (15)
C9—O1—C1—C21.5 (3)C5—C4—C8—C3179.21 (18)
O1—C1—C2—C31.7 (3)O2—C3—C8—C9175.37 (19)
O1—C1—C2—C10178.9 (2)C2—C3—C8—C94.8 (3)
C1—C2—C3—O2175.48 (19)O2—C3—C8—C43.9 (3)
C10—C2—C3—O23.9 (3)C2—C3—C8—C4175.93 (17)
C1—C2—C3—C84.7 (3)C1—O1—C9—C81.4 (3)
C10—C2—C3—C8175.96 (18)C1—O1—C9—C7177.98 (17)
C8—C4—C5—C60.5 (3)C4—C8—C9—O1178.76 (17)
C8—C4—C5—Cl1179.93 (15)C3—C8—C9—O11.9 (3)
C4—C5—C6—C70.6 (3)C4—C8—C9—C70.6 (3)
Cl1—C5—C6—C7179.76 (15)C3—C8—C9—C7178.76 (18)
C4—C5—C6—Cl2179.99 (15)C6—C7—C9—O1178.95 (17)
Cl1—C5—C6—Cl20.4 (2)C6—C7—C9—C80.4 (3)
C5—C6—C7—C90.2 (3)C1—C2—C10—O34.9 (4)
Cl2—C6—C7—C9179.59 (15)C3—C2—C10—O3175.8 (2)
C5—C4—C8—C90.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.952.343.187 (3)148 (1)
C7—H3···O2ii0.952.263.129 (2)151 (1)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.952.3413.187 (3)148.01 (13)
C7—H3···O2ii0.952.2633.129 (2)151.30 (12)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The University of Shizuoka is acknowledged for instrumentational support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, Y. (2014a). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014b). Acta Cryst. E70, o831.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2015). Acta Cryst. E71, 902–905.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPersch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed. 54, 3290–3327.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds