organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1369-o1370

Epibisde­hydro­neotuberostemonine J

aGuangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China, and bSchool of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: trwjiang@jnu.edu.cn

(Received 4 July 2013; accepted 29 July 2013; online 3 August 2013)

The title compound, C22H29NO4, a stemona alkaloid, is composed of two lactone rings (A and E), a six-membered ring (B), a pyrrole ring (C) and a seven-membered ring (D). The five-membered rings A and E exhibit envelope conformations (C atoms as flaps) while ring C is planar. Ring B exhibits a twist-chair conformation due to fusion with pyrrole ring C while ring D adopts a chair conformation. The junction between rings A and B is cis. In the crystal, weak C—H⋯O inter­actions involving the two carbonyl groups, a methyl­ene and a methyl group give rise to a three-dimensional network.

Related literature

For general background to the structures and biological activity of stemona alkaloids, see: Pilli et al. (2010[Pilli, R.-A., Rossoa, G.-B. & Ferreira de Oliveira, M.-C. (2010). Nat. Prod. Rep. 27, 1908-1937.]). For the anti­tussive activity of epibisde­hydro­neotuberostemonine J and other stemona alkaloids, see: Chung et al. (2003[Chung, H.-S., Hon, P.-M., Lin, G., But, P. P.-H. & Dong, H. (2003). Planta Med. 69, 914-920.]); Xu et al. (2010[Xu, Y.-T., Shaw, P.-C., Jiang, R.-W., Hon, P.-M., Chan, Y.-M. & But, P. P.-H. (2010). J. Ethnopharmacol. 128, 679-684.]). For other properties of and studies on Stemona alkaloids, see: Chung et al. (2003[Chung, H.-S., Hon, P.-M., Lin, G., But, P. P.-H. & Dong, H. (2003). Planta Med. 69, 914-920.]); Frankowski et al. (2008[Frankowski, K.-J., Golden, J.-E., Zeng, Y., Lei, Y. & Aubé, J. (2008). J. Am. Chem. Soc. 130, 6018-6024.], 2011[Frankowski, K.-J., Setola, V., Evans, J.-M., Neuenswander, B., Roth, B.-L. & Aubé, J. (2011). Proc. Natl. Acad. Sci. USA, 108, 6727-6732.]); Jiang et al. (2006[Jiang, R.-W., Hon, P.-M., Zhou, Y., Xu, Y.-T., Chan, Y.-M., Xu, Y.-T., Xu, H.-X., Shaw, P.-C. & But, P. P.-H. (2006). J. Nat. Prod. 69, 749-754.]); Zhang et al. (2011[Zhang, R.-R., Ma, Z.-G., Li, G.-Q., But, P. P.-H. & Jiang, R.-W. (2011). Acta Cryst. E67, o3056.]). For an absolute structure reference, see: Jiang et al. (2010[Jiang, R.-W., Ye, W.-C., Shaw, P.-C., But, P. P.-H. & Mak, T. C.-W. (2010). J. Mol. Struct. 966, 18-22.]). For related isomers, see: Pham et al. (2002[Pham, H.-D., Yu, B.-W., Chau, V.-M., Ye, Y. & Qin, G.-W. (2002). J. Asian Nat. Prod. Res. 4, 81-85.]).

[Scheme 1]

Experimental

Crystal data
  • C22H29NO4

  • Mr = 371.46

  • Monoclinic, P 21

  • a = 6.3596 (19) Å

  • b = 18.495 (3) Å

  • c = 8.3875 (15) Å

  • β = 92.521 (18)°

  • V = 985.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.43 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.831, Tmax = 1.000

  • 2449 measured reflections

  • 1914 independent reflections

  • 1383 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.093

  • S = 1.05

  • 1914 reflections

  • 245 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O2i 0.97 2.60 3.531 (4) 161
C5—H5B⋯O4ii 0.97 2.66 3.595 (3) 162
C22—H22B⋯O4iii 0.96 2.63 3.496 (4) 150
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) x, y, z+1; (iii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 1998[Bruker (1998). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Radix Stemonae extracts derived from the root of Stemona tuberosa (Stemonaceae family) are often used as an antitussive drug to treat respiratory disorders. The alkaloids were found to be the major components responsible for the antitussive activity (Xu et al., 2010). The intriguing structures and pharmacological activities of this fascinating class of compounds have attracted considerable attention (Pilli et al., 2010), and a number of total syntheses (Frankowski et al., 2008), structural modifications (Frankowski et al., 2011) and phytochemical studies (Jiang et al., 2006, Zhang et al., 2011) on new Stemona alkaloids have appeared in recent years.

The title compound C22H29N1O4 (Fig. 1) is a Stemona alkaloid. It was first isolated from the roots of Stemona tuberosa ten years ago (Chung et al., 2003) and found to show antitussive activity (Chung et al., 2003); however, its crystal structure had not been reported.

During our on-going search for antitussive natural products, epibisdehydroneotuberostemonine J was isolated again from Stemona tuberosa. It is an isomer of bisdehydroneotuberostemonine (Pham et al., 2002) at C-9 and C-18. The molecule is composed of two lactone ring (A and E), a six-membered ring (B), a pyrrole ring (C) and a seven-membered ring (D). The five-membered rings A and E exhibit envelope conformations while ring C is planar. The six-membered ring B exhibits a twist chair conformation due to fusion with the pyrrole ring C. The seven-membered ring D adopts a chair conformation, in which the atoms C-5, C-6, C-8, C-9 form a plane with a mean deviation of 0.043 (2) Å, and the atoms C-9 A, N-4 and C-7 displaced by -1.070 (3), -1.040 (2) and 0.662 (4) Å from the plane, respectively.

Weak intermolecular C–H···O interactions (Table 1) involving the two carbonyl groups (O-2 and O-4), a methylene (C-5) and a methyl group (C-22) give a three-dimensional structure.

Related literature top

For general background to the structures and biological activity of stemona alkaloids, see: Pilli et al. (2010). For the antitussive activity of epibisdehydroneotuberostemonine J and other stemona alkaloids, see: Chung et al. (2003); Xu et al. (2010). For other properties of and studies on Stemona alkaloids, see: Chung et al. (2003); Frankowski et al. (2008, 2011); Jiang et al. (2006); Zhang et al. (2011). For an absolute structure reference, see: Jiang et al. (2010). For related isomers, see: Pham et al. (2002).

Experimental top

A dry ground herbal sample of Radix Stemonae (5.0 kg) was suspended in 95% EtOH (10 L) and heated for two hours to reflux of the solvent. After filtration, the solvent was evaporated under reduced pressure. The residue was acidified with 4% HCl (400 ml) and filtered with Whatman filter papers, then the filtrate (acidic aqueous solution) was washed with diethyl ether (500 ml). The H2O layer was basified to pH = 9 with aqueous ammonia (35%) and then extracted with Et2O (500 ml). The Et2O layer was evaporated to afford the crude alkaloids (15 g), which were subjected to column chromatography over silica gel, and eluted with chloroform: methanol: amonia (98: 2: 0.05) to yield ten fractions. Fraction 3 (2 g), a low polar fraction with an Rf value larger than 0.7 on a normal phase TLC plate (mobile phase cyclohexane: ethyl acetate 1: 1), was subjected to a second separation by silica-gel chromatography with cyclohexane: ethyl acetate (7: 3) as the eluent to yield the title compound (180 mg, colorless powder, Rf = 0.76 at the same TLC condition as bulk fraction 3), which was identified by comparision of the physical and spectroscopic data with the literature (Chung et al., 2003). Colorless crystals suitable for single crystal diffraction were obtained from a mixture of cyclohexane: ethyl acetate at room temperature.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C); 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C); 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C). In the absence of anomalous scatterers and a low Friedel pair coverage the absolute configuration was assigned based on the closely related reference molecule neostenine with known configurations at C-10 and C-13 (Jiang et al. (2010)). The highest residual electron density is 0.13 and of no physical meaning.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: SAINT and XPREP (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram viewed down the a axis.
(9R,10R,11S,14S,15R)-3-[(2S,5S)-4,5-dimethyloxolan-2-yl]-10-ethyl-14-methyl-12-oxa-4-azatetracyclo[7.6.1.04,16.011,15]hexadeca-1(16),2-dien-13-one top
Crystal data top
C22H29NO4F(000) = 400
Mr = 371.46Dx = 1.252 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.3596 (19) ÅCell parameters from 2449 reflections
b = 18.495 (3) Åθ = 2.2–24.0°
c = 8.3875 (15) ŵ = 0.09 mm1
β = 92.521 (18)°T = 291 K
V = 985.6 (4) Å3Prism, colorless
Z = 20.43 × 0.28 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1383 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.022
ω scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 17
Tmin = 0.831, Tmax = 1.000k = 121
2449 measured reflectionsl = 99
1914 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.0285P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1914 reflectionsΔρmax = 0.13 e Å3
245 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C22H29NO4V = 985.6 (4) Å3
Mr = 371.46Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.3596 (19) ŵ = 0.09 mm1
b = 18.495 (3) ÅT = 291 K
c = 8.3875 (15) Å0.43 × 0.28 × 0.20 mm
β = 92.521 (18)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1914 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1383 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 1.000Rint = 0.022
2449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 0.13 e Å3
1914 reflectionsΔρmin = 0.13 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5763 (4)0.32620 (15)0.2326 (4)0.0552 (8)
O20.6531 (5)0.36723 (17)0.0073 (4)0.0716 (9)
O30.4293 (4)0.02284 (15)0.1869 (3)0.0472 (7)
O40.5576 (4)0.01361 (17)0.4150 (3)0.0611 (9)
C10.2603 (6)0.2093 (2)0.1225 (5)0.0451 (11)
C20.1727 (6)0.1714 (2)0.0118 (5)0.0469 (10)
H2A0.07810.19030.08860.056*
C30.2514 (6)0.1021 (2)0.0095 (5)0.0418 (10)
N40.3821 (5)0.09614 (16)0.1254 (4)0.0404 (8)
C50.5164 (6)0.0346 (2)0.1696 (5)0.0449 (10)
H5A0.47920.00630.10150.054*
H5B0.49290.02080.27900.054*
C60.7464 (6)0.0528 (2)0.1536 (5)0.0483 (11)
H6A0.82470.00790.14680.058*
H6B0.76110.07850.05400.058*
C70.8456 (6)0.0977 (2)0.2873 (5)0.0505 (11)
H7A0.99520.10140.27070.061*
H7B0.82980.07200.38680.061*
C80.7586 (6)0.1742 (2)0.3066 (5)0.0472 (10)
H8A0.77290.20050.20760.057*
H8B0.84190.19910.38920.057*
C9A0.3875 (6)0.1609 (2)0.2037 (5)0.0426 (10)
C90.5259 (6)0.1751 (2)0.3501 (4)0.0440 (10)
H9A0.50590.13480.42360.053*
C100.4468 (7)0.2435 (2)0.4320 (5)0.0501 (11)
H10A0.31500.22950.47980.060*
C110.3881 (7)0.3036 (2)0.3145 (5)0.0557 (12)
H11A0.33600.34490.37420.067*
C120.2296 (6)0.2868 (2)0.1766 (5)0.0493 (11)
H12A0.08550.29390.21020.059*
C130.2864 (7)0.3445 (2)0.0563 (5)0.0561 (12)
H13A0.23100.39030.09540.067*
C140.5207 (8)0.3479 (2)0.0821 (6)0.0556 (12)
C150.2115 (7)0.3382 (3)0.1162 (6)0.0708 (14)
H15A0.25990.37920.17450.106*
H15B0.06050.33680.12320.106*
H15C0.26650.29470.16080.106*
C160.5885 (7)0.2711 (3)0.5694 (5)0.0615 (13)
H16A0.52350.31330.61540.074*
H16B0.72150.28630.52790.074*
C170.6320 (8)0.2152 (3)0.7012 (6)0.0754 (15)
H17A0.72260.23600.78360.113*
H17B0.69900.17360.65730.113*
H17C0.50160.20090.74540.113*
C180.2231 (5)0.0417 (2)0.1246 (5)0.0438 (10)
H18A0.16810.00040.06880.053*
C190.0829 (7)0.0565 (2)0.2721 (5)0.0574 (12)
H19A0.05910.03930.25780.069*
H19B0.07780.10780.29570.069*
C200.1851 (6)0.0151 (3)0.4045 (5)0.0504 (11)
H20A0.18250.04490.50110.060*
C210.4088 (6)0.0065 (2)0.3421 (5)0.0457 (10)
C220.0893 (7)0.0577 (3)0.4437 (7)0.0806 (16)
H22A0.16410.07990.52780.121*
H22B0.05580.05160.47760.121*
H22C0.09850.08790.35070.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0521 (19)0.0380 (17)0.076 (2)0.0075 (15)0.0086 (17)0.0000 (16)
O20.072 (2)0.051 (2)0.093 (2)0.0096 (18)0.0255 (19)0.0111 (19)
O30.0362 (15)0.0522 (17)0.0528 (17)0.0054 (14)0.0032 (13)0.0032 (16)
O40.0454 (18)0.079 (2)0.0597 (18)0.0066 (18)0.0107 (16)0.0065 (18)
C10.038 (2)0.036 (2)0.062 (3)0.001 (2)0.009 (2)0.002 (2)
C20.032 (2)0.041 (2)0.068 (3)0.003 (2)0.001 (2)0.005 (2)
C30.034 (2)0.034 (2)0.057 (3)0.0011 (19)0.002 (2)0.001 (2)
N40.0352 (17)0.0295 (18)0.056 (2)0.0002 (16)0.0012 (16)0.0011 (17)
C50.047 (2)0.036 (2)0.052 (2)0.005 (2)0.001 (2)0.001 (2)
C60.042 (2)0.042 (2)0.061 (3)0.006 (2)0.002 (2)0.000 (2)
C70.038 (2)0.053 (3)0.060 (3)0.002 (2)0.002 (2)0.008 (2)
C80.038 (2)0.046 (2)0.058 (3)0.008 (2)0.0031 (19)0.004 (2)
C9A0.035 (2)0.036 (2)0.058 (3)0.0071 (19)0.006 (2)0.002 (2)
C90.044 (2)0.036 (2)0.052 (2)0.007 (2)0.0098 (19)0.005 (2)
C100.048 (3)0.037 (2)0.066 (3)0.008 (2)0.013 (2)0.004 (2)
C110.054 (3)0.040 (3)0.074 (3)0.002 (2)0.018 (3)0.015 (2)
C120.041 (2)0.038 (2)0.070 (3)0.004 (2)0.010 (2)0.001 (2)
C130.059 (3)0.033 (2)0.076 (3)0.009 (2)0.009 (3)0.002 (2)
C140.071 (3)0.024 (2)0.074 (3)0.004 (2)0.015 (3)0.001 (2)
C150.074 (3)0.047 (3)0.092 (4)0.006 (3)0.009 (3)0.008 (3)
C160.072 (3)0.053 (3)0.061 (3)0.009 (3)0.010 (3)0.012 (3)
C170.083 (4)0.077 (4)0.066 (3)0.000 (3)0.003 (3)0.008 (3)
C180.029 (2)0.044 (3)0.059 (2)0.001 (2)0.0064 (19)0.006 (2)
C190.042 (2)0.054 (3)0.076 (3)0.008 (2)0.012 (2)0.008 (3)
C200.045 (2)0.051 (3)0.055 (2)0.008 (2)0.008 (2)0.004 (2)
C210.042 (2)0.043 (2)0.052 (3)0.002 (2)0.001 (2)0.007 (2)
C220.055 (3)0.062 (3)0.123 (4)0.008 (3)0.020 (3)0.022 (3)
Geometric parameters (Å, º) top
O1—C141.356 (5)C10—C161.519 (5)
O1—C111.467 (5)C10—C111.520 (6)
O2—C141.207 (5)C10—H10A0.9800
O3—C211.337 (4)C11—C121.533 (6)
O3—C181.475 (4)C11—H11A0.9800
O4—C211.207 (4)C12—C131.523 (6)
C1—C9A1.368 (5)C12—H12A0.9800
C1—C21.420 (5)C13—C141.498 (6)
C1—C121.518 (6)C13—C151.507 (6)
C2—C31.375 (5)C13—H13A0.9800
C2—H2A0.9300C15—H15A0.9600
C3—N41.378 (5)C15—H15B0.9600
C3—C181.483 (5)C15—H15C0.9600
N4—C9A1.366 (5)C16—C171.530 (6)
N4—C51.462 (5)C16—H16A0.9700
C5—C61.513 (5)C16—H16B0.9700
C5—H5A0.9700C17—H17A0.9600
C5—H5B0.9700C17—H17B0.9600
C6—C71.512 (5)C17—H17C0.9600
C6—H6A0.9700C18—C191.518 (5)
C6—H6B0.9700C18—H18A0.9800
C7—C81.529 (6)C19—C201.518 (6)
C7—H7A0.9700C19—H19A0.9700
C7—H7B0.9700C19—H19B0.9700
C8—C91.540 (5)C20—C211.503 (5)
C8—H8A0.9700C20—C221.508 (6)
C8—H8B0.9700C20—H20A0.9800
C9A—C91.502 (5)C22—H22A0.9600
C9—C101.534 (6)C22—H22B0.9600
C9—H9A0.9800C22—H22C0.9600
C14—O1—C11109.6 (3)C1—C12—C11109.1 (3)
C21—O3—C18110.4 (3)C13—C12—C11101.0 (3)
C9A—C1—C2106.0 (3)C1—C12—H12A110.3
C9A—C1—C12123.3 (4)C13—C12—H12A110.3
C2—C1—C12130.7 (4)C11—C12—H12A110.3
C3—C2—C1108.6 (4)C14—C13—C15114.4 (4)
C3—C2—H2A125.7C14—C13—C12101.3 (4)
C1—C2—H2A125.7C15—C13—C12120.5 (4)
C2—C3—N4107.0 (4)C14—C13—H13A106.6
C2—C3—C18131.3 (4)C15—C13—H13A106.6
N4—C3—C18121.7 (3)C12—C13—H13A106.6
C9A—N4—C3109.1 (3)O2—C14—O1120.4 (4)
C9A—N4—C5124.0 (3)O2—C14—C13129.8 (5)
C3—N4—C5126.5 (3)O1—C14—C13109.9 (4)
N4—C5—C6111.1 (3)C13—C15—H15A109.5
N4—C5—H5A109.4C13—C15—H15B109.5
C6—C5—H5A109.4H15A—C15—H15B109.5
N4—C5—H5B109.4C13—C15—H15C109.5
C6—C5—H5B109.4H15A—C15—H15C109.5
H5A—C5—H5B108.0H15B—C15—H15C109.5
C7—C6—C5115.5 (3)C10—C16—C17113.8 (4)
C7—C6—H6A108.4C10—C16—H16A108.8
C5—C6—H6A108.4C17—C16—H16A108.8
C7—C6—H6B108.4C10—C16—H16B108.8
C5—C6—H6B108.4C17—C16—H16B108.8
H6A—C6—H6B107.5H16A—C16—H16B107.7
C6—C7—C8116.5 (3)C16—C17—H17A109.5
C6—C7—H7A108.2C16—C17—H17B109.5
C8—C7—H7A108.2H17A—C17—H17B109.5
C6—C7—H7B108.2C16—C17—H17C109.5
C8—C7—H7B108.2H17A—C17—H17C109.5
H7A—C7—H7B107.3H17B—C17—H17C109.5
C7—C8—C9113.1 (3)O3—C18—C3108.9 (3)
C7—C8—H8A109.0O3—C18—C19104.7 (3)
C9—C8—H8A109.0C3—C18—C19116.4 (3)
C7—C8—H8B109.0O3—C18—H18A108.9
C9—C8—H8B109.0C3—C18—H18A108.9
H8A—C8—H8B107.8C19—C18—H18A108.9
N4—C9A—C1109.4 (3)C20—C19—C18104.5 (3)
N4—C9A—C9123.3 (3)C20—C19—H19A110.9
C1—C9A—C9127.2 (4)C18—C19—H19A110.9
C9A—C9—C10108.6 (3)C20—C19—H19B110.9
C9A—C9—C8109.8 (3)C18—C19—H19B110.9
C10—C9—C8116.9 (3)H19A—C19—H19B108.9
C9A—C9—H9A107.0C21—C20—C22110.4 (4)
C10—C9—H9A107.0C21—C20—C19103.2 (3)
C8—C9—H9A107.0C22—C20—C19115.3 (4)
C16—C10—C11111.5 (3)C21—C20—H20A109.2
C16—C10—C9114.9 (4)C22—C20—H20A109.2
C11—C10—C9112.8 (3)C19—C20—H20A109.2
C16—C10—H10A105.6O4—C21—O3121.2 (3)
C11—C10—H10A105.6O4—C21—C20127.4 (4)
C9—C10—H10A105.6O3—C21—C20111.4 (4)
O1—C11—C10109.3 (3)C20—C22—H22A109.5
O1—C11—C12103.1 (3)C20—C22—H22B109.5
C10—C11—C12118.4 (3)H22A—C22—H22B109.5
O1—C11—H11A108.5C20—C22—H22C109.5
C10—C11—H11A108.5H22A—C22—H22C109.5
C12—C11—H11A108.5H22B—C22—H22C109.5
C1—C12—C13115.3 (3)
C9A—C1—C2—C30.9 (5)C9A—C1—C12—C13122.1 (4)
C12—C1—C2—C3179.3 (4)C2—C1—C12—C1358.1 (6)
C1—C2—C3—N41.2 (4)C9A—C1—C12—C119.3 (5)
C1—C2—C3—C18175.9 (4)C2—C1—C12—C11170.9 (4)
C2—C3—N4—C9A1.1 (4)O1—C11—C12—C186.1 (4)
C18—C3—N4—C9A176.4 (3)C10—C11—C12—C134.7 (5)
C2—C3—N4—C5173.7 (3)O1—C11—C12—C1335.8 (4)
C18—C3—N4—C53.8 (6)C10—C11—C12—C13156.5 (4)
C9A—N4—C5—C662.4 (5)C1—C12—C13—C1480.9 (4)
C3—N4—C5—C6109.1 (4)C11—C12—C13—C1436.6 (4)
N4—C5—C6—C778.0 (4)C1—C12—C13—C1546.5 (5)
C5—C6—C7—C864.2 (5)C11—C12—C13—C15163.9 (4)
C6—C7—C8—C963.6 (5)C11—O1—C14—O2178.3 (4)
C3—N4—C9A—C10.5 (4)C11—O1—C14—C132.8 (4)
C5—N4—C9A—C1173.3 (3)C15—C13—C14—O224.3 (7)
C3—N4—C9A—C9175.8 (3)C12—C13—C14—O2155.6 (4)
C5—N4—C9A—C93.0 (6)C15—C13—C14—O1157.0 (3)
C2—C1—C9A—N40.2 (4)C12—C13—C14—O125.7 (4)
C12—C1—C9A—N4180.0 (4)C11—C10—C16—C17173.3 (4)
C2—C1—C9A—C9176.4 (4)C9—C10—C16—C1756.7 (5)
C12—C1—C9A—C93.8 (6)C21—O3—C18—C3141.6 (3)
N4—C9A—C9—C10163.9 (4)C21—O3—C18—C1916.5 (4)
C1—C9A—C9—C1020.4 (6)C2—C3—C18—O3117.6 (4)
N4—C9A—C9—C867.1 (5)N4—C3—C18—O359.2 (4)
C1—C9A—C9—C8108.6 (5)C2—C3—C18—C190.4 (6)
C7—C8—C9—C9A78.1 (4)N4—C3—C18—C19177.2 (3)
C7—C8—C9—C10157.7 (4)O3—C18—C19—C2023.7 (4)
C9A—C9—C10—C16171.9 (3)C3—C18—C19—C20144.0 (3)
C8—C9—C10—C1647.0 (5)C18—C19—C20—C2122.1 (4)
C9A—C9—C10—C1142.5 (4)C18—C19—C20—C2298.3 (4)
C8—C9—C10—C1182.3 (5)C18—O3—C21—O4176.7 (4)
C14—O1—C11—C10148.1 (3)C18—O3—C21—C202.1 (5)
C14—O1—C11—C1221.3 (4)C22—C20—C21—O468.0 (6)
C16—C10—C11—O167.9 (4)C19—C20—C21—O4168.2 (4)
C9—C10—C11—O163.2 (4)C22—C20—C21—O3110.7 (4)
C16—C10—C11—C12174.5 (3)C19—C20—C21—O313.1 (5)
C9—C10—C11—C1254.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.972.603.531 (4)161
C5—H5B···O4ii0.972.663.595 (3)162
C22—H22B···O4iii0.962.633.496 (4)150
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y, z+1; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.9702.5983.531 (4)161.4
C5—H5B···O4ii0.9702.6593.595 (3)162.2
C22—H22B···O4iii0.9602.6323.496 (4)150.0
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y, z+1; (iii) x1, y, z.
 

Acknowledgements

This work was supported by a grant of the Guangdong High Level Talent Scheme (RWJ) from Guangdong province and the Fundamental Research Funds for the Cental Universities (21612603) from the Ministry of Education, P. R. of China.

References

First citationBruker (1998). SMART, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, H.-S., Hon, P.-M., Lin, G., But, P. P.-H. & Dong, H. (2003). Planta Med. 69, 914–920.  Web of Science PubMed CAS Google Scholar
First citationFrankowski, K.-J., Golden, J.-E., Zeng, Y., Lei, Y. & Aubé, J. (2008). J. Am. Chem. Soc. 130, 6018–6024.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFrankowski, K.-J., Setola, V., Evans, J.-M., Neuenswander, B., Roth, B.-L. & Aubé, J. (2011). Proc. Natl. Acad. Sci. USA, 108, 6727–6732.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJiang, R.-W., Hon, P.-M., Zhou, Y., Xu, Y.-T., Chan, Y.-M., Xu, Y.-T., Xu, H.-X., Shaw, P.-C. & But, P. P.-H. (2006). J. Nat. Prod. 69, 749–754.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, R.-W., Ye, W.-C., Shaw, P.-C., But, P. P.-H. & Mak, T. C.-W. (2010). J. Mol. Struct. 966, 18–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationPham, H.-D., Yu, B.-W., Chau, V.-M., Ye, Y. & Qin, G.-W. (2002). J. Asian Nat. Prod. Res. 4, 81–85.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPilli, R.-A., Rossoa, G.-B. & Ferreira de Oliveira, M.-C. (2010). Nat. Prod. Rep. 27, 1908–1937.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-T., Shaw, P.-C., Jiang, R.-W., Hon, P.-M., Chan, Y.-M. & But, P. P.-H. (2010). J. Ethnopharmacol. 128, 679–684.  Web of Science CrossRef PubMed Google Scholar
First citationZhang, R.-R., Ma, Z.-G., Li, G.-Q., But, P. P.-H. & Jiang, R.-W. (2011). Acta Cryst. E67, o3056.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1369-o1370
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds