organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(Carbazol-9-yl)phen­yl]-1,3-di­ethyl-1,3-di­phenyl­guanidine

aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 21 May 2013; accepted 26 May 2013; online 8 June 2013)

In the title compound, C35H32N4, the C—N bond lengths in the guanidine part are 1.286 (3), 1.387 (2) and 1.414 (2) Å, indicating double- and single-bond character. The N—C—N angles are 114.48 (17), 118.78 (17) and 126.72 (17)°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. The carbazole ring system is almost planar (r.m.s. deviation = 0.002 Å). In the crystal, mol­ecules are connected by weak C—H⋯N hydrogen bonds, generating a zigzag chain along the ac plane. Weak ππ inter­actions [centroid–centroid distance = 3.785 (1) Å] between two phenyl rings of the guanidine moiety are also present.

Related literature

For synthesis and characterization of carbazole-based compounds for blue OLEDs, see: Agarwal et al. (2011[Agarwal, N., Nayak, P. K., Ali, F., Patankar, M. P., Narasimhan, K. L. & Periasamy, N. (2011). Synth. Met. 161, 466-473.]). For the crystal structure of 9-(4-nitro­phen­yl)-9H-carbazole, see: Chen et al. (2005[Chen, L.-Q., Yang, C.-L., Meng, X.-G. & Qin, J.-G. (2005). Acta Cryst. E61, o3073-o3075.]). For the crystal structure of carbazole, see: Gerkin & Reppart (1986[Gerkin, R. E. & Reppart, W. J. (1986). Acta Cryst. C42, 480-482.]). For synthesis and characterization of light-emitting carbazole derivatives, see: Thomas et al. (2001[Thomas, K. R. J., Lin, J. T., Tao, Y. T. & Ko, C. (2001). J. Am. Chem. Soc. 123, 9404-9411.]). For the crystal structure of N,N,N′,N′-tetra­methyl-N′′-[2-(N′,N′,N′′,N′′-tetra­methyl­guanidino)eth­yl]guanidine, see: Tiritiris & Kantlehner (2012[Tiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2161.]).

[Scheme 1]

Experimental

Crystal data
  • C35H32N4

  • Mr = 508.65

  • Orthorhombic, P 21 21 21

  • a = 9.4741 (2) Å

  • b = 15.9500 (6) Å

  • c = 17.9102 (8) Å

  • V = 2706.45 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.19 × 0.15 × 0.12 mm

Data collection
  • Bruker-Nonius KappaCCD diffractometer

  • 6390 measured reflections

  • 3588 independent reflections

  • 3109 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.086

  • S = 1.04

  • 3588 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28A⋯N3i 0.95 2.79 3.593 (3) 143
Symmetry code: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbazole derivatives play an important role as materials for small-molecule or polymer organic light-emitting diodes (OLEDs). They are known for their intense blue luminescence (Thomas et al., 2001) and several types of carbazole-based compounds are already used in OLEDs (Agarwal et al., 2011). The disadvantage of blue emitting materials in blue OLEDs is their lower efficiency compared to green or red OLED materials, due to their limited stability, shorter lifetime and lower color purity. In search of new more stable blue emitting materials, we synthesized a new type of carbazole derivative by combination of an aryl substituted carbazole with a guanidine moiety, the crystal structure of which is presented here.

According to the structure analysis, the C1–N3 bond in the guanidine unit is 1.286 (3) Å, indicating double bond character. The bond lengths C1–N2 = 1.387 (2) Å and C1–N1 = 1.414 (2) Å are elongated and characteristic for C–N imine single bonds. The N–C1–N angles are 114.48 (17)° (N1–C1–N2), 118.78 (17)° (N2–C1–N3) and 126.72 (17)° (N1–C1–N3), showing a deviation of the CN3 plane from an ideal trigonal planar geometry (Fig. 1). Similar bond lengths and angles of the guanidine CN3 part have been found by structure analysis for N,N,N',N'-tetramethyl-N''-[2-(N',N',N'',N''-tetramethylguanidino)-ethyl]-guanidine (Tiritiris & Kantlehner, 2012). The carbazole ring system is planar and the bond lengths and angles are in good agreement with the data from the X-ray analysis of unsubstituted carbazole (Gerkin & Reppart, 1986). The dihedral angle between the planes C35/N4/C24 and C22/C21/C20 is 57.9 (2)°, indicating an only small deviation from the value found for 9-(4-nitrophenyl)-9H-carbazole [dihedral angle between the C/N/C and C/C/C plane = 53.08 (4)°] (Chen et al., 2005). Weak C–H···N hydrogen bonds are found between aromatic hydrogen atoms of the carbazole moiety and the free nitrogen atoms of neighboring guanidine molecules [d(H···N) = 2.79 Å] (Tab. 1), generating a zig zag chain along the ac-plane (Fig. 2). Finally, weak ππ interactions between two phenyl rings of the guanidine unit [Cg1 = C4–C9; Cg2 = C18–C23; d(Cg1···Cg2) = 3.785 Å] are also present.

Related literature top

For synthesis and characterization of carbazole-based compounds for blue OLEDs, see: Agarwal et al. (2011). For the crystal structure of 9-(4-nitrophenyl)-9H-carbazole, see: Chen et al. (2005). For the crystal structure of carbazole, see: Gerkin & Reppart (1986). For synthesis and characterization of light-emitting carbazole derivatives, see: Thomas et al. (2001). For the crystal structure of N,N,N',N'-tetramethyl-N''-[2-(N',N',N'',N''-tetramethylguanidino)ethyl]guanidine, see: Tiritiris & Kantlehner (2012).

Experimental top

One equivalent of N,N'-diethyl-N,N'-diphenylchloro formamidinium-chloride (synthesized from N,N'-diethyl-N,N'-diphenylthiourea and phosgene) was reacted with one equivalent of 9-(4-aminophenyl)-9H-carbazole (Alfa Aesar) in acetonitrile, in the presence of one equivalent triethylamine, at 273 K. The obtained mixture consisting of the guanidinium chloride and triethylammonium chloride was reacted in the next step with an excess of an aqueous sodium hydroxide solution at 273 K. After extraction of the guanidine with diethyl ether from the water phase, the solvent was evaporated and the title compound was isolated in form of a colourless solid. Single crystals have been obtained by recrystallization from a saturated acetonitrile solution.

Refinement top

The title compound crystallizes in the non-centrosymmetric space group P212121; however, in the absence of significant anomalous scattering effects, the Flack parameter is essentially meaningless. Accordingly, Friedel pairs were merged. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with Uiso(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).

Structure description top

Carbazole derivatives play an important role as materials for small-molecule or polymer organic light-emitting diodes (OLEDs). They are known for their intense blue luminescence (Thomas et al., 2001) and several types of carbazole-based compounds are already used in OLEDs (Agarwal et al., 2011). The disadvantage of blue emitting materials in blue OLEDs is their lower efficiency compared to green or red OLED materials, due to their limited stability, shorter lifetime and lower color purity. In search of new more stable blue emitting materials, we synthesized a new type of carbazole derivative by combination of an aryl substituted carbazole with a guanidine moiety, the crystal structure of which is presented here.

According to the structure analysis, the C1–N3 bond in the guanidine unit is 1.286 (3) Å, indicating double bond character. The bond lengths C1–N2 = 1.387 (2) Å and C1–N1 = 1.414 (2) Å are elongated and characteristic for C–N imine single bonds. The N–C1–N angles are 114.48 (17)° (N1–C1–N2), 118.78 (17)° (N2–C1–N3) and 126.72 (17)° (N1–C1–N3), showing a deviation of the CN3 plane from an ideal trigonal planar geometry (Fig. 1). Similar bond lengths and angles of the guanidine CN3 part have been found by structure analysis for N,N,N',N'-tetramethyl-N''-[2-(N',N',N'',N''-tetramethylguanidino)-ethyl]-guanidine (Tiritiris & Kantlehner, 2012). The carbazole ring system is planar and the bond lengths and angles are in good agreement with the data from the X-ray analysis of unsubstituted carbazole (Gerkin & Reppart, 1986). The dihedral angle between the planes C35/N4/C24 and C22/C21/C20 is 57.9 (2)°, indicating an only small deviation from the value found for 9-(4-nitrophenyl)-9H-carbazole [dihedral angle between the C/N/C and C/C/C plane = 53.08 (4)°] (Chen et al., 2005). Weak C–H···N hydrogen bonds are found between aromatic hydrogen atoms of the carbazole moiety and the free nitrogen atoms of neighboring guanidine molecules [d(H···N) = 2.79 Å] (Tab. 1), generating a zig zag chain along the ac-plane (Fig. 2). Finally, weak ππ interactions between two phenyl rings of the guanidine unit [Cg1 = C4–C9; Cg2 = C18–C23; d(Cg1···Cg2) = 3.785 Å] are also present.

For synthesis and characterization of carbazole-based compounds for blue OLEDs, see: Agarwal et al. (2011). For the crystal structure of 9-(4-nitrophenyl)-9H-carbazole, see: Chen et al. (2005). For the crystal structure of carbazole, see: Gerkin & Reppart (1986). For synthesis and characterization of light-emitting carbazole derivatives, see: Thomas et al. (2001). For the crystal structure of N,N,N',N'-tetramethyl-N''-[2-(N',N',N'',N''-tetramethylguanidino)ethyl]guanidine, see: Tiritiris & Kantlehner (2012).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with atom labels and 50% probability displacement ellipsoids. All hydrogen atoms were omitted for clarity.
[Figure 2] Fig. 2. C–H···N hydrogen bonds between the guanidine molecules, ac-view. The hydrogen bonds are indicated by dashed lines.
2-[4-(Carbazol-9-yl)phenyl]-1,3-diethyl-1,3-diphenylguanidine top
Crystal data top
C35H32N4F(000) = 1080
Mr = 508.65Dx = 1.248 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 33481 reflections
a = 9.4741 (2) Åθ = 0.4–27.9°
b = 15.9500 (6) ŵ = 0.07 mm1
c = 17.9102 (8) ÅT = 100 K
V = 2706.45 (17) Å3Block, colorless
Z = 40.19 × 0.15 × 0.12 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
3109 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.9°, θmin = 2.8°
φ scans, and ω scansh = 1212
6390 measured reflectionsk = 2020
3588 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.8137P]
where P = (Fo2 + 2Fc2)/3
3588 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C35H32N4V = 2706.45 (17) Å3
Mr = 508.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4741 (2) ŵ = 0.07 mm1
b = 15.9500 (6) ÅT = 100 K
c = 17.9102 (8) Å0.19 × 0.15 × 0.12 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
3109 reflections with I > 2σ(I)
6390 measured reflectionsRint = 0.032
3588 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
3588 reflectionsΔρmin = 0.20 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2398 (2)0.01022 (12)0.15167 (10)0.0136 (4)
N10.21769 (17)0.08232 (11)0.19605 (9)0.0142 (3)
C20.0991 (2)0.07985 (13)0.24863 (11)0.0184 (4)
H2A0.13730.07960.30010.022*
H2B0.04740.02650.24130.022*
C30.0054 (2)0.15231 (15)0.24149 (13)0.0234 (5)
H3A0.04550.20570.24450.035*
H3B0.07470.14920.28200.035*
H3C0.05420.14860.19330.035*
C40.3269 (2)0.14186 (13)0.20511 (11)0.0150 (4)
C50.3325 (2)0.19439 (14)0.26785 (12)0.0217 (5)
H5A0.26110.19100.30500.026*
C60.4426 (3)0.25155 (14)0.27582 (13)0.0253 (5)
H6A0.44510.28720.31830.030*
C70.5483 (2)0.25736 (14)0.22300 (13)0.0249 (5)
H7A0.62450.29530.22970.030*
C80.5414 (2)0.20701 (14)0.16015 (12)0.0213 (4)
H8A0.61300.21110.12320.026*
C90.4312 (2)0.15069 (13)0.15042 (11)0.0180 (4)
H9A0.42670.11780.10620.022*
N20.12723 (17)0.01060 (11)0.10577 (9)0.0155 (3)
C100.1179 (2)0.09757 (13)0.07804 (11)0.0169 (4)
H10A0.21270.11610.06160.020*
H10B0.05450.09910.03410.020*
C110.0633 (3)0.15786 (14)0.13647 (13)0.0258 (5)
H11A0.12430.15560.18060.039*
H11B0.06340.21490.11620.039*
H11C0.03310.14210.15050.039*
C120.0369 (2)0.05132 (13)0.07409 (11)0.0153 (4)
C130.1054 (2)0.03251 (14)0.06186 (11)0.0173 (4)
H13A0.14160.02090.07550.021*
C140.1937 (2)0.09201 (14)0.02976 (12)0.0204 (4)
H14A0.29020.07890.02120.024*
C150.1423 (2)0.17052 (14)0.01001 (12)0.0224 (5)
H15A0.20310.21100.01180.027*
C160.0017 (2)0.18903 (14)0.02245 (12)0.0203 (4)
H16A0.03380.24280.00940.024*
C170.0877 (2)0.13042 (13)0.05360 (11)0.0171 (4)
H17A0.18430.14380.06120.020*
N30.34992 (17)0.03696 (11)0.15142 (9)0.0156 (3)
C180.4536 (2)0.02744 (12)0.20755 (11)0.0151 (4)
C190.4217 (2)0.02753 (13)0.28357 (11)0.0167 (4)
H19A0.32650.03370.29940.020*
C200.5281 (2)0.01872 (13)0.33636 (11)0.0179 (4)
H20A0.50600.02000.38810.021*
C210.6666 (2)0.00799 (13)0.31334 (11)0.0167 (4)
C220.7001 (2)0.01022 (14)0.23777 (12)0.0182 (4)
H22A0.79530.00390.22210.022*
C230.5944 (2)0.02163 (13)0.18542 (11)0.0166 (4)
H23A0.61800.02550.13400.020*
N40.77493 (17)0.00757 (11)0.36707 (9)0.0176 (4)
C240.7771 (2)0.07533 (13)0.41611 (11)0.0157 (4)
C250.6772 (2)0.13854 (13)0.42557 (12)0.0186 (4)
H25A0.59410.14080.39590.022*
C260.7044 (2)0.19800 (14)0.48025 (12)0.0209 (4)
H26A0.63800.24170.48840.025*
C270.8272 (2)0.19524 (14)0.52382 (12)0.0214 (4)
H27A0.84200.23670.56110.026*
C280.9275 (2)0.13299 (13)0.51332 (11)0.0178 (4)
H28A1.01070.13140.54290.021*
C290.9032 (2)0.07256 (13)0.45807 (11)0.0156 (4)
C300.9823 (2)0.00075 (13)0.43164 (10)0.0160 (4)
C311.1140 (2)0.03379 (14)0.44977 (11)0.0184 (4)
H31A1.17170.00870.48700.022*
C321.1585 (2)0.10510 (14)0.41248 (11)0.0199 (4)
H32A1.24810.12860.42380.024*
C331.0730 (2)0.14313 (14)0.35808 (12)0.0207 (4)
H33A1.10580.19220.33350.025*
C340.9419 (2)0.11072 (14)0.33932 (12)0.0193 (4)
H34A0.88360.13710.30310.023*
C350.8993 (2)0.03802 (13)0.37572 (11)0.0163 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0166 (9)0.0133 (9)0.0109 (9)0.0038 (8)0.0003 (7)0.0004 (7)
N10.0142 (7)0.0138 (8)0.0145 (8)0.0010 (7)0.0013 (6)0.0017 (7)
C20.0200 (10)0.0172 (10)0.0181 (10)0.0022 (9)0.0046 (8)0.0023 (8)
C30.0228 (10)0.0241 (11)0.0232 (11)0.0019 (10)0.0055 (9)0.0027 (9)
C40.0166 (9)0.0119 (9)0.0164 (9)0.0013 (8)0.0028 (8)0.0014 (8)
C50.0262 (11)0.0202 (11)0.0187 (10)0.0018 (9)0.0038 (9)0.0031 (9)
C60.0351 (12)0.0180 (11)0.0228 (11)0.0051 (10)0.0002 (10)0.0074 (9)
C70.0257 (11)0.0172 (11)0.0318 (12)0.0080 (9)0.0016 (10)0.0001 (9)
C80.0211 (10)0.0191 (11)0.0237 (11)0.0038 (9)0.0030 (9)0.0031 (9)
C90.0215 (10)0.0154 (10)0.0170 (9)0.0017 (8)0.0009 (8)0.0008 (8)
N20.0152 (8)0.0144 (8)0.0169 (8)0.0002 (7)0.0041 (7)0.0019 (7)
C100.0183 (10)0.0159 (10)0.0166 (9)0.0014 (8)0.0028 (8)0.0044 (8)
C110.0358 (13)0.0187 (11)0.0228 (11)0.0047 (10)0.0012 (10)0.0020 (9)
C120.0163 (9)0.0175 (10)0.0120 (9)0.0016 (8)0.0008 (8)0.0031 (8)
C130.0168 (10)0.0184 (10)0.0167 (9)0.0014 (8)0.0008 (8)0.0023 (8)
C140.0155 (10)0.0263 (11)0.0193 (10)0.0013 (8)0.0024 (8)0.0049 (9)
C150.0223 (10)0.0233 (11)0.0215 (10)0.0077 (9)0.0024 (9)0.0026 (9)
C160.0224 (10)0.0201 (11)0.0185 (10)0.0001 (9)0.0015 (8)0.0037 (9)
C170.0146 (9)0.0228 (11)0.0138 (9)0.0021 (8)0.0013 (8)0.0002 (8)
N30.0143 (8)0.0153 (8)0.0172 (8)0.0003 (7)0.0031 (7)0.0016 (7)
C180.0159 (9)0.0112 (9)0.0182 (10)0.0008 (8)0.0043 (8)0.0005 (8)
C190.0139 (9)0.0170 (10)0.0193 (9)0.0014 (8)0.0017 (8)0.0015 (8)
C200.0193 (10)0.0203 (11)0.0141 (9)0.0005 (8)0.0004 (8)0.0023 (8)
C210.0184 (10)0.0169 (10)0.0149 (9)0.0010 (8)0.0057 (8)0.0008 (8)
C220.0138 (9)0.0203 (11)0.0204 (10)0.0011 (8)0.0013 (8)0.0004 (9)
C230.0189 (10)0.0170 (10)0.0140 (9)0.0001 (8)0.0007 (8)0.0017 (8)
N40.0163 (8)0.0202 (9)0.0163 (8)0.0012 (7)0.0035 (7)0.0017 (7)
C240.0175 (9)0.0178 (10)0.0118 (9)0.0032 (8)0.0001 (8)0.0026 (8)
C250.0178 (10)0.0194 (10)0.0186 (10)0.0001 (8)0.0008 (8)0.0037 (8)
C260.0216 (10)0.0175 (10)0.0236 (11)0.0033 (9)0.0002 (9)0.0023 (9)
C270.0284 (11)0.0160 (10)0.0197 (10)0.0023 (9)0.0013 (9)0.0020 (9)
C280.0202 (10)0.0188 (10)0.0143 (9)0.0036 (8)0.0016 (8)0.0023 (8)
C290.0171 (9)0.0156 (10)0.0141 (9)0.0033 (8)0.0011 (8)0.0053 (8)
C300.0184 (9)0.0167 (10)0.0129 (9)0.0029 (8)0.0002 (8)0.0029 (8)
C310.0192 (10)0.0207 (10)0.0154 (9)0.0033 (9)0.0020 (8)0.0031 (8)
C320.0177 (10)0.0233 (11)0.0186 (10)0.0016 (9)0.0016 (8)0.0051 (9)
C330.0232 (10)0.0208 (10)0.0180 (10)0.0014 (9)0.0013 (8)0.0022 (9)
C340.0210 (10)0.0210 (10)0.0158 (9)0.0023 (9)0.0017 (8)0.0017 (8)
C350.0160 (9)0.0182 (10)0.0148 (9)0.0015 (8)0.0003 (8)0.0048 (8)
Geometric parameters (Å, º) top
C1—N31.286 (3)C16—C171.379 (3)
C1—N21.387 (2)C16—H16A0.9500
C1—N11.414 (2)C17—H17A0.9500
N1—C41.413 (2)N3—C181.414 (2)
N1—C21.466 (2)C18—C231.395 (3)
C2—C31.527 (3)C18—C191.395 (3)
C2—H2A0.9900C19—C201.390 (3)
C2—H2B0.9900C19—H19A0.9500
C3—H3A0.9800C20—C211.386 (3)
C3—H3B0.9800C20—H20A0.9500
C3—H3C0.9800C21—C221.391 (3)
C4—C91.399 (3)C21—N41.429 (3)
C4—C51.403 (3)C22—C231.383 (3)
C5—C61.393 (3)C22—H22A0.9500
C5—H5A0.9500C23—H23A0.9500
C6—C71.380 (3)N4—C241.393 (3)
C6—H6A0.9500N4—C351.393 (3)
C7—C81.384 (3)C24—C251.393 (3)
C7—H7A0.9500C24—C291.412 (3)
C8—C91.388 (3)C25—C261.388 (3)
C8—H8A0.9500C25—H25A0.9500
C9—H9A0.9500C26—C271.402 (3)
N2—C121.425 (3)C26—H26A0.9500
N2—C101.476 (3)C27—C281.387 (3)
C10—C111.512 (3)C27—H27A0.9500
C10—H10A0.9900C28—C291.400 (3)
C10—H10B0.9900C28—H28A0.9500
C11—H11A0.9800C29—C301.448 (3)
C11—H11B0.9800C30—C311.402 (3)
C11—H11C0.9800C30—C351.416 (3)
C12—C131.398 (3)C31—C321.385 (3)
C12—C171.399 (3)C31—H31A0.9500
C13—C141.390 (3)C32—C331.405 (3)
C13—H13A0.9500C32—H32A0.9500
C14—C151.389 (3)C33—C341.387 (3)
C14—H14A0.9500C33—H33A0.9500
C15—C161.382 (3)C34—C351.390 (3)
C15—H15A0.9500C34—H34A0.9500
N3—C1—N2118.78 (17)C17—C16—H16A119.6
N3—C1—N1126.72 (17)C15—C16—H16A119.6
N2—C1—N1114.48 (17)C16—C17—C12120.40 (19)
C4—N1—C1120.18 (16)C16—C17—H17A119.8
C4—N1—C2120.33 (16)C12—C17—H17A119.8
C1—N1—C2116.92 (16)C1—N3—C18119.89 (17)
N1—C2—C3115.00 (17)C23—C18—C19119.02 (18)
N1—C2—H2A108.5C23—C18—N3118.02 (17)
C3—C2—H2A108.5C19—C18—N3122.89 (18)
N1—C2—H2B108.5C20—C19—C18120.42 (18)
C3—C2—H2B108.5C20—C19—H19A119.8
H2A—C2—H2B107.5C18—C19—H19A119.8
C2—C3—H3A109.5C21—C20—C19119.81 (18)
C2—C3—H3B109.5C21—C20—H20A120.1
H3A—C3—H3B109.5C19—C20—H20A120.1
C2—C3—H3C109.5C20—C21—C22120.16 (18)
H3A—C3—H3C109.5C20—C21—N4120.08 (18)
H3B—C3—H3C109.5C22—C21—N4119.74 (18)
C9—C4—C5118.28 (19)C23—C22—C21119.88 (19)
C9—C4—N1120.29 (18)C23—C22—H22A120.1
C5—C4—N1121.42 (18)C21—C22—H22A120.1
C6—C5—C4120.1 (2)C22—C23—C18120.53 (18)
C6—C5—H5A119.9C22—C23—H23A119.7
C4—C5—H5A119.9C18—C23—H23A119.7
C7—C6—C5121.1 (2)C24—N4—C35108.82 (16)
C7—C6—H6A119.4C24—N4—C21124.74 (17)
C5—C6—H6A119.4C35—N4—C21126.29 (17)
C6—C7—C8119.0 (2)N4—C24—C25128.93 (18)
C6—C7—H7A120.5N4—C24—C29108.87 (17)
C8—C7—H7A120.5C25—C24—C29122.20 (19)
C7—C8—C9120.9 (2)C26—C25—C24117.01 (19)
C7—C8—H8A119.6C26—C25—H25A121.5
C9—C8—H8A119.6C24—C25—H25A121.5
C8—C9—C4120.58 (19)C25—C26—C27121.7 (2)
C8—C9—H9A119.7C25—C26—H26A119.1
C4—C9—H9A119.7C27—C26—H26A119.1
C1—N2—C12122.14 (17)C28—C27—C26121.1 (2)
C1—N2—C10118.07 (16)C28—C27—H27A119.5
C12—N2—C10118.78 (15)C26—C27—H27A119.5
N2—C10—C11112.65 (16)C27—C28—C29118.40 (19)
N2—C10—H10A109.1C27—C28—H28A120.8
C11—C10—H10A109.1C29—C28—H28A120.8
N2—C10—H10B109.1C28—C29—C24119.58 (19)
C11—C10—H10B109.1C28—C29—C30133.63 (19)
H10A—C10—H10B107.8C24—C29—C30106.79 (17)
C10—C11—H11A109.5C31—C30—C35119.12 (19)
C10—C11—H11B109.5C31—C30—C29134.08 (19)
H11A—C11—H11B109.5C35—C30—C29106.80 (17)
C10—C11—H11C109.5C32—C31—C30118.81 (19)
H11A—C11—H11C109.5C32—C31—H31A120.6
H11B—C11—H11C109.5C30—C31—H31A120.6
C13—C12—C17118.94 (19)C31—C32—C33120.9 (2)
C13—C12—N2119.52 (19)C31—C32—H32A119.5
C17—C12—N2121.52 (18)C33—C32—H32A119.5
C14—C13—C12119.9 (2)C34—C33—C32121.6 (2)
C14—C13—H13A120.0C34—C33—H33A119.2
C12—C13—H13A120.0C32—C33—H33A119.2
C15—C14—C13120.6 (2)C33—C34—C35117.2 (2)
C15—C14—H14A119.7C33—C34—H34A121.4
C13—C14—H14A119.7C35—C34—H34A121.4
C16—C15—C14119.3 (2)C34—C35—N4128.95 (19)
C16—C15—H15A120.3C34—C35—C30122.34 (19)
C14—C15—H15A120.3N4—C35—C30108.70 (18)
C17—C16—C15120.8 (2)
N3—C1—N1—C443.7 (3)C19—C20—C21—N4175.17 (19)
N2—C1—N1—C4137.85 (19)C20—C21—C22—C231.2 (3)
N3—C1—N1—C2118.2 (2)N4—C21—C22—C23177.19 (19)
N2—C1—N1—C260.3 (2)C21—C22—C23—C182.7 (3)
C4—N1—C2—C372.3 (2)C19—C18—C23—C224.5 (3)
C1—N1—C2—C3125.84 (19)N3—C18—C23—C22178.43 (19)
C1—N1—C4—C926.1 (3)C20—C21—N4—C2459.2 (3)
C2—N1—C4—C9172.63 (18)C22—C21—N4—C24119.2 (2)
C1—N1—C4—C5155.02 (19)C20—C21—N4—C35125.6 (2)
C2—N1—C4—C56.2 (3)C22—C21—N4—C3556.0 (3)
C9—C4—C5—C62.1 (3)C35—N4—C24—C25178.3 (2)
N1—C4—C5—C6179.0 (2)C21—N4—C24—C252.4 (3)
C4—C5—C6—C70.5 (3)C35—N4—C24—C291.2 (2)
C5—C6—C7—C82.0 (3)C21—N4—C24—C29177.03 (18)
C6—C7—C8—C90.8 (3)N4—C24—C25—C26178.5 (2)
C7—C8—C9—C41.9 (3)C29—C24—C25—C262.1 (3)
C5—C4—C9—C83.3 (3)C24—C25—C26—C270.5 (3)
N1—C4—C9—C8177.79 (18)C25—C26—C27—C280.6 (3)
N3—C1—N2—C12148.86 (18)C26—C27—C28—C290.1 (3)
N1—C1—N2—C1232.6 (3)C27—C28—C29—C241.5 (3)
N3—C1—N2—C1019.5 (3)C27—C28—C29—C30179.5 (2)
N1—C1—N2—C10159.04 (16)N4—C24—C29—C28177.84 (18)
C1—N2—C10—C1177.5 (2)C25—C24—C29—C282.7 (3)
C12—N2—C10—C11113.7 (2)N4—C24—C29—C301.4 (2)
C1—N2—C12—C13147.79 (19)C25—C24—C29—C30178.07 (18)
C10—N2—C12—C1343.9 (3)C28—C29—C30—C312.2 (4)
C1—N2—C12—C1733.3 (3)C24—C29—C30—C31178.7 (2)
C10—N2—C12—C17134.96 (19)C28—C29—C30—C35178.0 (2)
C17—C12—C13—C140.1 (3)C24—C29—C30—C351.2 (2)
N2—C12—C13—C14178.86 (18)C35—C30—C31—C320.3 (3)
C12—C13—C14—C150.4 (3)C29—C30—C31—C32179.9 (2)
C13—C14—C15—C160.1 (3)C30—C31—C32—C330.8 (3)
C14—C15—C16—C170.5 (3)C31—C32—C33—C340.4 (3)
C15—C16—C17—C120.8 (3)C32—C33—C34—C351.1 (3)
C13—C12—C17—C160.6 (3)C33—C34—C35—N4179.31 (19)
N2—C12—C17—C16179.45 (18)C33—C34—C35—C302.2 (3)
N2—C1—N3—C18167.41 (17)C24—N4—C35—C34179.1 (2)
N1—C1—N3—C1810.9 (3)C21—N4—C35—C345.1 (3)
C1—N3—C18—C23131.2 (2)C24—N4—C35—C300.4 (2)
C1—N3—C18—C1951.9 (3)C21—N4—C35—C30176.20 (18)
C23—C18—C19—C202.5 (3)C31—C30—C35—C341.8 (3)
N3—C18—C19—C20179.39 (19)C29—C30—C35—C34178.30 (18)
C18—C19—C20—C211.4 (3)C31—C30—C35—N4179.41 (17)
C19—C20—C21—C223.2 (3)C29—C30—C35—N40.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28A···N3i0.952.793.593 (3)143
Symmetry code: (i) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC35H32N4
Mr508.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.4741 (2), 15.9500 (6), 17.9102 (8)
V3)2706.45 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.19 × 0.15 × 0.12
Data collection
DiffractometerBruker-Nonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6390, 3588, 3109
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 1.04
No. of reflections3588
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28A···N3i0.952.793.593 (3)142.7
Symmetry code: (i) x+3/2, y, z+1/2.
 

Acknowledgements

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring of the crystal data and Dr B. Iliev (IoLiTec GmbH) for the synthesis of the title compound.

References

First citationAgarwal, N., Nayak, P. K., Ali, F., Patankar, M. P., Narasimhan, K. L. & Periasamy, N. (2011). Synth. Met. 161, 466–473.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, L.-Q., Yang, C.-L., Meng, X.-G. & Qin, J.-G. (2005). Acta Cryst. E61, o3073–o3075.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGerkin, R. E. & Reppart, W. J. (1986). Acta Cryst. C42, 480–482.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, K. R. J., Lin, J. T., Tao, Y. T. & Ko, C. (2001). J. Am. Chem. Soc. 123, 9404–9411.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012). Acta Cryst. E68, o2161.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds