organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o994-o995

(3aR,6S,7aR)-7a-Bromo-2-[(4-methyl­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­­oxy­iso­indole

aDepartment of Science Education, Faculty of Education, Sinop University, 57100-Sinop, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Nigde University, 51240-Nigde, Turkey, cDepartment of Chemistry, Faculty of Arts and Science, Mersin University, 33343-Mersin, Turkey, and dDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139-Samsun, Turkey
*Correspondence e-mail: bkosar@sinop.edu.tr

(Received 5 March 2011; accepted 22 March 2011; online 31 March 2011)

In the title compound, C15H16BrNO3S, the boat form of the six-membered ring is almost symmetrical with respect to the ep­oxy bridge. The two five-membered rings generated by the ep­oxy bridge of the six-membered ring adopt envelope conformations, whereas the N-containing five-membered ring adopts a twisted conformation. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds.

Related literature

For general background to intra­molecular Diels–Alder reactions and heteroaromatic Diels–Alder reactions, see: Dell (1998[Dell, C. P. (1998). J. Chem. Soc. Perkin Trans. pp. 3873-3905.]); Kappe et al. (1997[Kappe, C. O., Murphree, S. S. & Padwa, A. (1997). Tetrahedron 53, 14179-14233.]); Arai et al. (2010[Arai, N., Tanaka, K. & Ohkuma, T. (2010). Tetrahedron Lett. 51, 1273-1275.]); Lohse & Hsung (2009[Lohse, A. G. & Hsung, R. P. (2009). Org. Lett. 11, 3430-3433.]). For related structures, see: Koşar et al. (2006[Koşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3868-o3869.], 2007a[Koşar, B., Karaarslan, M., Demircan, A. & Büyükgüngör, O. (2007a). Acta Cryst. E63, o3691.],b[Koşar, B., Karaarslan, M., Yıldız, Y. K., Demircan, A. & Büyükgüngör, O. (2007b). Acta Cryst. E63, o1169-o1170.]). For the synthesis of the title compound and related compounds, see: Carlini et al. (1997[Carlini, R., Higgs, K., Older, C., Randhawa, S. & Rodrigo, R. (1997). J. Org. Chem. 62, 2330-2331.]); Hart et al. (1997[Hart, D. J., Li, J., Wu, W. L. & Kozikowski, A. P. (1997). J. Org. Chem. 62, 5023-5033.]); Shing et al. (1996[Shing, T. K. M., Zhu, X. Y. & Mak, T. C. W. (1996). Chem. Commun. pp. 2369-2370.]); Karaarslan et al. (2007[Karaarslan, M., Gokturk, E. & Demircan, A. (2007). J. Chem. Res. 2,117-120.]); Pontén & Magnusson (1997[Pontén, F. & Magnusson, G. (1997). J. Org. Chem. 62, 7978-7983.]); Demircan et al. (2006[Demircan, A., Karaarslan, M. & Turac, E. (2006). Heterocycl. Commun. 8, 233-240.]); Arslan & Demircan (2008[Arslan, H. & Demircan, A. (2008). Mol. Simul. 33, 1285-1291.]); Demircan & Parsons (1998[Demircan, A. & Parsons, P. J. (1998). Synlett. pp. 1215-1216.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16BrNO3S

  • Mr = 370.26

  • Monoclinic, P 21 /c

  • a = 16.5136 (6) Å

  • b = 6.2186 (3) Å

  • c = 16.3487 (7) Å

  • β = 113.802 (3)°

  • V = 1536.07 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 296 K

  • 0.58 × 0.44 × 0.31 mm

Data collection
  • STOE IPDS 2 CCD diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.310, Tmax = 0.495

  • 7305 measured reflections

  • 3163 independent reflections

  • 2353 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.07

  • 3163 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.97 2.50 3.382 (6) 151
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Thermal intramolecular [4 + 2] type cycloaddition processes, or intramolecular Diels Alder (IMDA) reactions, have been a highly useful tool for the construction of many cycloaddition products (Dell, 1998). The IMDA reaction is especially useful for asymmetrical syntheses towards natural products such as, (±)-xestoquinone (Carlini et al., 1997), (+)-himbelive (Hart et al., 1997) and (S)-(±)-carvone (Shing et al., 1996). In this context, the use of heteroaromatic compounds has been gaining popularity (Kappe et al., 1997). IMDA reactions with furan derivatives, called IMDAF, have been widely used for the construction of some new molecules (Karaarslan et al., 2007; Pontén & Magnusson, 1997; Demircan et al., 2006; Koşar et al., 2007a; Koşar et al., 2007b; Arslan & Demircan, 2008; Demircan & Parsons, 1998; Koşar et al., 2006). These compounds have been used as strategic intermediates in combinatorial synthesis.

In view of a recent literature research (Arai et al., 2010; Lohse & Hsung, 2009), we would like to report here a thermal IMDAF reaction of an alkenyl furan with a nitrogen linked chain which undergoes intramolecular cycloaddition upon heating to 371 K for two days (Fig. 1 and 2). The product of the intramolecular thermal cycloaddition reaction of compound (I) was characterized by 1H NMR, 13C NMR, FT-IR, MS, elemental analysis and X-ray single crystal diffraction studies. Despite of the presence of three new stereocenters in the product molecules only one pair of mirror symmetric enatiomers was formed in the reaction, i.e. the intramolecular thermal cycloaddition of II to I is diastereoselective under the chosen reaction conditions.

Related with the above mentioned reaction, we presented here the crystal structure of the title compound, C15H16BrNO3S. Fig. 1 shows the molecular structure of the title compound, I. The pyrrolidine (C4/C5/N1/C6/C7) ring adopts a twisted conformation with a total puckering parameter QT value of 0.329 (5) Å (Cremer & Pople, 1975). The tetrahydrofuran (O1/C1-C4) and bromo-attached tetrahydrofuran (O1/C4/C7/C8/C1) rings adopt envelope conformations with total puckering parameters of 0.514 (5) and 0.627 (5) Å, respectively.

The title compound displays an intramolecular hydrogen bond between atoms C10 and O2 and the crystal structure is stabilized by weak van der Waals interactions and a weak intermolecular hydrogen bond, C6—H6a···O1 in a three dimensional network (Fig. 3). Geometrical parameters of the intra- and intermolecular H-bonds are listed in Table 1.

Related literature top

For general background to intramolecular Diels–Alder reactions and heteroaromatic Diels–Alder reactions, see: Dell (1998); Kappe et al. (1997); Arai et al. (2010); Lohse & Hsung (2009). For related structures, see: Koşar et al. (2006, 2007a,b). For the synthesis of the title compound and related compounds, see: Carlini et al. (1997); Hart et al. (1997); Shing et al. (1996); Karaarslan et al. (2007); Pontén & Magnusson (1997); Demircan et al. (2006); Arslan & Demircan (2008); Demircan & Parsons (1998). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

N-(2-Bromoprop-2-en-1-yl)-4-methyl-N-[(5-methyl-2-furyl)methyl]benzenesulfonamide, II, (1 g, 2.7 mmol) was stirred and heated under reflux in water (25 mL) at 372 K for two days (Fig. 2). The mixture was poured into ethyl acetate (25 mL) and the aqueous phase was washed with excess ethyl acetate (2 x 25 mL). The combined organic phases were dried over magnesium sulphate and filtered off. The solvent was then removed under reduced pressure. The residue was subjected to flash column chromatography (Rf (Hexane:Ethyl acetate = 7:3): 0.47) to afford I (0.7 g, 70 % yield) as yellow crystals. M. p.: 396-398 K, νmax (Thin film) / cm-1: 2932 (s, CH), 2161 (m, SO), 1977 (m, S=O), 1453, 1159, 1065 (s, C-O). δH (400 MHz, CDCl3): 7,67 (d, 2H, J = 8 Hz), 7.24 (d, 2H, J = 8 Hz, H10-H13), 6.40 (dd, 1H, J = 5.6 Hz, J = 1.8 Hz, AB), 6.34 (d, 1H, J = 5.6 Hz, AB), 4.95 (dd, 1H, J = 4.5 Hz, J = 1.8 Hz), 4.06 (d, 1H, J = 12 Hz), 4.01 (d, 1H, J = 12 Hz), 3.67 (d, 1H, J = 12 Hz), 3.43 (d, 1H, J = 12 Hz), 2.39 (dd, 1H, J = 4.5 Hz, J = 12 Hz), 2.36 (s, 3H), 1.63 (d, 1H, J = 12 Hz). δC (100 MHz, CDCl3): 143.8, 137.2, 134.7, 134.5, 129.9 (2 x C), 127.7 (2 x C), 97.2, 81.0, 64.0, 63.3, 47.5, 41.4, 21.7. m/z (70 eV, EI): 371,00 [M+(81Br), 42%)], 369, [M+(79Br, 42%)], 216,00 [M+(81Br)-Ts, 100%], 214 [M+(79Br)-H+Ts, 100%]. Elemental Analysis (C15H16BrNO3S): % Calculated (Found): C, 48.66 (48.72); H, 4.36 (4.39); N, 3.78 (3.74).

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and CH (aromatic), respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic, methylene or methine C) or 1.5Ueq (methyl C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Synthesis of the title compound.
[Figure 3] Fig. 3. A packing diagram of the title compound. Dashed lines indicate the O—H···O intermolecular hydrogen bonds.
(3aR,6S,7aR)-7a-Bromo-2-[(4-methylphenyl)sulfonyl]- 1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole top
Crystal data top
C15H16BrNO3SF(000) = 752
Mr = 370.26Dx = 1.601 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 10108 reflections
a = 16.5136 (6) Åθ = 1.5–28.0°
b = 6.2186 (3) ŵ = 2.82 mm1
c = 16.3487 (7) ÅT = 296 K
β = 113.802 (3)°Prism, colourless
V = 1536.07 (12) Å30.58 × 0.44 × 0.31 mm
Z = 4
Data collection top
STOE IPDS 2 CCD
diffractometer
3163 independent reflections
Radiation source: fine-focus sealed tube2353 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.042
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.5°
rotation method scansh = 2020
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 77
Tmin = 0.310, Tmax = 0.495l = 2020
7305 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.5082P]
where P = (Fo2 + 2Fc2)/3
3163 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C15H16BrNO3SV = 1536.07 (12) Å3
Mr = 370.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.5136 (6) ŵ = 2.82 mm1
b = 6.2186 (3) ÅT = 296 K
c = 16.3487 (7) Å0.58 × 0.44 × 0.31 mm
β = 113.802 (3)°
Data collection top
STOE IPDS 2 CCD
diffractometer
3163 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2353 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.495Rint = 0.042
7305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
3163 reflectionsΔρmin = 0.44 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9623 (3)0.6757 (7)0.0923 (3)0.0640 (11)
H11.02110.71740.09660.077*
C20.9042 (3)0.5742 (8)0.0062 (3)0.0681 (12)
H20.90820.59130.04850.082*
C30.8459 (3)0.4559 (7)0.0218 (3)0.0617 (10)
H30.80130.37170.01890.074*
C40.8668 (3)0.4857 (6)0.1192 (3)0.0537 (9)
C50.8358 (3)0.3394 (6)0.1725 (3)0.0642 (11)
H5A0.77650.28750.13720.077*
H5B0.87530.21720.19450.077*
C60.8569 (3)0.7032 (6)0.2354 (3)0.0519 (9)
H6A0.91700.74000.27520.062*
H6B0.81630.79840.24720.062*
C70.8443 (3)0.7184 (6)0.1376 (3)0.0489 (8)
C80.9107 (3)0.8549 (7)0.1161 (3)0.0571 (10)
H8A0.94880.93800.16740.069*
H8B0.88120.95060.06600.069*
C90.6718 (3)0.5012 (6)0.2434 (3)0.0526 (9)
C100.6473 (3)0.7028 (7)0.2619 (3)0.0617 (10)
H100.68690.78520.30820.074*
C110.5636 (4)0.7800 (8)0.2109 (4)0.0736 (13)
H110.54730.91490.22360.088*
C120.5033 (3)0.6607 (9)0.1410 (3)0.0724 (12)
C130.5291 (3)0.4605 (9)0.1249 (3)0.0725 (12)
H130.48910.37770.07900.087*
C140.6117 (3)0.3787 (7)0.1743 (3)0.0627 (11)
H140.62730.24290.16170.075*
C150.4125 (5)0.7472 (12)0.0862 (5)0.117 (2)
H15A0.38020.64480.04080.175*
H15B0.41750.87990.05860.175*
H15C0.38180.77220.12420.175*
N10.8373 (2)0.4748 (5)0.2466 (2)0.0526 (8)
O10.96199 (18)0.5098 (4)0.15645 (19)0.0589 (7)
O20.8163 (2)0.5198 (5)0.38595 (19)0.0729 (8)
O30.7776 (2)0.1766 (5)0.3018 (2)0.0707 (8)
S10.78021 (8)0.40698 (16)0.30290 (6)0.0559 (3)
Br10.71982 (3)0.78750 (8)0.06223 (3)0.06777 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (3)0.068 (3)0.066 (3)0.007 (2)0.028 (2)0.000 (2)
C20.082 (3)0.067 (3)0.057 (2)0.019 (2)0.030 (2)0.001 (2)
C30.072 (3)0.057 (2)0.055 (2)0.006 (2)0.024 (2)0.0128 (19)
C40.058 (2)0.043 (2)0.054 (2)0.0055 (17)0.0174 (19)0.0063 (17)
C50.088 (3)0.041 (2)0.069 (3)0.003 (2)0.038 (3)0.0124 (19)
C60.062 (2)0.0406 (19)0.053 (2)0.0077 (17)0.0232 (19)0.0103 (17)
C70.050 (2)0.0403 (18)0.052 (2)0.0033 (16)0.0160 (17)0.0051 (16)
C80.064 (3)0.047 (2)0.061 (2)0.0017 (18)0.026 (2)0.0006 (18)
C90.064 (2)0.044 (2)0.054 (2)0.0029 (18)0.029 (2)0.0008 (17)
C100.069 (3)0.052 (2)0.067 (3)0.002 (2)0.031 (2)0.008 (2)
C110.084 (3)0.059 (3)0.090 (3)0.013 (2)0.048 (3)0.003 (2)
C120.063 (3)0.083 (3)0.073 (3)0.007 (2)0.030 (2)0.004 (3)
C130.066 (3)0.078 (3)0.069 (3)0.011 (2)0.022 (2)0.009 (2)
C140.068 (3)0.052 (2)0.069 (3)0.006 (2)0.029 (2)0.008 (2)
C150.087 (4)0.140 (6)0.113 (5)0.038 (4)0.029 (4)0.004 (4)
N10.065 (2)0.0388 (16)0.0541 (18)0.0059 (14)0.0239 (16)0.0009 (13)
O10.0538 (16)0.0582 (17)0.0582 (16)0.0158 (13)0.0159 (13)0.0002 (13)
O20.092 (2)0.077 (2)0.0429 (14)0.0032 (18)0.0201 (15)0.0060 (14)
O30.089 (2)0.0489 (17)0.0693 (19)0.0038 (15)0.0267 (18)0.0154 (14)
S10.0708 (7)0.0462 (5)0.0474 (5)0.0020 (4)0.0203 (5)0.0036 (4)
Br10.0521 (2)0.0697 (3)0.0701 (3)0.0172 (2)0.01277 (19)0.0041 (2)
Geometric parameters (Å, º) top
C1—O11.472 (5)C8—H8A0.9700
C1—C21.487 (7)C8—H8B0.9700
C1—C81.544 (6)C9—C101.388 (6)
C1—H10.9800C9—C141.392 (6)
C2—C31.316 (7)C9—S11.757 (4)
C2—H20.9300C10—C111.380 (7)
C3—C41.498 (5)C10—H100.9300
C3—H30.9300C11—C121.390 (8)
C4—O11.446 (5)C11—H110.9300
C4—C51.487 (6)C12—C131.375 (7)
C4—C71.553 (5)C12—C151.502 (8)
C5—N11.467 (5)C13—C141.373 (7)
C5—H5A0.9700C13—H130.9300
C5—H5B0.9700C14—H140.9300
C6—N11.484 (5)C15—H15A0.9600
C6—C71.530 (5)C15—H15B0.9600
C6—H6A0.9700C15—H15C0.9600
C6—H6B0.9700N1—S11.616 (3)
C7—C81.535 (6)O2—S11.427 (3)
C7—Br11.971 (4)O3—S11.433 (3)
O1—C1—C2101.0 (4)C1—C8—H8A111.7
O1—C1—C899.5 (3)C7—C8—H8B111.7
C2—C1—C8109.5 (4)C1—C8—H8B111.7
O1—C1—H1115.0H8A—C8—H8B109.5
C2—C1—H1115.0C10—C9—C14119.7 (4)
C8—C1—H1115.0C10—C9—S1120.1 (3)
C3—C2—C1107.2 (4)C14—C9—S1120.1 (3)
C3—C2—H2126.4C11—C10—C9119.5 (4)
C1—C2—H2126.4C11—C10—H10120.3
C2—C3—C4105.3 (4)C9—C10—H10120.3
C2—C3—H3127.3C10—C11—C12121.4 (4)
C4—C3—H3127.3C10—C11—H11119.3
O1—C4—C5112.9 (3)C12—C11—H11119.3
O1—C4—C3101.9 (3)C13—C12—C11117.8 (5)
C5—C4—C3124.1 (4)C13—C12—C15121.5 (5)
O1—C4—C797.3 (3)C11—C12—C15120.7 (5)
C5—C4—C7106.9 (3)C14—C13—C12122.3 (5)
C3—C4—C7110.5 (3)C14—C13—H13118.8
N1—C5—C4103.8 (3)C12—C13—H13118.8
N1—C5—H5A111.0C13—C14—C9119.3 (4)
C4—C5—H5A111.0C13—C14—H14120.4
N1—C5—H5B111.0C9—C14—H14120.4
C4—C5—H5B111.0C12—C15—H15A109.5
H5A—C5—H5B109.0C12—C15—H15B109.5
N1—C6—C7104.1 (3)H15A—C15—H15B109.5
N1—C6—H6A110.9C12—C15—H15C109.5
C7—C6—H6A110.9H15A—C15—H15C109.5
N1—C6—H6B110.9H15B—C15—H15C109.5
C7—C6—H6B110.9C5—N1—C6112.2 (3)
H6A—C6—H6B108.9C5—N1—S1120.1 (3)
C6—C7—C8117.7 (3)C6—N1—S1121.8 (2)
C6—C7—C4101.7 (3)C4—O1—C195.1 (3)
C8—C7—C4102.9 (3)O2—S1—O3120.16 (19)
C6—C7—Br1109.5 (3)O2—S1—N1107.28 (19)
C8—C7—Br1113.4 (3)O3—S1—N1105.97 (18)
C4—C7—Br1110.7 (3)O2—S1—C9107.7 (2)
C7—C8—C1100.1 (3)O3—S1—C9107.9 (2)
C7—C8—H8A111.7N1—S1—C9107.18 (17)
O1—C1—C2—C331.5 (4)C10—C11—C12—C131.0 (7)
C8—C1—C2—C372.9 (5)C10—C11—C12—C15180.0 (5)
C1—C2—C3—C40.8 (5)C11—C12—C13—C141.0 (7)
C2—C3—C4—O133.6 (4)C15—C12—C13—C14180.0 (5)
C2—C3—C4—C5162.1 (4)C12—C13—C14—C90.2 (7)
C2—C3—C4—C768.9 (4)C10—C9—C14—C130.6 (6)
O1—C4—C5—N180.2 (4)S1—C9—C14—C13176.0 (3)
C3—C4—C5—N1156.0 (4)C4—C5—N1—C67.1 (5)
C7—C4—C5—N125.6 (4)C4—C5—N1—S1160.4 (3)
N1—C6—C7—C8139.8 (3)C7—C6—N1—C514.3 (5)
N1—C6—C7—C428.3 (4)C7—C6—N1—S1138.6 (3)
N1—C6—C7—Br188.8 (3)C5—C4—O1—C1174.3 (3)
O1—C4—C7—C682.6 (3)C3—C4—O1—C150.3 (3)
C5—C4—C7—C634.1 (4)C7—C4—O1—C162.5 (3)
C3—C4—C7—C6171.8 (3)C2—C1—O1—C449.4 (3)
O1—C4—C7—C839.7 (4)C8—C1—O1—C462.7 (3)
C5—C4—C7—C8156.4 (4)C5—N1—S1—O2160.6 (3)
C3—C4—C7—C865.9 (4)C6—N1—S1—O248.6 (4)
O1—C4—C7—Br1161.2 (2)C5—N1—S1—O331.1 (4)
C5—C4—C7—Br182.2 (4)C6—N1—S1—O3178.1 (3)
C3—C4—C7—Br155.6 (4)C5—N1—S1—C983.9 (3)
C6—C7—C8—C1108.8 (4)C6—N1—S1—C966.9 (3)
C4—C7—C8—C12.0 (4)C10—C9—S1—O223.2 (4)
Br1—C7—C8—C1121.5 (3)C14—C9—S1—O2160.2 (3)
O1—C1—C8—C735.8 (4)C10—C9—S1—O3154.3 (3)
C2—C1—C8—C769.5 (4)C14—C9—S1—O329.1 (4)
C14—C9—C10—C110.6 (6)C10—C9—S1—N192.0 (3)
S1—C9—C10—C11176.1 (3)C14—C9—S1—N184.6 (3)
C9—C10—C11—C120.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.972.503.382 (6)151
C10—H10···O20.932.592.937 (6)103
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H16BrNO3S
Mr370.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.5136 (6), 6.2186 (3), 16.3487 (7)
β (°) 113.802 (3)
V3)1536.07 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.58 × 0.44 × 0.31
Data collection
DiffractometerSTOE IPDS 2 CCD
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.310, 0.495
No. of measured, independent and
observed [I > 2σ(I)] reflections
7305, 3163, 2353
Rint0.042
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.07
No. of reflections3163
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.44

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.972.503.382 (6)151
C10—H10···O20.932.592.937 (6)103
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F.279 of University Research Fund) and also the Scientific & Technological Research Council of Turkey (TÜBİTAK) for financial support of this work (PN: 107 T831).

References

First citationArai, N., Tanaka, K. & Ohkuma, T. (2010). Tetrahedron Lett. 51, 1273–1275.  CrossRef CAS Google Scholar
First citationArslan, H. & Demircan, A. (2008). Mol. Simul. 33, 1285–1291.  Google Scholar
First citationCarlini, R., Higgs, K., Older, C., Randhawa, S. & Rodrigo, R. (1997). J. Org. Chem. 62, 2330–2331.  CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDell, C. P. (1998). J. Chem. Soc. Perkin Trans. pp. 3873–3905.  Google Scholar
First citationDemircan, A., Karaarslan, M. & Turac, E. (2006). Heterocycl. Commun. 8, 233–240.  Google Scholar
First citationDemircan, A. & Parsons, P. J. (1998). Synlett. pp. 1215–1216.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHart, D. J., Li, J., Wu, W. L. & Kozikowski, A. P. (1997). J. Org. Chem. 62, 5023–5033.  CrossRef CAS Google Scholar
First citationKappe, C. O., Murphree, S. S. & Padwa, A. (1997). Tetrahedron 53, 14179–14233.  CAS Google Scholar
First citationKaraarslan, M., Gokturk, E. & Demircan, A. (2007). J. Chem. Res. 2,117–120.  CrossRef Google Scholar
First citationKoşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3868–o3869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Karaarslan, M., Demircan, A. & Büyükgüngör, O. (2007a). Acta Cryst. E63, o3691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Karaarslan, M., Yıldız, Y. K., Demircan, A. & Büyükgüngör, O. (2007b). Acta Cryst. E63, o1169–o1170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLohse, A. G. & Hsung, R. P. (2009). Org. Lett. 11, 3430–3433.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPontén, F. & Magnusson, G. (1997). J. Org. Chem. 62, 7978–7983.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShing, T. K. M., Zhu, X. Y. & Mak, T. C. W. (1996). Chem. Commun. pp. 2369–2370.  CrossRef Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o994-o995
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds