organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(2-Bromo­phen­yl)-3-(4-chloro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 3 June 2010; accepted 7 June 2010; online 16 June 2010)

In the title compound, C15H10BrClO, the dihedral angle between the mean planes of the benzene rings in the ortho-bromo- and para-chloro-substituted rings is 70.5 (6)°. The dihedral angles between the mean plane of the prop-2-en-1-one group and the mean planes of the benzene rings in the 4-chloro­phenyl and 2-bromo­phenyl rings are 14.9 (3) and 63.3 (8)°, respectively. In the crystal, inversion dimers linked by pairs of weak C—H⋯O interactions are observed as well as aromatic ππ stacking inter­actions.

Related literature

For the radical quenching properties of the phenol groups present in many chalcones, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]). For the anti­cancer activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]) and for their anti­malarial activity, see: Troeberg et al. (2000[Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660-669.]). For their non-linear optical properties, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1464.]); Li et al. (2009[Li, H., Kamath, K. P., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1915.]); Ng et al. (2006[Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175-o2177.]); Teh et al. (2007[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Satheesh, Y. E., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1844-o1845.]); Yang et al. (2006[Yang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195-198.]), Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2009). Acta Cryst. E65, o2641-o2642.], 2010[Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2010). Acta Cryst. E66, o158.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrClO

  • Mr = 321.59

  • Monoclinic, P 21 /c

  • a = 5.7317 (6) Å

  • b = 9.3920 (7) Å

  • c = 23.6517 (18) Å

  • β = 91.231 (8)°

  • V = 1272.9 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.19 mm−1

  • T = 110 K

  • 0.84 × 0.49 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.039, Tmax = 0.512

  • 4362 measured reflections

  • 2466 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.05

  • 2466 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯Oi 0.95 2.44 3.319 (4) 154
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones, or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenol groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar, 1981). Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). Many chalcones have been described for their high antimalarial activity, probably as a result of Michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000). Chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al., 2006). Hence, in continuation with our synthesis and crystal structure determinations of similar compounds (Jasinski et al., 2009; Jasinski et al., 2010) and also owing to the importance of these flavanoid analogs, this new bromo-chloro substituted chalcone, C15H10BrClO, is synthesized and its crystal structure is reported.

The title compound, C15H10BrClO, is a chalcone with 4-chlorophenyl and 2-bromophenyl rings bonded to opposite sides of a propenone group (Fig. 2). The dihedral angle between mean planes of the benzene rings in the ortho-bromo and para-chloro substituted rings is 70.5 (6)°. The angle between the mean plane of the prop-2-ene-1-one group (C1/C7/O/C8) and the mean planes of the benzene rings in the 4-chlorophenyl (C10–CC15) and 2-bromophenyl rings (C1–C6) are 14.9 (3)° and 63.3 (8)°, respectively. Bond distances and angles are in normal ranges (Allen et al., 1987). While no classical hydrogen bonds are present, a weak intermolecular C14—H14A···O interaction (Table 1) and weak π-π stacking interactions [Cg2_perp···Cg2_perp = 3.3466 (14) Å; slippage = 2.931 Å; 1-x, 2-y, 1-z] are observed which contribute to the stability of crystal packing (Fig. 3).

Related literature top

For the radical quenching properties of the phenol groups present in many

chalcones, see: Dhar (1981). For the anticancer activity of chalcones, see: Dimmock et al. (1999) and for their antimalarial activity, see: Troeberg et al. (2000). For their non-linear optical properties, see: Sarojini et al. (2006). For related structures, see: Fun et al. (2008); Li et al. (2009); Ng et al. (2006); Teh et al. (2007); Yang et al. (2006), Jasinski et al. (2009, 2010). For bond-length data, see: Allen et al. (1987).

Experimental top

A 50% KOH solution was added to a mixture of 2-bromo acetophenone (0.01 mol, 1.99 g) and 4-chloro benzaldehyde (0.01 mol, 1.40 g) in 25 ml of ethanol (Fig. 1). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation and the yield of the compound was 58% (m.p.368–370 K). Analytical data: Composition (%) found (Calculated): C: 55.97 (56.02); H: 3.09(3.13).

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances = 0.95Å and with Uiso(H) = 1.18–1.22 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction Scheme for the title compound.
[Figure 2] Fig. 2. Molecular structure of the title compound, C15H10BrClO, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of the title compound, C15H10BrClO viewed down the a axis. Dashed lines indicate a weak C—H···O intermolecular hydrogen bond interaction which links the molecules into chains along the (011) direction.
(2E)-1-(2-Bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one top
Crystal data top
C15H10BrClOF(000) = 640
Mr = 321.59Dx = 1.678 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2738 reflections
a = 5.7317 (6) Åθ = 4.7–74.2°
b = 9.3920 (7) ŵ = 6.19 mm1
c = 23.6517 (18) ÅT = 110 K
β = 91.231 (8)°Plate, yellow
V = 1272.9 (2) Å30.84 × 0.49 × 0.13 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini R
diffractometer
2466 independent reflections
Radiation source: Enhance (Cu) X-ray Source2275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 5.1°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1110
Tmin = 0.039, Tmax = 0.512l = 2529
4362 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0875P)2 + 2.2371P]
where P = (Fo2 + 2Fc2)/3
2466 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
C15H10BrClOV = 1272.9 (2) Å3
Mr = 321.59Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.7317 (6) ŵ = 6.19 mm1
b = 9.3920 (7) ÅT = 110 K
c = 23.6517 (18) Å0.84 × 0.49 × 0.13 mm
β = 91.231 (8)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini R
diffractometer
2466 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2275 reflections with I > 2σ(I)
Tmin = 0.039, Tmax = 0.512Rint = 0.036
4362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.80 e Å3
2466 reflectionsΔρmin = 1.07 e Å3
163 parameters
Special details top

Experimental. IR data (KBr) ν cm-1: 2837 cm-1, 2966 cm-1, (C—H al. str) 3061 cm-1, (C—H ar. str), 1655 cm-1 (C=O), 1584 cm-1 (C=C); 1254 cm-1 (C—O—C).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.27391 (6)0.44265 (4)0.639317 (15)0.02097 (17)
Cl0.85133 (14)0.88426 (9)0.35152 (3)0.0207 (2)
O0.2348 (4)0.7916 (3)0.62618 (11)0.0207 (5)
C10.0767 (5)0.6542 (3)0.66371 (13)0.0132 (6)
C20.0160 (6)0.5245 (4)0.68014 (13)0.0168 (7)
C30.0796 (7)0.4490 (4)0.72552 (15)0.0228 (8)
H3A0.01570.35980.73600.027*
C40.2681 (7)0.5048 (4)0.75513 (15)0.0257 (8)
H4A0.33050.45490.78690.031*
C50.3679 (6)0.6328 (4)0.73916 (14)0.0230 (8)
H5A0.49990.66970.75930.028*
C60.2715 (6)0.7065 (4)0.69309 (14)0.0192 (7)
H6A0.33990.79370.68160.023*
C70.0380 (6)0.7467 (3)0.61912 (14)0.0150 (6)
C80.0907 (6)0.7835 (4)0.56835 (13)0.0163 (6)
H8A0.02640.85600.54470.020*
C90.2903 (5)0.7243 (3)0.55238 (13)0.0139 (6)
H9A0.35480.65250.57630.017*
C100.4194 (5)0.7595 (3)0.50142 (13)0.0143 (6)
C110.6205 (6)0.6846 (4)0.48865 (13)0.0167 (7)
H11A0.66850.60770.51220.020*
C120.7537 (6)0.7200 (4)0.44200 (14)0.0173 (7)
H12A0.89040.66760.43350.021*
C130.6820 (6)0.8334 (4)0.40819 (13)0.0151 (6)
C140.4794 (6)0.9079 (4)0.41904 (14)0.0189 (7)
H14A0.43030.98360.39500.023*
C150.3494 (6)0.8706 (4)0.46533 (15)0.0201 (7)
H15A0.21000.92130.47280.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0157 (2)0.0143 (2)0.0329 (3)0.00300 (13)0.00039 (15)0.00360 (12)
Cl0.0199 (4)0.0216 (4)0.0206 (4)0.0025 (3)0.0026 (3)0.0022 (3)
O0.0112 (12)0.0199 (13)0.0311 (12)0.0037 (10)0.0003 (9)0.0024 (10)
C10.0071 (14)0.0153 (15)0.0173 (14)0.0035 (12)0.0011 (10)0.0007 (12)
C20.0191 (17)0.0126 (15)0.0187 (15)0.0031 (13)0.0017 (12)0.0013 (12)
C30.027 (2)0.0180 (18)0.0232 (16)0.0062 (14)0.0053 (14)0.0054 (13)
C40.0289 (19)0.030 (2)0.0177 (15)0.0130 (17)0.0004 (13)0.0023 (14)
C50.0163 (17)0.0297 (19)0.0227 (16)0.0080 (15)0.0047 (13)0.0056 (14)
C60.0130 (16)0.0191 (17)0.0255 (16)0.0005 (13)0.0020 (12)0.0024 (13)
C70.0125 (15)0.0094 (14)0.0230 (15)0.0002 (12)0.0031 (11)0.0009 (12)
C80.0149 (16)0.0143 (15)0.0196 (15)0.0009 (13)0.0029 (12)0.0023 (12)
C90.0097 (15)0.0122 (14)0.0197 (14)0.0037 (12)0.0027 (11)0.0012 (12)
C100.0113 (15)0.0124 (15)0.0190 (14)0.0022 (12)0.0030 (11)0.0017 (12)
C110.0143 (16)0.0150 (15)0.0207 (15)0.0005 (13)0.0045 (12)0.0033 (12)
C120.0118 (15)0.0161 (16)0.0240 (15)0.0016 (13)0.0021 (12)0.0005 (13)
C130.0121 (15)0.0156 (16)0.0176 (14)0.0046 (13)0.0019 (11)0.0022 (12)
C140.0186 (18)0.0148 (15)0.0232 (15)0.0017 (14)0.0038 (12)0.0030 (13)
C150.0187 (17)0.0166 (17)0.0249 (16)0.0045 (14)0.0032 (13)0.0011 (13)
Geometric parameters (Å, º) top
Br—C21.910 (3)C8—C91.334 (5)
Cl—C131.739 (3)C8—H8A0.9500
O—C71.219 (4)C9—C101.466 (4)
C1—C21.388 (5)C9—H9A0.9500
C1—C61.392 (4)C10—C111.389 (5)
C1—C71.506 (4)C10—C151.402 (5)
C2—C31.389 (5)C11—C121.395 (5)
C3—C41.378 (6)C11—H11A0.9500
C3—H3A0.9500C12—C131.389 (5)
C4—C51.387 (6)C12—H12A0.9500
C4—H4A0.9500C13—C141.384 (5)
C5—C61.395 (5)C14—C151.383 (5)
C5—H5A0.9500C14—H14A0.9500
C6—H6A0.9500C15—H15A0.9500
C7—C81.464 (4)
C2—C1—C6118.5 (3)C7—C8—H8A117.1
C2—C1—C7122.6 (3)C8—C9—C10126.2 (3)
C6—C1—C7118.6 (3)C8—C9—H9A116.9
C1—C2—C3121.2 (3)C10—C9—H9A116.9
C1—C2—Br120.6 (2)C11—C10—C15118.2 (3)
C3—C2—Br118.3 (3)C11—C10—C9120.0 (3)
C4—C3—C2119.4 (3)C15—C10—C9121.7 (3)
C4—C3—H3A120.3C10—C11—C12121.5 (3)
C2—C3—H3A120.3C10—C11—H11A119.3
C3—C4—C5121.0 (3)C12—C11—H11A119.3
C3—C4—H4A119.5C13—C12—C11118.5 (3)
C5—C4—H4A119.5C13—C12—H12A120.7
C4—C5—C6118.9 (3)C11—C12—H12A120.7
C4—C5—H5A120.5C14—C13—C12121.3 (3)
C6—C5—H5A120.5C14—C13—Cl119.3 (3)
C1—C6—C5121.0 (3)C12—C13—Cl119.4 (3)
C1—C6—H6A119.5C15—C14—C13119.2 (3)
C5—C6—H6A119.5C15—C14—H14A120.4
O—C7—C8120.9 (3)C13—C14—H14A120.4
O—C7—C1119.7 (3)C14—C15—C10121.2 (3)
C8—C7—C1119.4 (3)C14—C15—H15A119.4
C9—C8—C7125.7 (3)C10—C15—H15A119.4
C9—C8—H8A117.1
C6—C1—C2—C31.2 (5)O—C7—C8—C9169.4 (3)
C7—C1—C2—C3172.9 (3)C1—C7—C8—C911.8 (5)
C6—C1—C2—Br177.0 (2)C7—C8—C9—C10179.4 (3)
C7—C1—C2—Br8.8 (4)C8—C9—C10—C11177.2 (3)
C1—C2—C3—C40.8 (5)C8—C9—C10—C154.7 (5)
Br—C2—C3—C4179.0 (3)C15—C10—C11—C121.4 (5)
C2—C3—C4—C52.1 (6)C9—C10—C11—C12176.8 (3)
C3—C4—C5—C61.3 (5)C10—C11—C12—C130.4 (5)
C2—C1—C6—C52.0 (5)C11—C12—C13—C142.0 (5)
C7—C1—C6—C5172.4 (3)C11—C12—C13—Cl177.4 (2)
C4—C5—C6—C10.7 (5)C12—C13—C14—C151.7 (5)
C2—C1—C7—O60.4 (4)Cl—C13—C14—C15177.7 (3)
C6—C1—C7—O113.7 (4)C13—C14—C15—C100.2 (5)
C2—C1—C7—C8120.8 (3)C11—C10—C15—C141.7 (5)
C6—C1—C7—C865.1 (4)C9—C10—C15—C14176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Oi0.952.443.319 (4)154
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H10BrClO
Mr321.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)5.7317 (6), 9.3920 (7), 23.6517 (18)
β (°) 91.231 (8)
V3)1272.9 (2)
Z4
Radiation typeCu Kα
µ (mm1)6.19
Crystal size (mm)0.84 × 0.49 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.039, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
4362, 2466, 2275
Rint0.036
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.05
No. of reflections2466
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 1.07

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Oi0.952.443.319 (4)154.3
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

KV thanks the UGC for the sanction of a Junior Research Fellowship and for a SAP Chemical grant. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2009). Acta Cryst. E65, o2641–o2642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2010). Acta Cryst. E66, o158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Kamath, K. P., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175–o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Satheesh, Y. E., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1844–o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTroeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660–669.  Web of Science PubMed CAS Google Scholar
First citationYang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195–198.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds