organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 2-(4-chloro­benzo­yl)-2-methyl­propanoate

aDepartment of Chemistry, 1400 Townsend Drive, Michigan Technological University, Houghton, MI 49931, USA
*Correspondence e-mail: rluck@mtu.edu

(Received 11 January 2010; accepted 25 January 2010; online 30 January 2010)

The title compound, C15H19ClO3, is bent with a dihedral angle of 72.02 (9)° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C). In the crystal, mol­ecules related by inversion symmetry are connected by weak C—H⋯O inter­actions into infinite chains. These inter­actions involve H atoms from a methyl group of the dimethyl residue and the O atoms of the ketone on one side of a mol­ecule; on the other side there are inter­actions between H atoms of the benzene ring and the carbonyl O atoms of the ester functionality. There are no directional inter­actions between the chains.

Related literature

For the synthesis, spectroscopic characterization and reactivity of the title compound, see: Logue (1974[Logue, M. W. (1974). J. Org. Chem. 39, 3455-3456.]); Logue et al. (1975[Logue, M. W., Pollack, R. M. & Vitullo, V. P. (1975). J. Am. Chem. Soc. 97, 6868-6869.]). For related structures, see: Crosse et al. (2010[Crosse, C. M., Logue, M. W., Luck, R. L., Pignotti, L. R. & Waineo, M. F. (2010). Acta Cryst. E66, o495-o496.]); Gould et al. (2010[Gould, G. B., Jackman, B. G., Logue, M. W., Luck, R. L., Pignotti, L. R., Smith, A. R. & White, N. M. (2010). Acta Cryst. E66, o491-o492.]); Logue et al. (2010[Logue, M. W., Luck, R. L., Maynard, N. S., Orlowski, S. S., Pignotti, L. R., Putman, A. L. & Whelan, K. M. (2010). Acta Cryst. E66, o489-o490.]). For the syntheses and characterization of structurally similar indanone-derived β-keto ester derivatives, see: Mouri et al. (2009[Mouri, S., Chen, Z., Matsunage, S. & Shibasaki, M. (2009). Chem. Commun. pp. 5138-5140.]); Noritake et al. (2008[Noritake, S., Shibata, N., Nakamura, S., Toru, T. & Shiro, M. (2008). Eur. J. Org. Chem. pp. 3465-3468.]); Rigby & Dixon (2008[Rigby, C. L. & Dixon, D. J. (2008). Chem. Commun. pp. 3798-3800.]). For weak hydrogen-bonded inter­actions, see: Karle et al. (2009[Karle, I. L., Huang, L., Venkateshwarlu, P., Sarma, A. V. S. & Ranganathan, S. (2009). Heterocycles, 79, 471-486.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19ClO3

  • Mr = 282.75

  • Triclinic, [P \overline 1]

  • a = 8.601 (3) Å

  • b = 9.214 (2) Å

  • c = 11.033 (2) Å

  • α = 72.67 (2)°

  • β = 74.62 (2)°

  • γ = 74.02 (3)°

  • V = 786.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 291 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.905, Tmax = 0.929

  • 2961 measured reflections

  • 2759 independent reflections

  • 1589 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 166 min intensity decay: 9%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.01

  • 2759 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.96 2.58 3.476 (4) 155
C5—H5⋯O2ii 0.93 2.7 3.316 (3) 125
Symmetry codes: (i) -x-1, -y+1, -z; (ii) -x-1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Treatment of 2,2-disubstituted t-butyl β-keto esters with trifluoroacetic acid at room temperature quantitatively generates the corresponding 2,2-disubstituted β-keto acids, which were used to probe the nature of the transition state for the thermal decarboxylation of β-keto acids (Logue et al., 1975). Structurally similar indanone-derived β-keto ester derivatives have been prepared recently (Mouri et al., 2009; Noritake et al., 2008; Rigby & Dixon, 2008). The directing nature of weak C—H···O H-bonds has been noted to be of importance to afford the three dimensional structure observed in these kinds of molecules (Karle et al., 2009).

In this contribution we present the solid state structure of one such 2,2-disubstituted β-keto acid, i.e. the title compound being the para-chlorobenzene derivative. This is the third paper in a series of four dealing with substituted derivatives (H–, CH3–, Cl- (this paper) and NO2– on the para-position of the phenyl ring) of the title compound. A more detailed comparison of all four substitution compounds will be given in the fourth paper of this series (Crosse et al., 2010).

The molecule, Fig. 1, displays a bent geometry with a dihedral angle between the mean planes of the phenyl ring and a plane composed of the ester functionality of 72.02 (9)°. Molecules are linked by C—H···O weak hydrogen bonds generating infinite chains as shown in Fig. 2. The phenyl rings are not involved in intercalation or stacking interactions either within or between the chains. Instead, neighbouring t-butyl groups on adjacent chains exhibit hydrophobic stacking.

Related literature top

For the synthesis, spectroscopic characterization and reactivity of the title compound, see: Logue (1974); Logue et al. (1975). For related structures, see: Crosse et al. (2010; Gould et al. (2010); Logue et al. (2010). For the syntheses and characterization of structurally similar indanone-derived β-keto ester derivatives, see: Mouri et al. (2009); Noritake et al. (2008); Rigby & Dixon (2008). For weak hydrogen-bonded interactions, see: Karle et al. (2009). Paper is 3rd in series (ZL2265, ZL2266, ZL2267, ZL2264)

Experimental top

Crystals of the material were synthesized as reported earlier and were grown by evaporation of a solution in hexane (Logue, 1974). M.p. 600–606 K. IR (neat, cm-1) 2982 (m, ring), 1726 (s, C=O), 1682 (s, O—C=O), 1588 (s), 1488 (m), 1388 (m), 1368 (w), 1273 (m), 1133 (m), 1091.6 (m), 987 (w), 920 (w), 842 (m), 739 (m). 1H NMR (CDCl3) δ: 1.27 (s, 9H), 1.47 (s, 6H), 7.36 (d, 2H, J=8.8 Hz), 7.80 (d, 2H, J=9.2 Hz). 13C NMR (CDCl3) δ: 23.8, 27.6, 54.0, 81.9, 130.2, 133.6, 139.0, 173.8, 196.8.

Refinement top

All H atoms were placed at calculated positions, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and refined using a riding model with Uiso(H) constrained to be 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) for all other C atoms. The quality of the data as reflected by only 58% of the reflections observed, large ADP's and inaccurate C—C bond lengths is low. The data had been collected on a 30 year old single point detector instrument not equipped with a low temperature device as part of a class project with undergraduate students. Due to the time constraints imposed by the class schedule a maximum exposure time of 60 s had to be alloted for measuring each reflection.

Structure description top

Treatment of 2,2-disubstituted t-butyl β-keto esters with trifluoroacetic acid at room temperature quantitatively generates the corresponding 2,2-disubstituted β-keto acids, which were used to probe the nature of the transition state for the thermal decarboxylation of β-keto acids (Logue et al., 1975). Structurally similar indanone-derived β-keto ester derivatives have been prepared recently (Mouri et al., 2009; Noritake et al., 2008; Rigby & Dixon, 2008). The directing nature of weak C—H···O H-bonds has been noted to be of importance to afford the three dimensional structure observed in these kinds of molecules (Karle et al., 2009).

In this contribution we present the solid state structure of one such 2,2-disubstituted β-keto acid, i.e. the title compound being the para-chlorobenzene derivative. This is the third paper in a series of four dealing with substituted derivatives (H–, CH3–, Cl- (this paper) and NO2– on the para-position of the phenyl ring) of the title compound. A more detailed comparison of all four substitution compounds will be given in the fourth paper of this series (Crosse et al., 2010).

The molecule, Fig. 1, displays a bent geometry with a dihedral angle between the mean planes of the phenyl ring and a plane composed of the ester functionality of 72.02 (9)°. Molecules are linked by C—H···O weak hydrogen bonds generating infinite chains as shown in Fig. 2. The phenyl rings are not involved in intercalation or stacking interactions either within or between the chains. Instead, neighbouring t-butyl groups on adjacent chains exhibit hydrophobic stacking.

For the synthesis, spectroscopic characterization and reactivity of the title compound, see: Logue (1974); Logue et al. (1975). For related structures, see: Crosse et al. (2010; Gould et al. (2010); Logue et al. (2010). For the syntheses and characterization of structurally similar indanone-derived β-keto ester derivatives, see: Mouri et al. (2009); Noritake et al. (2008); Rigby & Dixon (2008). For weak hydrogen-bonded interactions, see: Karle et al. (2009). Paper is 3rd in series (ZL2265, ZL2266, ZL2267, ZL2264)

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A Mercury (Macrae et al., 2008) illustration of the packing in the title compound depicting the H-bonded linkages using dashed lines which result in infinite chains.
tert-Butyl 2-(4-chlorobenzoyl)-2-methylpropanoate top
Crystal data top
C15H19ClO3Z = 2
Mr = 282.75F(000) = 300
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.601 (3) ÅCell parameters from 25 reflections
b = 9.214 (2) Åθ = 10–15°
c = 11.033 (2) ŵ = 0.24 mm1
α = 72.67 (2)°T = 291 K
β = 74.62 (2)°Prism, colourless
γ = 74.02 (3)°0.30 × 0.30 × 0.30 mm
V = 786.3 (4) Å3
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1589 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
non–profiled ω/2τ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.905, Tmax = 0.929l = 1213
2961 measured reflections3 standard reflections every 166 min
2759 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.1997P]
where P = (Fo2 + 2Fc2)/3
2759 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H19ClO3γ = 74.02 (3)°
Mr = 282.75V = 786.3 (4) Å3
Triclinic, P1Z = 2
a = 8.601 (3) ÅMo Kα radiation
b = 9.214 (2) ŵ = 0.24 mm1
c = 11.033 (2) ÅT = 291 K
α = 72.67 (2)°0.30 × 0.30 × 0.30 mm
β = 74.62 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1589 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.905, Tmax = 0.9293 standard reflections every 166 min
2961 measured reflections intensity decay: 9%
2759 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2759 reflectionsΔρmin = 0.17 e Å3
177 parameters
Special details top

Experimental. Number of psi-scan sets used was 3. Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16763 (12)0.07087 (11)0.34258 (10)0.1148 (4)
C10.0088 (3)0.2115 (3)0.2795 (3)0.0715 (8)
C20.0200 (4)0.2567 (3)0.1470 (3)0.0732 (8)
H20.1120.21390.09220.088*
C30.1066 (3)0.3656 (3)0.0975 (3)0.0652 (7)
H30.09960.39520.00830.078*
C40.2453 (3)0.4331 (3)0.1768 (2)0.0539 (6)
C50.2524 (3)0.3851 (3)0.3101 (2)0.0616 (7)
H50.34330.42880.36540.074*
C60.1270 (4)0.2740 (3)0.3615 (3)0.0733 (8)
H60.13410.24170.45070.088*
C70.3731 (3)0.5568 (3)0.1130 (2)0.0567 (6)
O10.3574 (2)0.5870 (2)0.00407 (18)0.0818 (6)
C80.5234 (3)0.6450 (3)0.1932 (2)0.0580 (7)
C90.6140 (4)0.7842 (4)0.1003 (3)0.0858 (9)
H9A0.65220.74640.04360.129*
H9B0.53960.85090.04990.129*
H9C0.70650.84160.14990.129*
C100.6413 (3)0.5359 (4)0.2725 (3)0.0815 (9)
H10A0.67540.49590.2150.122*
H10B0.73640.59260.32050.122*
H10C0.58550.4510.33160.122*
C110.4693 (3)0.7139 (3)0.2811 (3)0.0557 (6)
O20.5376 (2)0.7174 (2)0.39021 (18)0.0768 (6)
O30.3370 (2)0.77357 (18)0.21611 (15)0.0573 (5)
C120.2559 (3)0.8503 (3)0.2752 (3)0.0652 (7)
C130.1158 (4)0.8952 (4)0.1653 (3)0.0982 (11)
H13A0.16010.96550.09280.147*
H13B0.04650.80350.140.147*
H13C0.0520.9450.19340.147*
C140.3741 (4)0.9938 (4)0.3095 (4)0.1056 (12)
H14A0.42151.05630.23610.158*
H14B0.31581.0530.33310.158*
H14C0.46020.96360.3810.158*
C150.1904 (5)0.7350 (4)0.3885 (3)0.1139 (13)
H15A0.28090.71240.45870.171*
H15B0.11960.77810.41590.171*
H15C0.1290.64090.36330.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0975 (7)0.1088 (7)0.1345 (8)0.0243 (5)0.0444 (6)0.0478 (6)
C10.0677 (18)0.0628 (18)0.088 (2)0.0045 (14)0.0202 (16)0.0288 (16)
C20.0654 (18)0.0720 (19)0.080 (2)0.0162 (16)0.0064 (16)0.0313 (16)
C30.0745 (19)0.0649 (17)0.0575 (16)0.0239 (15)0.0015 (15)0.0214 (14)
C40.0614 (15)0.0556 (15)0.0498 (14)0.0241 (13)0.0005 (12)0.0191 (12)
C50.0671 (17)0.0592 (16)0.0559 (16)0.0098 (14)0.0034 (13)0.0213 (13)
C60.084 (2)0.0683 (18)0.0657 (17)0.0017 (16)0.0181 (16)0.0243 (15)
C70.0618 (17)0.0631 (16)0.0541 (16)0.0303 (14)0.0073 (13)0.0156 (13)
O10.0877 (14)0.1077 (16)0.0519 (12)0.0260 (12)0.0120 (10)0.0194 (11)
C80.0535 (15)0.0655 (16)0.0594 (15)0.0163 (13)0.0123 (12)0.0171 (13)
C90.081 (2)0.093 (2)0.090 (2)0.0075 (17)0.0387 (18)0.0230 (18)
C100.0607 (18)0.104 (2)0.090 (2)0.0384 (17)0.0024 (15)0.0343 (18)
C110.0538 (15)0.0572 (16)0.0549 (16)0.0106 (13)0.0100 (13)0.0139 (12)
O20.0796 (13)0.0971 (15)0.0575 (12)0.0311 (11)0.0045 (10)0.0289 (10)
O30.0587 (10)0.0672 (11)0.0543 (10)0.0232 (9)0.0074 (8)0.0217 (8)
C120.0684 (17)0.0764 (18)0.0660 (17)0.0271 (15)0.0107 (14)0.0314 (15)
C130.090 (2)0.122 (3)0.105 (3)0.058 (2)0.0055 (19)0.049 (2)
C140.096 (3)0.102 (3)0.145 (3)0.026 (2)0.008 (2)0.077 (2)
C150.131 (3)0.137 (3)0.100 (3)0.054 (3)0.063 (2)0.009 (2)
Geometric parameters (Å, º) top
Cl1—C11.739 (3)C9—H9C0.96
C1—C61.376 (4)C10—H10A0.96
C1—C21.380 (4)C10—H10B0.96
C2—C31.370 (4)C10—H10C0.96
C2—H20.93C11—O21.197 (3)
C3—C41.392 (3)C11—O31.337 (3)
C3—H30.93O3—C121.483 (3)
C4—C51.394 (3)C12—C151.504 (4)
C4—C71.498 (4)C12—C141.509 (4)
C5—C61.380 (4)C12—C131.515 (4)
C5—H50.93C13—H13A0.96
C6—H60.93C13—H13B0.96
C7—O11.216 (3)C13—H13C0.96
C7—C81.536 (3)C14—H14A0.96
C8—C111.526 (3)C14—H14B0.96
C8—C101.540 (4)C14—H14C0.96
C8—C91.546 (4)C15—H15A0.96
C9—H9A0.96C15—H15B0.96
C9—H9B0.96C15—H15C0.96
C6—C1—C2120.9 (3)C8—C10—H10B109.5
C6—C1—Cl1120.0 (2)H10A—C10—H10B109.5
C2—C1—Cl1119.0 (2)C8—C10—H10C109.5
C3—C2—C1119.0 (3)H10A—C10—H10C109.5
C3—C2—H2120.5H10B—C10—H10C109.5
C1—C2—H2120.5O2—C11—O3125.4 (2)
C2—C3—C4122.0 (3)O2—C11—C8125.1 (2)
C2—C3—H3119O3—C11—C8109.5 (2)
C4—C3—H3119C11—O3—C12122.39 (19)
C3—C4—C5117.5 (3)O3—C12—C15109.6 (2)
C3—C4—C7117.9 (2)O3—C12—C14109.8 (2)
C5—C4—C7124.5 (2)C15—C12—C14113.7 (3)
C6—C5—C4121.1 (2)O3—C12—C13101.9 (2)
C6—C5—H5119.4C15—C12—C13110.8 (3)
C4—C5—H5119.4C14—C12—C13110.4 (3)
C1—C6—C5119.4 (3)C12—C13—H13A109.5
C1—C6—H6120.3C12—C13—H13B109.5
C5—C6—H6120.3H13A—C13—H13B109.5
O1—C7—C4119.2 (2)C12—C13—H13C109.5
O1—C7—C8119.7 (2)H13A—C13—H13C109.5
C4—C7—C8121.1 (2)H13B—C13—H13C109.5
C11—C8—C7110.7 (2)C12—C14—H14A109.5
C11—C8—C10111.1 (2)C12—C14—H14B109.5
C7—C8—C10110.0 (2)H14A—C14—H14B109.5
C11—C8—C9106.4 (2)C12—C14—H14C109.5
C7—C8—C9109.0 (2)H14A—C14—H14C109.5
C10—C8—C9109.7 (2)H14B—C14—H14C109.5
C8—C9—H9A109.5C12—C15—H15A109.5
C8—C9—H9B109.5C12—C15—H15B109.5
H9A—C9—H9B109.5H15A—C15—H15B109.5
C8—C9—H9C109.5C12—C15—H15C109.5
H9A—C9—H9C109.5H15A—C15—H15C109.5
H9B—C9—H9C109.5H15B—C15—H15C109.5
C8—C10—H10A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.962.583.476 (4)155
C5—H5···O2ii0.932.73.316 (3)125
Symmetry codes: (i) x1, y+1, z; (ii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H19ClO3
Mr282.75
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.601 (3), 9.214 (2), 11.033 (2)
α, β, γ (°)72.67 (2), 74.62 (2), 74.02 (3)
V3)786.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.905, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
2961, 2759, 1589
Rint0.020
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.01
No. of reflections2759
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.962.583.476 (4)154.7
C5—H5···O2ii0.932.73.316 (3)124.9
Symmetry codes: (i) x1, y+1, z; (ii) x1, y+1, z+1.
 

Acknowledgements

Financial assistance from the Chemistry Department of Michigan Technological University is acknowledged.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCrosse, C. M., Logue, M. W., Luck, R. L., Pignotti, L. R. & Waineo, M. F. (2010). Acta Cryst. E66, o495–o496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGould, G. B., Jackman, B. G., Logue, M. W., Luck, R. L., Pignotti, L. R., Smith, A. R. & White, N. M. (2010). Acta Cryst. E66, o491–o492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKarle, I. L., Huang, L., Venkateshwarlu, P., Sarma, A. V. S. & Ranganathan, S. (2009). Heterocycles, 79, 471–486.  PubMed CAS Google Scholar
First citationLogue, M. W. (1974). J. Org. Chem. 39, 3455–3456.  CrossRef CAS Web of Science Google Scholar
First citationLogue, M. W., Luck, R. L., Maynard, N. S., Orlowski, S. S., Pignotti, L. R., Putman, A. L. & Whelan, K. M. (2010). Acta Cryst. E66, o489–o490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLogue, M. W., Pollack, R. M. & Vitullo, V. P. (1975). J. Am. Chem. Soc. 97, 6868–6869.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMouri, S., Chen, Z., Matsunage, S. & Shibasaki, M. (2009). Chem. Commun. pp. 5138–5140.  Web of Science CrossRef Google Scholar
First citationNoritake, S., Shibata, N., Nakamura, S., Toru, T. & Shiro, M. (2008). Eur. J. Org. Chem. pp. 3465–3468.  Web of Science CSD CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigby, C. L. & Dixon, D. J. (2008). Chem. Commun. pp. 3798–3800.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds