organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Allyl­sulfanyl-N-(4-meth­oxy­benzyl­­idene)-5-(3,4,5-tri­meth­oxy­phen­yl)-4H-1,2,4-triazol-4-amine

aCenter for Research and Development of Fine Chemicals, Guizhou University, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Guiyang 550025, People's Republic of China, and bDepartment of Chemistry, Bijie University, Bijie 551700, People's Republic of China
*Correspondence e-mail: songbaoan22@yahoo.com

(Received 28 October 2008; accepted 21 January 2009; online 6 February 2009)

The title compound, C22H24N4O4S, adopts a trans configuration with respect to the C=N double bond. A weak intra­molecular C—H⋯N hydrogen bond is observed between the N atom of the C=N double bond and its neighboring phenyl H atom. The crystal structure is stabilized by inter­molecular C—H⋯N hydrogen bonds and C—H⋯π inter­actions.

Related literature

For background on the biological activity of triazole compounds, see: Bekircan & Gumrukcuoglu (2005[Bekircan, O. & Gumrukcuoglu, N. (2005). Indian J. Chem. Sect. B, 44, 2107-2113.]); Ewiss et al. (1986[Ewiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heterocycl. Chem. 23, 1451-1458.]); Ikizler et al. (1998[Ikizler, A. A., Demirbas, A., Johansson, C. B., Celik, C., Serdar, M. & Yüksek, H. (1998). Acta Pol. Pharm. Drug Res. 55, 117-123.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N4O4S

  • Mr = 440.51

  • Monoclinic, P 21 /n

  • a = 7.9414 (12) Å

  • b = 15.043 (2) Å

  • c = 19.047 (3) Å

  • β = 100.385 (6)°

  • V = 2238.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 (2) K

  • 0.36 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.936, Tmax = 0.956

  • 23323 measured reflections

  • 3929 independent reflections

  • 3354 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.07

  • 3929 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N4 0.93 2.38 2.960 (2) 120
C12—H12⋯N2i 0.93 2.59 3.359 (2) 141
C19—H19A⋯N1ii 0.96 2.60 3.477 (3) 152
C9—H9ACg1iii 0.97 2.79 3.616 (2) 143
C11—H11ACg2iv 0.93 2.83 3.703 (2) 158
C15—H15⋯Cg1v 0.93 2.70 3.514 (2) 147
C22—H22CCg2vi 0.96 2.94 3.747 (2) 143
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z; (iv) x-1, y-1, z; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Triazole derivatives are of great interest in medicinal chemistry in relation to antibacterial bioactivities (Bekircan & Gumrukcuoglu, 2005; Ewiss et al., 1986; Ikizler et al., 1998). However, to date, only a few reports have been dedicated to the synthesis and antimicrobial activity evaluation of triazole derivatives with a 3,4,5-trimethoxyphenyl substituent. Herein, we want to report on the synthesis and structure such a compound, (E)-4-(4-methoxybenzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol.

The molecule of the title compound (Fig. 1), exists in an E configuration with respect to the C12=N4 double bond [1.278 (2) Å] with a N3–N4–C12–C13 torsion angle of 179.08 (13)°. The whole molecule is not planar as the dihedral angles between the triazole ring and the two phenyl rings are 25.3 (2)° and 113.8 (2)°, respectively. There is one weak intramolecular C–H···N hydrogen bond between C1 and N4 (Table 1).

In the crystal structure (Fig. 3), two neighboring molecules are linked by weak C12—H12···N2 intermolecular interactions into a centrosymmetric R22(12) ring motif (Bernstein et al., 1995) with two parallel trizole rings with a centroid-centroid separation of 3.650 (1) Å between them (Fig. 2). Moreover, an intermolecular C-H···N hydrogen bond (C19—H19A···N1) is also observed. The molecular packing is further stabilized by C—H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively).

Related literature top

For background on the biological activity of triazole compounds, see: Bekircan & Gumrukcuoglu (2005); Ewiss et al. (1986); Ikizler et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-bromoprop-1-ene (5 mmol) and methanol (3 mL) was added dropwise to a stirred solution of (E)-4-(4-methoxybenzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol (5 mmol) and sodium hydroxide (5 mmol) in water (15 mL). The resulting mixture was stirred at room temperature for 4 hours. After allowing the resulting solution to stand in air at room temperature for 2 days, colorless block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent. The crystals were isolated, washed with ethanol and dried.

Refinement top

H atoms were placed in calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 - 0.97 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl C atoms or Uiso(H) = 1.2 Ueq(C) for the other C atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view of the R22(12) ring motif formed through the intermolecular C12—H12···N2 hydrogen bond. Dashed lines indicate C-H···N hydrogen bonds and π-π stacking interactions.
[Figure 3] Fig. 3. Crystal structure of the title compound viewed along the a-axis. Hydrogen bonds are shown as dashed lines.
(E)-3-Allylsulfanyl-N-(4-methoxybenzylidene)-5-(3,4,5- trimethoxyphenyl)-4H-1,2,4-triazol-4-amine top
Crystal data top
C22H24N4O4SF(000) = 928
Mr = 440.51Dx = 1.307 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2895 reflections
a = 7.9414 (12) Åθ = 2.4–27.9°
b = 15.043 (2) ŵ = 0.18 mm1
c = 19.047 (3) ÅT = 293 K
β = 100.385 (6)°Block, colorless
V = 2238.1 (6) Å30.36 × 0.30 × 0.26 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3929 independent reflections
Radiation source: fine-focus sealed tube3354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.936, Tmax = 0.956k = 1717
23323 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.4889P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3929 reflectionsΔρmax = 0.35 e Å3
281 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0132 (12)
Crystal data top
C22H24N4O4SV = 2238.1 (6) Å3
Mr = 440.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9414 (12) ŵ = 0.18 mm1
b = 15.043 (2) ÅT = 293 K
c = 19.047 (3) Å0.36 × 0.30 × 0.26 mm
β = 100.385 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3929 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3354 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.956Rint = 0.028
23323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
3929 reflectionsΔρmin = 0.20 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32086 (5)0.40159 (3)0.50696 (2)0.05036 (16)
O20.53116 (15)0.34899 (8)0.80320 (6)0.0566 (3)
O40.63039 (17)0.63866 (9)0.73084 (7)0.0647 (4)
O10.27845 (18)0.05796 (9)0.56221 (8)0.0737 (4)
N40.04176 (16)0.33704 (8)0.60779 (7)0.0419 (3)
N30.00642 (16)0.42733 (8)0.59683 (7)0.0392 (3)
O30.72831 (15)0.49408 (9)0.81168 (6)0.0614 (4)
N20.15075 (18)0.54951 (9)0.56327 (8)0.0505 (4)
N10.00133 (18)0.57222 (9)0.60765 (8)0.0493 (3)
C130.10497 (19)0.20262 (10)0.55230 (8)0.0412 (4)
C30.5743 (2)0.49373 (11)0.76468 (8)0.0461 (4)
C60.25403 (19)0.49468 (10)0.67595 (8)0.0394 (3)
C120.05405 (19)0.29577 (10)0.55028 (8)0.0426 (4)
H120.03030.32540.50680.051*
C140.1270 (2)0.15253 (11)0.61543 (9)0.0464 (4)
H140.10200.17780.65690.056*
C80.1542 (2)0.46257 (10)0.55731 (8)0.0431 (4)
C70.0855 (2)0.49833 (10)0.62810 (8)0.0398 (3)
C10.3077 (2)0.41986 (10)0.71705 (8)0.0415 (4)
H10.23680.37040.71500.050*
C20.4679 (2)0.41929 (11)0.76131 (8)0.0435 (4)
C50.3589 (2)0.56949 (10)0.67940 (8)0.0443 (4)
H50.32210.61960.65240.053*
C40.5188 (2)0.56862 (11)0.72351 (9)0.0463 (4)
C150.1852 (2)0.06656 (11)0.61640 (10)0.0517 (4)
H150.20130.03420.65870.062*
C160.2205 (2)0.02742 (11)0.55411 (10)0.0518 (4)
C180.1392 (2)0.16211 (12)0.49085 (9)0.0517 (4)
H180.12340.19430.44850.062*
C100.3730 (3)0.30522 (14)0.62529 (10)0.0633 (5)
H100.27350.31990.65690.076*
C90.4510 (2)0.37642 (12)0.57463 (10)0.0558 (4)
H9A0.46450.43000.60140.067*
H9B0.56390.35750.55110.067*
C190.4213 (3)0.27423 (13)0.80370 (12)0.0717 (6)
H19A0.47930.22940.83490.108*
H19B0.39120.25070.75620.108*
H19C0.31940.29220.82030.108*
C170.1965 (2)0.07488 (12)0.49092 (10)0.0561 (5)
H170.21840.04880.44920.067*
C210.5991 (3)0.70808 (15)0.68073 (15)0.0924 (8)
H21A0.68530.75310.69250.139*
H21B0.48840.73330.68160.139*
H21C0.60210.68520.63390.139*
C110.4301 (3)0.22612 (15)0.62922 (12)0.0764 (6)
H11A0.52920.20830.59870.092*
H11B0.37240.18650.66260.092*
C200.8754 (3)0.47977 (17)0.78013 (13)0.0797 (6)
H20A0.97620.48080.81650.120*
H20B0.88290.52580.74590.120*
H20C0.86640.42310.75660.120*
C220.3150 (3)0.10321 (14)0.50050 (15)0.0858 (8)
H22A0.35450.16230.51350.129*
H22B0.40190.07140.48180.129*
H22C0.21290.10630.46480.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0433 (3)0.0626 (3)0.0420 (3)0.00628 (19)0.00102 (17)0.00451 (18)
O20.0536 (7)0.0571 (7)0.0529 (7)0.0027 (6)0.0065 (5)0.0096 (6)
O40.0612 (8)0.0609 (8)0.0682 (8)0.0265 (6)0.0013 (6)0.0029 (6)
O10.0718 (9)0.0497 (7)0.0989 (11)0.0117 (6)0.0139 (8)0.0119 (7)
N40.0437 (7)0.0341 (7)0.0443 (7)0.0016 (5)0.0015 (6)0.0014 (5)
N30.0391 (7)0.0357 (6)0.0410 (7)0.0017 (5)0.0026 (5)0.0035 (5)
O30.0438 (7)0.0890 (9)0.0478 (7)0.0136 (6)0.0018 (5)0.0031 (6)
N20.0465 (8)0.0451 (8)0.0576 (9)0.0013 (6)0.0032 (6)0.0085 (6)
N10.0475 (8)0.0402 (7)0.0582 (9)0.0013 (6)0.0036 (7)0.0031 (6)
C130.0378 (8)0.0434 (8)0.0413 (8)0.0037 (6)0.0038 (6)0.0012 (7)
C30.0399 (9)0.0610 (10)0.0365 (8)0.0068 (7)0.0046 (7)0.0069 (7)
C60.0382 (8)0.0426 (8)0.0378 (8)0.0028 (6)0.0076 (6)0.0048 (6)
C120.0397 (8)0.0447 (8)0.0421 (9)0.0025 (7)0.0042 (7)0.0056 (7)
C140.0513 (9)0.0446 (9)0.0451 (9)0.0001 (7)0.0137 (7)0.0000 (7)
C80.0408 (9)0.0453 (9)0.0423 (9)0.0010 (7)0.0045 (7)0.0076 (7)
C70.0419 (8)0.0371 (8)0.0406 (8)0.0032 (6)0.0083 (7)0.0002 (6)
C10.0415 (8)0.0427 (8)0.0396 (8)0.0062 (6)0.0056 (7)0.0025 (6)
C20.0440 (9)0.0486 (9)0.0376 (8)0.0000 (7)0.0063 (7)0.0020 (7)
C50.0493 (9)0.0403 (8)0.0434 (9)0.0051 (7)0.0087 (7)0.0021 (7)
C40.0448 (9)0.0505 (9)0.0445 (9)0.0136 (7)0.0101 (7)0.0086 (7)
C150.0523 (10)0.0467 (9)0.0575 (10)0.0028 (8)0.0141 (8)0.0081 (8)
C160.0399 (9)0.0437 (9)0.0707 (12)0.0015 (7)0.0068 (8)0.0087 (8)
C180.0538 (10)0.0591 (10)0.0404 (9)0.0002 (8)0.0038 (7)0.0009 (7)
C100.0613 (12)0.0763 (13)0.0538 (11)0.0111 (10)0.0142 (9)0.0017 (9)
C90.0467 (10)0.0563 (10)0.0668 (12)0.0027 (8)0.0169 (9)0.0012 (9)
C190.0762 (14)0.0586 (11)0.0720 (13)0.0088 (10)0.0088 (10)0.0201 (10)
C170.0496 (10)0.0647 (11)0.0531 (11)0.0005 (8)0.0068 (8)0.0199 (9)
C210.0758 (15)0.0691 (14)0.124 (2)0.0331 (12)0.0033 (14)0.0223 (14)
C110.0755 (14)0.0708 (14)0.0833 (15)0.0001 (11)0.0154 (12)0.0125 (11)
C200.0458 (11)0.1008 (17)0.0890 (16)0.0021 (11)0.0027 (11)0.0133 (13)
C220.0673 (14)0.0626 (13)0.128 (2)0.0019 (10)0.0205 (14)0.0384 (13)
Geometric parameters (Å, º) top
S1—C81.7477 (16)C1—H10.9300
S1—C91.8312 (18)C5—C41.391 (2)
O2—C21.3649 (19)C5—H50.9300
O2—C191.424 (2)C15—C161.397 (2)
O4—C41.3676 (19)C15—H150.9300
O4—C211.406 (3)C16—C171.383 (3)
O1—C161.364 (2)C18—C171.389 (2)
O1—C221.433 (3)C18—H180.9300
N4—C121.278 (2)C10—C111.280 (3)
N4—N31.4164 (17)C10—C91.499 (3)
N3—C71.3681 (19)C10—H100.9300
N3—C81.3810 (19)C9—H9A0.9700
O3—C31.3795 (19)C9—H9B0.9700
O3—C201.423 (2)C19—H19A0.9600
N2—C81.313 (2)C19—H19B0.9600
N2—N11.3863 (19)C19—H19C0.9600
N1—C71.319 (2)C17—H170.9300
C13—C181.389 (2)C21—H21A0.9600
C13—C141.403 (2)C21—H21B0.9600
C13—C121.457 (2)C21—H21C0.9600
C3—C21.397 (2)C11—H11A0.9300
C3—C41.398 (2)C11—H11B0.9300
C6—C11.393 (2)C20—H20A0.9600
C6—C51.394 (2)C20—H20B0.9600
C6—C71.478 (2)C20—H20C0.9600
C12—H120.9300C22—H22A0.9600
C14—C151.372 (2)C22—H22B0.9600
C14—H140.9300C22—H22C0.9600
C1—C21.394 (2)
C8—S1—C9100.95 (8)C16—C15—H15119.9
C2—O2—C19117.02 (13)O1—C16—C17125.13 (17)
C4—O4—C21118.08 (15)O1—C16—C15114.57 (17)
C16—O1—C22117.95 (17)C17—C16—C15120.29 (16)
C12—N4—N3113.56 (12)C17—C18—C13121.84 (16)
C7—N3—C8105.79 (12)C17—C18—H18119.1
C7—N3—N4125.15 (12)C13—C18—H18119.1
C8—N3—N4128.97 (12)C11—C10—C9126.3 (2)
C3—O3—C20115.13 (14)C11—C10—H10116.8
C8—N2—N1107.50 (13)C9—C10—H10116.8
C7—N1—N2108.17 (13)C10—C9—S1112.37 (13)
C18—C13—C14118.26 (15)C10—C9—H9A109.1
C18—C13—C12119.68 (14)S1—C9—H9A109.1
C14—C13—C12122.03 (14)C10—C9—H9B109.1
O3—C3—C2119.41 (15)S1—C9—H9B109.1
O3—C3—C4120.93 (15)H9A—C9—H9B107.9
C2—C3—C4119.56 (15)O2—C19—H19A109.5
C1—C6—C5120.38 (15)O2—C19—H19B109.5
C1—C6—C7121.86 (13)H19A—C19—H19B109.5
C5—C6—C7117.75 (14)O2—C19—H19C109.5
N4—C12—C13120.54 (14)H19A—C19—H19C109.5
N4—C12—H12119.7H19B—C19—H19C109.5
C13—C12—H12119.7C16—C17—C18118.84 (16)
C15—C14—C13120.48 (15)C16—C17—H17120.6
C15—C14—H14119.8C18—C17—H17120.6
C13—C14—H14119.8O4—C21—H21A109.5
N2—C8—N3109.43 (13)O4—C21—H21B109.5
N2—C8—S1124.92 (12)H21A—C21—H21B109.5
N3—C8—S1125.65 (12)O4—C21—H21C109.5
N1—C7—N3109.08 (14)H21A—C21—H21C109.5
N1—C7—C6124.59 (14)H21B—C21—H21C109.5
N3—C7—C6126.32 (13)C10—C11—H11A120.0
C6—C1—C2119.90 (14)C10—C11—H11B120.0
C6—C1—H1120.1H11A—C11—H11B120.0
C2—C1—H1120.1O3—C20—H20A109.5
O2—C2—C1123.92 (14)O3—C20—H20B109.5
O2—C2—C3115.99 (14)H20A—C20—H20B109.5
C1—C2—C3120.09 (15)O3—C20—H20C109.5
C4—C5—C6119.56 (15)H20A—C20—H20C109.5
C4—C5—H5120.2H20B—C20—H20C109.5
C6—C5—H5120.2O1—C22—H22A109.5
O4—C4—C5123.97 (16)O1—C22—H22B109.5
O4—C4—C3115.52 (15)H22A—C22—H22B109.5
C5—C4—C3120.51 (14)O1—C22—H22C109.5
C14—C15—C16120.28 (16)H22A—C22—H22C109.5
C14—C15—H15119.9H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N40.932.382.960 (2)120
C12—H12···N2i0.932.593.359 (2)141
C19—H19A···N1ii0.962.603.477 (3)152
C9—H9A···Cg1iii0.972.793.616 (2)143
C11—H11A···Cg2iv0.932.833.703 (2)158
C15—H15···Cg1v0.932.703.514 (2)147
C22—H22C···Cg2vi0.962.943.747 (2)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x1, y, z; (iv) x1, y1, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H24N4O4S
Mr440.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.9414 (12), 15.043 (2), 19.047 (3)
β (°) 100.385 (6)
V3)2238.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.36 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.936, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
23323, 3929, 3354
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.07
No. of reflections3929
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N40.932.382.960 (2)120.0
C12—H12···N2i0.932.593.359 (2)141.0
C19—H19A···N1ii0.962.603.477 (3)152.0
C9—H9A···Cg1iii0.972.793.616 (2)143
C11—H11A···Cg2iv0.932.833.703 (2)158
C15—H15···Cg1v0.932.703.514 (2)147
C22—H22C···Cg2vi0.962.943.747 (2)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x1, y, z; (iv) x1, y1, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the National Key Project for International Cooperation in Science and Technology (grant No. 2005DFA30650) and the National Natural Science Foundation of China (No. 20872021) for supporting this work.

References

First citationBekircan, O. & Gumrukcuoglu, N. (2005). Indian J. Chem. Sect. B, 44, 2107–2113.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEwiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heterocycl. Chem. 23, 1451–1458.  Google Scholar
First citationIkizler, A. A., Demirbas, A., Johansson, C. B., Celik, C., Serdar, M. & Yüksek, H. (1998). Acta Pol. Pharm. Drug Res. 55, 117–123.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds