organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1808-o1809

Ethyl­enedi­ammonium bis­­(5-methyl-3-oxo-2-phenyl-2,3-di­hydro­pyrazol-1-ide): a hydrogen-bond-supported supra­molecular ionic assembly

aMaterials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, bDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: xuruibo9125@163.com

(Received 22 July 2008; accepted 15 August 2008; online 23 August 2008)

The title compound, C2H10N22+·2C10H9N2O, is composed of deprotonated 5-methyl-2-phenyl-1H-pyrazol-3(2H)-one anions (PMP) and protonated ethyl­enediamine cations (H2en2+). The ethyl­enediammonium ion is located on a crystallographic inversion center. The dihedral angle between the phenyl and pyrazole rings is 39.73 (8)°. The two components are connected through N—H⋯O and N—H⋯N hydrogen bonds, forming an infinite three-dimensional network.

Related literature

For related literature on pyrazolones, see: Cerchiaro et al. (2006[Cerchiaro, G., Ferreira, A.-C., Teixeira, A.-B., Magalhâes, H.-M., Cunha, A.-C., Ferreira, V.-F., Santos, L.-S., Eberlin, M.-N., Skakle, J.-M. S., Wardell, S.-M. & Wardell, J.-L. (2006). Polyhedron, 25, 2055-2064.]). For conductivity data for ionic electrolytes, see: Kwak et al. (2004[Kwak, C.-H., Jee, J.-E., Pyo, M., Kim, J. & Eldik, R.-V. (2004). Inorg. Chim. Acta, 357, 2643-2649.]); Allmann et al. (1990[Allmann, R., Krestl, M., Bolos, C., Manoussakis, G. & Nikolov, G. (1990). Inorg. Chim. Acta, 175, 255-260.]). For background information on hydrogen bonds and their importance and applications, see: Fu et al. (2004[Fu, R.-B., Wu, X.-T., Hu, S.-M. & Du, W.-X. (2004). Chin. J. Struct. Chem. 8, 855-861.]); Hernández-Galindo et al. (2007[Hernández-Galindo, M. del C., Jancik, V., Moya-Cavrera, M.-M., Toscano, R.-A. & Cea-Olivares, R. (2007). J. Organomet. Chem. 692, 5295-5302.]); Hu et al. (2004[Hu, Z.-H., Huang, Z.-L. & Zhang, D.-C. (2004). Chin. J. Struct. Chem. 4, 376-380.]); Li & Wang (2007[Li, A.-Y. & Wang, S.-W. (2007). J. Mol. Struct. (THEOCHEM), 807, 191-199.]); Peng et al. (2005[Peng, B.-H., Liu, G.-F., Liu, L. & Jia, D.-Z. (2005). Tetrahedron, 61, 5926-5932.]); Yang et al. (2002[Yang, W.-B., Lu, C.-Z. & Zhuang, H.-H. (2002). Chin. J. Struct. Chem. 2, 168-173.], 2005[Yang, R., He, S.-Y., Wu, W.-T., Shi, Q.-Z. & Wang, D.-Q. (2005). Chem. J. Chin. Univ. 26, 401-406.], 2006[Yang, E., Wang, X.-Q. & Qin, Y.-Y. (2006). Chin. J. Struct. Chem. 11, 1365-1368.]); Zhou et al. (2006[Zhou, H.-P., Zhu, Y.-M., Chen, J.-J., Hu, Z.-J., Wu, J.-Y., Xie, Y., Jiang, M.-H., Tao, X.-T. & Tian, Y.-P. (2006). Inorg. Chem. Commun. 9, 90-92.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·2C10H9N2O

  • Mr = 408.50

  • Tetragonal, P 42 /n

  • a = 17.179 (2) Å

  • c = 7.0929 (15) Å

  • V = 2093.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.24 × 0.22 × 0.17 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10541 measured reflections

  • 1856 independent reflections

  • 1284 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.141

  • S = 1.04

  • 1856 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.89 1.94 2.743 (2) 149
N3—H3B⋯O1i 0.89 1.79 2.672 (2) 173
N3—H3C⋯N2ii 0.89 2.04 2.924 (3) 173
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-y+{\script{1\over 2}}, x, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrogen bonds (H-bonds) are of importance in a large number of chemical and biological processes and in many practical applications (Li et al., 2007; Peng et al., 2005; Yang et al., 2006; Yang et al., 2002). Many interesting two- and three-dimensional frameworks have been designed and produced based on H-bonds (Fu et al., 2004; Hu et al., 2004; Zhou et al., 2006). The chemistry of pyrazylone and its derivatives is particularly interesting because of their potential application in medicinal chemistry (Cerchiaro et al., 2006), so 1-phenyl-3-methyl-pyrazole-5-one (PMP), which contains imino and carbonyl groups in its heterocycle, was choosen to react with the amino groups of ethylene diamine (en). The synthesis and crystal structure of the product of this reaction are reported here.

The title compound (Fig. 1) contains two crystallographically independent ions: the [H2en]2+ cation which has two cationic ammonium groups, and the [PMP]- anion. In the [PMP]- anion, the bond length of C(1)—O(1) is 1.288 (3) Å, much shorter than that of C—O (1.43 Å), but close to that of CO (1.22 Å) (Yang et al., 2005), indicating that the pyrazole-one ring of the title compound is present in the keto form, not the enol form. The N(2) atom of the deprotonated imino group of PMP is electron rich, therefore, the O atom of the carbonyl group and the N(2) atom of the pyrazole-one ring of the PMP molecule can be expected to be good hydrogen bond acceptors, while the H atoms of the [H2en]2+ ammonium cations are expected to be good hydrogen donors. The Jeffrey criterion for H-bonds used by the International Union of Crystallography defines the largest distance between the hydrogen and the acceptor atoms as 2.60 Å for H···O and 2.63 Å for H···N, respectively (Hernández-Galindo et al., 2007). Compared to these data, the distances of H(3)···O(1) (-x+1, -y+1/2, -z) and H(3)···N(2)(x,-y+1/2, -z+1/2) for the title compound, respectively being 1.786 Å (or 1.940 Å) and 2.039 Å, are much shorter than the above-mentioned largest limit, providing a powerful evidence of the formation of H-bonds between these separate components.

There are no covalent interactions between the separate components of the title compound, but electrostatic and H-bonding interactions are present. All H atoms of the ammonium group, the O atom of the carbonyl group and the N atom of the deprotonated imino group in the title compound are engaged in intermolecular H-bonds which link the molecule into an extended three-dimensional network (Fig. 2). The H-bonds can be clearly seen in Fig. 2 to Fig. 5, and are summarized in Table 1. There are two kinds of H-bonds in the crystal structure: N—H···O and N—H···N. As shown in Fig. 3, the oxygen atom of the carbonyl group from [PMP]- takes part in the H-bonding to the terminal nitrogen of [H2en]2+, forming intermolecular N—H···O H-bonds that result in the formation of 8-membered rings. Each of the two ammonium groups of the [H2en]2+ cation engages in these 8—membered rings, further linking the [H2en]2+ and [PMP]- ions into a two-dimensional network via these N—H···O H-bonds (Fig. 4). It can be seen from Fig. 5 that the nitrogen atom of the deprotonated imino group of [PMP]- takes part in the H-bonding to the terminal nitrogen of [H2en]2+, forming intermolecular N—H···N H-bonds. Therefore, through intermolecular N—H···O and N—H···N H-bonding interactions, each [PMP]- anion is linked to three [H2en]2+ cations and each [H2en]2+ cation to six adjacent [PMP]- anions. The two components thus construct a supramolecular assembly with a three-dimensional hydrogen bonded framework.

Related literature top

For related literature on pyrazolones, see: Cerchiaro et al. (2006); Allmann et al. (1990). For conductivity data for ionic electrolytes, see: Kwak et al. (2004). For background information on hydrogen bonds and their importance and applications, see: Fu et al. (2004); Hernández-Galindo et al. (2007); Hu et al. (2004); Li & Wang (2007); Peng et al. (2005); Yang et al. (2002, 2005, 2006); Zhou et al. (2006).

Experimental top

A solution of PMP (2 mmol in 10 ml anhydrous methanol) was added dropwise with constant stirring to the solution of en (2 mmol in 10 ml anhydrous methanol) at 323 K for 2 h. The resulting mixture was filtrated. After cooling, the filtrate was evaporated at ambient environment. Several days later, pink blocky crystals suitable for X-ray analysis were collected and washed with a small amount of methanol and dried at room temperature (yield 67%. m.p. 438–441 K). Anal. Calcd (%) for C22H28N6O2 (Mr = 408.5): C, 64.69; H, 6.91; N, 20.57. Found (%): C, 64.73; H, 6.97; N, 20.52. UV-vis (methanol): λ max = 239 nm, ε = 2.655. The molar conductance of the compound in anhydrous methanol was 45.1 Ω -1cm2mol-1, much lower than that expected for a 1:2 electrolyte, indicating that the compound is forming ion pairs and larger assemblies tightly bonded to each other by e.g. hydrogen bonds (Allmann et al., 1990; Kwak et al., 2004).

Refinement top

H atoms were placed in calculated positions with C—H = 0.92Å (pyrazolyl), 0.93 Å (phenyl), 0.96 Å (methyl), 0.97 Å (methylene) and N—H = 0.89 Å (amino), and were refined in riding mode with Uiso(H) = 1.5 Ueq(C) (methyl) and Uiso(H) = 1.2 Ueq(C, N) (pyrazolyl, phenyl, methylene and amino).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the structure of the title compound with the atomic numbering scheme.
[Figure 2] Fig. 2. Stereoview and packing diagram for the title compound viewed along the c-axis.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing the 8-membered rings formed by N—H···O interactions. Dashed lines indicate H-bonds.
[Figure 4] Fig. 4. The crystal structure of title compound, showing the two-dimensional network parallel to the bc plane formed through N—H···O H-bond interactions. H-bonds are shown as dashed lines.
[Figure 5] Fig. 5. Part of the crystal structure of the title compound, showing the intermolecular N—H···N interactions. Dashed lines indicate H-bonds.
Ethylenediammonium bis(5-methyl-3-oxo-2-phenyl-2,3-dihydropyrazol-1-ide) top
Crystal data top
C2H10N22+·2(C10H9N2O)Melting point = 441–438 K
Mr = 408.50Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 2381 reflections
a = 17.179 (2) Åθ = 3.1–24.1°
c = 7.0929 (15) ŵ = 0.09 mm1
V = 2093.2 (6) Å3T = 298 K
Z = 4Block, pink
F(000) = 8720.24 × 0.22 × 0.17 mm
Dx = 1.296 Mg m3
Data collection top
Siemens SMART CCD area-detector
diffractometer
1284 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ϕ and ω scansh = 1820
10541 measured reflectionsk = 1520
1856 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0642P)2 + 1.1449P]
where P = (Fo2 + 2Fc2)/3
1856 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C2H10N22+·2(C10H9N2O)Z = 4
Mr = 408.50Mo Kα radiation
Tetragonal, P42/nµ = 0.09 mm1
a = 17.179 (2) ÅT = 298 K
c = 7.0929 (15) Å0.24 × 0.22 × 0.17 mm
V = 2093.2 (6) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
1284 reflections with I > 2σ(I)
10541 measured reflectionsRint = 0.046
1856 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
1856 reflectionsΔρmin = 0.16 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.50902 (11)0.26458 (10)0.1311 (3)0.0316 (5)
N20.55431 (11)0.19843 (11)0.0995 (3)0.0363 (5)
N30.45643 (11)0.51464 (11)0.2591 (3)0.0329 (5)
H3A0.46110.46620.21610.049*
H3B0.46790.54810.16750.049*
H3C0.40780.52260.29770.049*
O10.50279 (10)0.39457 (9)0.0303 (2)0.0428 (5)
C10.53354 (13)0.32631 (13)0.0203 (3)0.0320 (5)
C20.59414 (14)0.29704 (13)0.0881 (3)0.0354 (6)
H20.62250.32390.17880.042*
C30.60418 (14)0.21958 (13)0.0345 (3)0.0364 (6)
C40.66173 (18)0.16275 (17)0.1105 (4)0.0579 (8)
H4A0.65330.11280.05330.087*
H4B0.71350.18040.08250.087*
H4C0.65540.15850.24460.087*
C50.46305 (12)0.26868 (12)0.2962 (3)0.0298 (5)
C60.39474 (13)0.31290 (14)0.2980 (3)0.0373 (6)
H60.37780.33800.18930.045*
C70.35267 (15)0.31879 (15)0.4635 (4)0.0444 (7)
H70.30770.34890.46610.053*
C80.37619 (15)0.28079 (15)0.6244 (4)0.0451 (7)
H80.34760.28570.73510.054*
C90.44250 (15)0.23530 (14)0.6208 (4)0.0414 (6)
H90.45780.20850.72850.050*
C100.48621 (13)0.22946 (13)0.4580 (3)0.0349 (6)
H100.53110.19930.45670.042*
C110.51023 (13)0.52621 (14)0.4182 (3)0.0349 (6)
H11A0.50800.58010.45880.042*
H11B0.56300.51530.37730.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0388 (11)0.0248 (10)0.0314 (10)0.0026 (8)0.0055 (9)0.0014 (8)
N20.0446 (12)0.0273 (10)0.0370 (11)0.0061 (9)0.0070 (9)0.0007 (8)
N30.0364 (11)0.0309 (10)0.0313 (10)0.0010 (8)0.0033 (8)0.0021 (8)
O10.0609 (11)0.0284 (9)0.0391 (10)0.0102 (8)0.0137 (8)0.0063 (7)
C10.0414 (13)0.0280 (12)0.0266 (11)0.0013 (10)0.0001 (10)0.0003 (9)
C20.0432 (14)0.0328 (13)0.0300 (12)0.0004 (11)0.0083 (10)0.0022 (10)
C30.0410 (14)0.0358 (13)0.0324 (13)0.0055 (11)0.0017 (11)0.0037 (10)
C40.070 (2)0.0500 (17)0.0532 (17)0.0183 (15)0.0204 (15)0.0015 (14)
C50.0292 (12)0.0264 (12)0.0338 (12)0.0034 (9)0.0014 (10)0.0002 (9)
C60.0349 (13)0.0371 (13)0.0398 (14)0.0024 (11)0.0013 (11)0.0043 (11)
C70.0378 (14)0.0427 (15)0.0526 (16)0.0072 (11)0.0107 (12)0.0049 (13)
C80.0450 (15)0.0485 (16)0.0417 (15)0.0008 (12)0.0152 (12)0.0036 (12)
C90.0452 (15)0.0442 (15)0.0349 (14)0.0008 (12)0.0026 (11)0.0083 (11)
C100.0334 (13)0.0324 (13)0.0388 (14)0.0009 (10)0.0004 (11)0.0020 (10)
C110.0321 (12)0.0387 (14)0.0340 (13)0.0020 (10)0.0003 (10)0.0026 (10)
Geometric parameters (Å, º) top
N1—C11.385 (3)C4—H4C0.9600
N1—N21.395 (2)C5—C101.388 (3)
N1—C51.414 (3)C5—C61.398 (3)
N2—C31.330 (3)C6—C71.382 (3)
N3—C111.472 (3)C6—H60.9300
N3—H3A0.8900C7—C81.375 (4)
N3—H3B0.8900C7—H70.9300
N3—H3C0.8900C8—C91.382 (4)
O1—C11.288 (3)C8—H80.9300
C1—C21.389 (3)C9—C101.381 (3)
C2—C31.394 (3)C9—H90.9300
C2—H20.9300C10—H100.9300
C3—C41.490 (3)C11—C11i1.510 (4)
C4—H4A0.9600C11—H11A0.9700
C4—H4B0.9600C11—H11B0.9700
C1—N1—N2111.27 (17)C10—C5—C6119.8 (2)
C1—N1—C5126.97 (18)C10—C5—N1120.0 (2)
N2—N1—C5119.01 (17)C6—C5—N1120.2 (2)
C3—N2—N1104.56 (18)C7—C6—C5119.1 (2)
C11—N3—H3A109.5C7—C6—H6120.5
C11—N3—H3B109.5C5—C6—H6120.5
H3A—N3—H3B109.5C8—C7—C6121.1 (2)
C11—N3—H3C109.5C8—C7—H7119.5
H3A—N3—H3C109.5C6—C7—H7119.5
H3B—N3—H3C109.5C7—C8—C9119.7 (2)
O1—C1—N1122.8 (2)C7—C8—H8120.2
O1—C1—C2131.9 (2)C9—C8—H8120.2
N1—C1—C2105.35 (19)C10—C9—C8120.3 (2)
C1—C2—C3106.7 (2)C10—C9—H9119.8
C1—C2—H2126.6C8—C9—H9119.8
C3—C2—H2126.6C9—C10—C5120.0 (2)
N2—C3—C2112.1 (2)C9—C10—H10120.0
N2—C3—C4120.4 (2)C5—C10—H10120.0
C2—C3—C4127.5 (2)N3—C11—C11i111.2 (2)
C3—C4—H4A109.5N3—C11—H11A109.4
C3—C4—H4B109.5C11i—C11—H11A109.4
H4A—C4—H4B109.5N3—C11—H11B109.4
C3—C4—H4C109.5C11i—C11—H11B109.4
H4A—C4—H4C109.5H11A—C11—H11B108.0
H4B—C4—H4C109.5
C1—N1—N2—C32.0 (2)C1—N1—C5—C10130.8 (2)
C5—N1—N2—C3164.5 (2)N2—N1—C5—C1028.7 (3)
N2—N1—C1—O1177.0 (2)C1—N1—C5—C648.4 (3)
C5—N1—C1—O116.3 (4)N2—N1—C5—C6152.1 (2)
N2—N1—C1—C22.0 (2)C10—C5—C6—C72.1 (3)
C5—N1—C1—C2162.8 (2)N1—C5—C6—C7177.1 (2)
O1—C1—C2—C3177.8 (2)C5—C6—C7—C81.2 (4)
N1—C1—C2—C31.2 (3)C6—C7—C8—C90.6 (4)
N1—N2—C3—C21.3 (3)C7—C8—C9—C101.6 (4)
N1—N2—C3—C4178.4 (2)C8—C9—C10—C50.8 (4)
C1—C2—C3—N20.1 (3)C6—C5—C10—C91.1 (3)
C1—C2—C3—C4179.6 (2)N1—C5—C10—C9178.1 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.891.942.743 (2)149
N3—H3B···O1ii0.891.792.672 (2)173
N3—H3C···N2iii0.892.042.924 (3)173
Symmetry codes: (ii) x+1, y+1, z; (iii) y+1/2, x, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H10N22+·2(C10H9N2O)
Mr408.50
Crystal system, space groupTetragonal, P42/n
Temperature (K)298
a, c (Å)17.179 (2), 7.0929 (15)
V3)2093.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.17
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10541, 1856, 1284
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.141, 1.04
No. of reflections1856
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.891.942.743 (2)149.2
N3—H3B···O1i0.891.792.672 (2)172.9
N3—H3C···N2ii0.892.042.924 (3)172.5
Symmetry codes: (i) x+1, y+1, z; (ii) y+1/2, x, z+1/2.
 

Acknowledgements

This project was supported by the Key Project for Fundamental Research of the Jiangsu Provincial Educational Committee (07 K J A150011) and the Natural Science Foundation of the Jiangsu Provincial Educational Committee (05KJB150003)

References

First citationAllmann, R., Krestl, M., Bolos, C., Manoussakis, G. & Nikolov, G. (1990). Inorg. Chim. Acta, 175, 255–260.  CSD CrossRef CAS Web of Science Google Scholar
First citationCerchiaro, G., Ferreira, A.-C., Teixeira, A.-B., Magalhâes, H.-M., Cunha, A.-C., Ferreira, V.-F., Santos, L.-S., Eberlin, M.-N., Skakle, J.-M. S., Wardell, S.-M. & Wardell, J.-L. (2006). Polyhedron, 25, 2055–2064.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, R.-B., Wu, X.-T., Hu, S.-M. & Du, W.-X. (2004). Chin. J. Struct. Chem. 8, 855–861.  Google Scholar
First citationHernández-Galindo, M. del C., Jancik, V., Moya-Cavrera, M.-M., Toscano, R.-A. & Cea-Olivares, R. (2007). J. Organomet. Chem. 692, 5295–5302.  Google Scholar
First citationHu, Z.-H., Huang, Z.-L. & Zhang, D.-C. (2004). Chin. J. Struct. Chem. 4, 376–380.  Google Scholar
First citationKwak, C.-H., Jee, J.-E., Pyo, M., Kim, J. & Eldik, R.-V. (2004). Inorg. Chim. Acta, 357, 2643–2649.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, A.-Y. & Wang, S.-W. (2007). J. Mol. Struct. (THEOCHEM), 807, 191–199.  Web of Science CrossRef CAS Google Scholar
First citationPeng, B.-H., Liu, G.-F., Liu, L. & Jia, D.-Z. (2005). Tetrahedron, 61, 5926–5932.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYang, R., He, S.-Y., Wu, W.-T., Shi, Q.-Z. & Wang, D.-Q. (2005). Chem. J. Chin. Univ. 26, 401–406.  CAS Google Scholar
First citationYang, W.-B., Lu, C.-Z. & Zhuang, H.-H. (2002). Chin. J. Struct. Chem. 2, 168–173.  Google Scholar
First citationYang, E., Wang, X.-Q. & Qin, Y.-Y. (2006). Chin. J. Struct. Chem. 11, 1365–1368.  Google Scholar
First citationZhou, H.-P., Zhu, Y.-M., Chen, J.-J., Hu, Z.-J., Wu, J.-Y., Xie, Y., Jiang, M.-H., Tao, X.-T. & Tian, Y.-P. (2006). Inorg. Chem. Commun. 9, 90–92.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1808-o1809
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds