organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(4-amino­phen­­oxy)ethane

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: zareenakhter@yahoo.com

(Received 12 April 2008; accepted 15 May 2008; online 21 May 2008)

The mol­ecule of the title compound, C14H16N2O2, is located on a crystallographic twofold rotation axis. The central O—C—C—O bridge adopts a gauche conformation. One of the amine H atoms is disordered over two equally occupied positions. The crystal structure is stabilized by N—H⋯O and N—H⋯N hydrogen bonds.

Related literature

For related literature, see: Barikani & Mehdipour-Ataei (2000[Barikani, M. & Mehdipour-Ataei, S. (2000). J. Polym. Sci. A Polym. Chem. 38, 1487-1492.]); Eastmond & Paprotny (1999[Eastmond, G. C. & Paprotny, J. (1999). Eur. Polym. J. 35, 2097-2106.]); Hsio et al. (1997[Hsio, S. H., Yang, C. P. & Chu, K. Y. (1997). Macromolecules, 30, 165-170.]); Liaw & Liaw (2001[Liaw, D. J. & Liaw, B. Y. (2001). Polymer, 2, 839-845.]); Yang & Chen (1993[Yang, C. P. & Chen, W. T. (1993). Macromolecules, 26, 4865-4871.]); Hergenrother et al. (2002[Hergenrother, P. M., Watson, K. A., Smith, J. G., Connell, J. W. & Yokota, R. (20021). Polymer, 41, 5073-5081.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O2

  • Mr = 244.29

  • Orthorhombic, P b c n

  • a = 14.2157 (9) Å

  • b = 10.4608 (8) Å

  • c = 8.1817 (5) Å

  • V = 1216.68 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 (2) K

  • 0.37 × 0.35 × 0.23 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: none

  • 15103 measured reflections

  • 1700 independent reflections

  • 1549 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.119

  • S = 1.20

  • 1700 reflections

  • 95 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.93 (2) 2.53 (2) 3.4082 (18) 158.6 (18)
N1—H1B⋯N1ii 0.94 (4) 2.48 (4) 3.360 (3) 157 (4)
N1—H1C⋯N1iii 0.96 (5) 2.61 (5) 3.468 (3) 148 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Aromatic polyimides are well accepted as high performance and heat resistant materials (Hergenrother et al., 2000). They exhibit a favorable balance of physical and chemical properties, show excellent thermal, mechanical and electrical properties and are thus widely used in microelectronics and aerospace engineering (Eastmond & Paprotny, 1999). However, the technological and industrial application of rigid polyimides are limited by processing difficulties due to their high melting or glass transition temperatures and their lack of solubility in most organic solvents (Hsio et al., 1997). Strong interactions between polyimide chains and their rigid structures are the main reason for these behaviors. To overcome such a drawback, different methods have been introduced to modifiy their structures. Many efforts have been made in designing and synthesizing new dianhydrides (Eastmond & Paprotny, 1999) and diamines (Yang & Chen, 1993), and therefore producing a great variety of more soluble and processable polyimides for various purposes and applications. Incorporation of flexible units such as –NHCO–, –O–, (Barikani & Mehdipour-Ataei, 2000), –CO– and –SO2- is one of the most important approaches to overcome these processing problems (Liaw & Liaw, 2001). The title compound is such a new starting material for the synthesis of high performance polyimides.

Molecules of the title compound, C14H16N2O4, are located on a crystallographic twofold rotation axis. The central O—C—C—O bridge adopts a gauche conformation. One of the amino H atoms is disordered over two equally occupied positions. As a result of that, neighbouring molecules are connected by alternating hydrogen bonds, either N1-H1B···N1ii or N1-H1C···N1iii, because H1B and H1C and their symmetry equivalents would be too close to each other and would be mutually exclusive (symmetry codes: see Table 1). In addition, the crystal structure is stabilized by N—H···O hydrogen bonds (Table 1).

Related literature top

For related literature, see: Barikani & Mehdipour-Ataei (2000); Eastmond & Paprotny (1999); Hsio et al. (1997); Liaw & Liaw (2001); Yang & Chen (1993); Hergenrother et al. (2000).

Experimental top

A two neck 250 ml round bottom flask was charged with 1 g of 1,2-di(p-nitrophenyloxy) ethylene (3.28 mmoles), 10 ml of hydrazine monohydrate, 80 ml of ethanol and 0.06 g of 5% palladium on carbon (Pd/C).The mixture was heated to reflux for 16 h and then filtered to remove Pd/C and the crude solid was recrystallized from ethanol to yield 92.2% of the diamine, m.p. 352K.

Refinement top

All H atoms could be located by difference Fourier synthesis but were ultimately placed in calculated positions using a riding model with C—H(aromatic) = 0.95 Å or CH(methylene) = 0.99 Å with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C). The amino H atoms were freely refined. One of the amino H atoms is disordered over two equally occupied positions.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and only one of the two alternative types of N-H hydrogen atoms is shown. Symmetry code for generating equivalent atoms: (A) -x+2, y, -z+3/2.
1,2-Bis(4-aminophenoxy)ethane top
Crystal data top
C14H16N2O2Dx = 1.334 Mg m3
Mr = 244.29Melting point: 179 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 14232 reflections
a = 14.2157 (9) Åθ = 3.5–29.7°
b = 10.4608 (8) ŵ = 0.09 mm1
c = 8.1817 (5) ÅT = 173 K
V = 1216.68 (14) Å3Block, dark red
Z = 40.37 × 0.35 × 0.23 mm
F(000) = 520
Data collection top
Stoe IPDSII two-circle
diffractometer
1549 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 29.6°, θmin = 3.5°
ω scansh = 1919
15103 measured reflectionsk = 1411
1700 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.7945P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
1700 reflectionsΔρmax = 0.29 e Å3
95 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (2)
Crystal data top
C14H16N2O2V = 1216.68 (14) Å3
Mr = 244.29Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 14.2157 (9) ŵ = 0.09 mm1
b = 10.4608 (8) ÅT = 173 K
c = 8.1817 (5) Å0.37 × 0.35 × 0.23 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
1549 reflections with I > 2σ(I)
15103 measured reflectionsRint = 0.049
1700 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.29 e Å3
1700 reflectionsΔρmin = 0.19 e Å3
95 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.91391 (6)0.60429 (10)0.65677 (12)0.0243 (3)
N10.52550 (9)0.65323 (15)0.5428 (2)0.0332 (3)
H1A0.5093 (15)0.718 (2)0.470 (3)0.048 (6)*
H1B0.496 (3)0.573 (4)0.537 (5)0.042 (11)*0.50
H1C0.486 (3)0.650 (4)0.638 (6)0.048 (12)*0.50
C10.81695 (9)0.61092 (12)0.63296 (15)0.0198 (3)
C20.78489 (9)0.71034 (13)0.53437 (17)0.0232 (3)
H20.82850.76840.48720.028*
C30.68899 (10)0.72479 (13)0.50483 (17)0.0239 (3)
H30.66780.79310.43770.029*
C40.62345 (9)0.64020 (13)0.57255 (17)0.0234 (3)
C50.65662 (10)0.54140 (14)0.67195 (19)0.0268 (3)
H50.61310.48350.71960.032*
C60.75275 (10)0.52624 (13)0.70255 (17)0.0240 (3)
H60.77420.45860.77040.029*
C70.94691 (9)0.49765 (13)0.75075 (18)0.0244 (3)
H7A0.92300.41690.70330.029*
H7B0.92370.50430.86450.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0192 (4)0.0272 (5)0.0264 (5)0.0010 (4)0.0026 (4)0.0063 (4)
N10.0205 (6)0.0377 (7)0.0413 (8)0.0012 (5)0.0023 (5)0.0043 (6)
C10.0202 (6)0.0214 (6)0.0178 (5)0.0003 (5)0.0017 (4)0.0017 (5)
C20.0231 (6)0.0230 (6)0.0235 (6)0.0010 (5)0.0019 (5)0.0039 (5)
C30.0246 (6)0.0239 (6)0.0233 (6)0.0036 (5)0.0001 (5)0.0028 (5)
C40.0205 (6)0.0254 (6)0.0244 (6)0.0005 (5)0.0010 (5)0.0028 (5)
C50.0228 (6)0.0267 (6)0.0310 (7)0.0048 (5)0.0004 (5)0.0043 (6)
C60.0247 (6)0.0223 (6)0.0250 (6)0.0023 (5)0.0033 (5)0.0050 (5)
C70.0237 (6)0.0233 (6)0.0261 (6)0.0007 (5)0.0050 (5)0.0024 (5)
Geometric parameters (Å, º) top
O1—C11.3938 (15)C3—C41.3992 (19)
O1—C71.4338 (16)C3—H30.9500
N1—C41.4202 (18)C4—C51.397 (2)
N1—H1A0.93 (2)C5—C61.3983 (19)
N1—H1B0.94 (4)C5—H50.9500
N1—H1C0.96 (5)C6—H60.9500
C1—C21.3928 (18)C7—C7i1.510 (2)
C1—C61.3935 (18)C7—H7A0.9900
C2—C31.3927 (18)C7—H7B0.9900
C2—H20.9500
C1—O1—C7115.93 (10)C5—C4—C3118.27 (12)
C4—N1—H1A115.0 (14)C5—C4—N1120.12 (13)
C4—N1—H1B112 (3)C3—C4—N1121.61 (13)
H1A—N1—H1B120 (3)C4—C5—C6121.20 (12)
C4—N1—H1C115 (3)C4—C5—H5119.4
H1A—N1—H1C114 (3)C6—C5—H5119.4
H1B—N1—H1C75 (3)C1—C6—C5119.65 (12)
C2—C1—C6119.80 (12)C1—C6—H6120.2
C2—C1—O1116.21 (11)C5—C6—H6120.2
C6—C1—O1123.98 (12)O1—C7—C7i108.83 (10)
C3—C2—C1120.12 (12)O1—C7—H7A109.9
C3—C2—H2119.9C7i—C7—H7A109.9
C1—C2—H2119.9O1—C7—H7B109.9
C2—C3—C4120.96 (12)C7i—C7—H7B109.9
C2—C3—H3119.5H7A—C7—H7B108.3
C4—C3—H3119.5
C7—O1—C1—C2176.63 (12)C3—C4—C5—C60.5 (2)
C7—O1—C1—C64.11 (19)N1—C4—C5—C6179.72 (14)
C6—C1—C2—C30.3 (2)C2—C1—C6—C50.4 (2)
O1—C1—C2—C3179.57 (12)O1—C1—C6—C5179.62 (13)
C1—C2—C3—C40.2 (2)C4—C5—C6—C10.0 (2)
C2—C3—C4—C50.6 (2)C1—O1—C7—C7i174.05 (12)
C2—C3—C4—N1179.62 (14)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.93 (2)2.53 (2)3.4082 (18)158.6 (18)
N1—H1B···N1iii0.94 (4)2.48 (4)3.360 (3)157 (4)
N1—H1C···N1iv0.96 (5)2.61 (5)3.468 (3)148 (3)
Symmetry codes: (ii) x1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H16N2O2
Mr244.29
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)14.2157 (9), 10.4608 (8), 8.1817 (5)
V3)1216.68 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.35 × 0.23
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15103, 1700, 1549
Rint0.049
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.20
No. of reflections1700
No. of parameters95
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.93 (2)2.53 (2)3.4082 (18)158.6 (18)
N1—H1B···N1ii0.94 (4)2.48 (4)3.360 (3)157 (4)
N1—H1C···N1iii0.96 (5)2.61 (5)3.468 (3)148 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+3/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan, and to the Institute for Inorganic Chemistry, University of Frankfurt, Germany, for providing laboratory and analytical facilities.

References

First citationBarikani, M. & Mehdipour-Ataei, S. (2000). J. Polym. Sci. A Polym. Chem. 38, 1487–1492.  CrossRef CAS Google Scholar
First citationEastmond, G. C. & Paprotny, J. (1999). Eur. Polym. J. 35, 2097–2106.  Web of Science CrossRef CAS Google Scholar
First citationHergenrother, P. M., Watson, K. A., Smith, J. G., Connell, J. W. & Yokota, R. (20021). Polymer, 41, 5073–5081.  Google Scholar
First citationHsio, S. H., Yang, C. P. & Chu, K. Y. (1997). Macromolecules, 30, 165–170.  CrossRef Web of Science Google Scholar
First citationLiaw, D. J. & Liaw, B. Y. (2001). Polymer, 2, 839–845.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYang, C. P. & Chen, W. T. (1993). Macromolecules, 26, 4865–4871.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds