metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m665-m666

Di-μ-nicotinato-κ2N:O;κ2O:N-bis­­[aqua­(ethyl­enedi­amine-κ2N,N′)(nicotinato-κN)cadmium(II)] dihydrate

aDepartment of Inorganic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovakia
*Correspondence e-mail: jan.moncol@stuba.sk

(Received 2 April 2008; accepted 9 April 2008; online 16 April 2008)

The dinuclear mol­ecule of the title compound, [Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2O, lies on an inversion centre and forms 12-membered (CdNC3O)2 metallacycles with the two Cd2+ ions bridged by two nicotinate ligands. Both Cd2+ ions display coordination polyhedra with a distorted octa­hedral geometry that includes two pyridine N atoms from bridging and terminal nicotinate anions, two amine N atoms from chelating ethylene­diamine ligands, carboxylate O atoms from bridging nicotinate anions and water O atoms. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds result in the formation of a three-dimensional network, and ππ stacking inter­actions are observed between symmetry-related pyridine rings of bridging as well as terminal nicotinate anions (the centroid–centroid distances are 3.59 and 3.69 Å, respectively, and the distances between parallel planes of the stacked pyridine rings are 3.53 and 3.43 Å, respectively). The two methylene groups of the ethylene­diamine ligand are disordered over two positions; the site occupancy factors are ca 0.8 and 0.2.

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Chen (2003[Chen, H.-J. (2003). Acta Cryst. C59, m371-m372.]); Clegg et al. (1995[Clegg, W., Cressey, J. T., McCamley, A. & Straughan, B. P. (1995). Acta Cryst. C51, 234-235.]); Evans & Lin (2001[Evans, O. R. & Lin, W. (2001). Chem. Mater. 13, 3009-3017.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Kang et al. (2007[Kang, Y., Zhang, J., Qin, Y.-Y., Li, Z.-J. & Yao, Y.-G. (2007). J. Mol. Struct. 827, 126-129.]); Liang & Li (2005[Liang, Y. & Li, W. (2005). Acta Cryst. E61, m1135-m1137.]); Lu & Kohler (2002[Lu, J. Y. & Kohler, E. E. (2002). Inorg. Chem. Commun. 5, 196-198.]); Lu et al. (2007[Lu, J. Y., Achten, M. A. & Zhang, A. (2007). Inorg. Chem. Commun. 10, 114-116.]); Luo et al. (2004[Luo, J., Jiang, F., Wang, R., Han, L., Lin, Z., Cao, R. & Hong, M. (2004). J. Mol. Struct. 707, 211-216.]); Song et al. (2006[Song, Y.-S., Yan, B. & Chen, Z.-X. (2006). J. Solid State Chem. 179, 4037-4046.]); Xian et al. (2007[Xian, Y., Niu, S. Y., Jin, J., Sun, L. P., Yang, G. D. & Ye, L. (2007). Z. Anorg. Allg. Chem. 633, 1274-1278.]); Zhang et al. (1996[Zhang, C., Xu, D., Xu, Y. & Huang, X. (1996). Acta Cryst. C52, 591-593.]); Zhang et al. (2004[Zhang, J., Li, Z.-J., Wen, Y.-H., Kang, Y., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. C60, m389-m391.]). For related structures, see: Ayyappan et al. (2001[Ayyappan, P., Evans, O. R. & Lin, W.-L. (2001). Inorg. Chem. 40, 4627-4632.]); Abu-Youssef (2005[Abu-Youssef, M. A. M. (2005). Polyhedron, 24, 1829-1836.]); Chen et al. (2001[Chen, H.-J., Mao, Z.-W., Gao, S. & Chen, X.-M. (2001). Chem. Commun. pp. 2320-2321.], 2008[Chen, C., Chan, Z.-K., Yeh, C.-W. & Chen, J.-D. (2008). Struct. Chem. In the press. doi: 10.1007/s11224-007-9256-9.]); Lin et al. (2000[Lin, W.-B., Chapman, M. E., Wang, Z. & Lee, G. T. (2000). Inorg. Chem. 39, 4169-4173.]); Liu et al. (2005[Liu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298-7300.]); Madalan et al. (2005[Madalan, A. M., Paraschiv, C., Sutter, J.-P., Schmidtmann, M., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 707-711.]); Wang et al. (2002[Wang, W.-G., Ma, C.-B., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Chen, F., Liao, D.-Z. & Li, L.-C. (2002). Bull. Chem. Soc. Jpn, 75, 2609-2614.]); Wasson & LaDuca (2007[Wasson, A. E. & LaDuca, R. L. (2007). Polyhedron, 26, 1001-1011.]); Wu et al. (2003[Wu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2003). Z. Anorg. Allg. Chem. 629, 693-696.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2O

  • Mr = 905.18

  • Triclinic, [P \overline 1]

  • a = 7.678 (1) Å

  • b = 10.364 (1) Å

  • c = 11.984 (2) Å

  • α = 101.080 (1)°

  • β = 93.60 (1)°

  • γ = 109.63 (1)°

  • V = 873.1 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 294 (2) K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XEMP; Siemens, 1994[Siemens (1994). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.652, Tmax = 0.776

  • 6118 measured reflections

  • 5071 independent reflections

  • 4491 reflections with I > 2σ(I)

  • Rint = 0.055

  • 3 standard reflections every 97 reflections intensity decay: 2.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.06

  • 5071 reflections

  • 245 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O4i 0.82 1.84 2.659 (2) 174
O1W—H2W⋯O2ii 0.84 1.93 2.762 (3) 169
O2W—H3W⋯O2Wiii 0.84 2.25 3.041 (10) 158
O2W—H4W⋯O3iv 0.82 1.97 2.742 (5) 157
N3—H3A⋯O2 0.89 2.37 3.099 (3) 139
N3—H3B⋯O4v 0.90 2.11 2.966 (3) 160
N3—H3C⋯O2 0.89 2.36 3.099 (3) 141
N3—H3D⋯O4v 0.90 2.24 2.966 (3) 138
N4—H4A⋯O3i 0.91 2.16 3.054 (3) 169
N4—H4B⋯O2W 0.91 2.22 2.975 (4) 140
N4—H4C⋯O3i 0.92 2.26 3.054 (3) 145
N4—H4D⋯O2W 0.90 2.13 2.975 (4) 157
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) -x, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+1, -z.

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Several CdII coordination polymers that contain bridging 3-pyridylcarboxylate (nicotinate) ligands have been reported recently (Abu-Youssef, 2005; Evans & Lin, 2001; Chen, (2003); Clegg et al., 1995; Kang et al., 2007; Liang & Li, 2005; Lu & Kohler, 2002; Lu et al., 2007; Song et al., 2006; Xian et al. 2007; Zhang et al., 1996; Zhang et al., 2004). However, if the nicotinate anions are coordinated only as terminal ligands, the possibility of participating in a hydrogen-bonding network originates. As part of our efforts to investigate metal(II) complexes based on pyridine carboxylic acids, we report herein the crystal structure of the title compound, (I).

Figure 1 shows a representative ORTEP diagram for (I). The Cd centers are µ2-bridged by two nicotinate ligands to form a twelve-membered (CdNC3O)2 ring with the Cd···Cdi [symmetry code: (i) -x + 1, -y + 1, -z + 1] distance being 7.355 (1) Å. The two nicotinate ligands bridge two Cd centers through the pyridyl N atom and one of the carboxylate O atoms. The Cd2+ ion has a distorted octahedral coordination formed by the two pyridine N atoms of bridging [Cd–N1i = 2.349 (2) Å] and terminal [Cd–N2 = 2.406 (2) Å] nicotinate anions; the two N atoms of chelating 1,2-ethylenediamine ligands [Cd–N3 = 2.321 (2) Å and Cd–N4 = 2.345 (2) Å], and two O atoms in trans positions, one from the carboxylate group of a µ2-bridging nicotinate ligand [Cd–O1 = 2.325 (2) Å] and one from the coordinated water molecule [Cd–O1W = 2.348 (2) Å].

The structure of (I) can be compared with two dimeric copper(II) complexes with a µ2-bridging nicotinate ligand [Cu(µ2-nic)(dien)]2(nic)2 (II) and [Cu(µ2-nic)(dien)]2(BF4)2.2MeOH (III) [dien is diethylenetriamine] (Chen et al., 2008). Both compounds (II-III) are dimeric complexes, where the nicotinate ligands are bridging two Cu centers to form similar twelve-membered (CuNC3O)2 rings (Table 2). On the other hand, the same (MNC3O)2 [M = Cu, Cd, Ni or Mn] rings are observed in some metal(II) nicotinate based coordination polymers, but the nicotinate ligands are µ3-bridging ones. M···M distances and chromophores for dinuclear and polymeric complexes with twelve-membered (MNC3O)2 rings are compared in Table 2.

The hydrogen-bonding parameters of (I) are listed in Table 1. In the crystal structure, intermolecular O–H···O and N–H···O hydrogen-bonds (Table 1) link the molecules to form a three-dimensional network (Figures 2 and 3). One of the amine H atoms of the 1,2-ethylenediamine ligand forms an intramolecular hydrogen-bond [N3–H3A···O2 or N3–H3C···O2] and partipicates in creation of aan intramolecular metallocyclus with an S(6) pattern (Bernstein et al., 1995) (Figure 2). One O atom and one H atom of each of the uncoordinated water molecules, two amine groups of the 1,2-ethylenediamine ligands and one carboxylate O atom of each of the terminal nicotinate ligands are connected through hydrogen-bonds to rings with a graph set motif of R66(12) (Bernstein et al., 1995) [N4–H4B···O2W or N4–H4D···O2W; N4–H4A···O3iii or N4–H4C···O3iii; and O2W–H4W···O3i, symmetry codes: (i) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z] (Figure 2). The H atoms from the amine groups of the 1,2-ethylenediamine ligand and the H atoms from the coordinated water molecule are connected through hydrogen-bonds to the carboxylate O atoms of the terminal nicotinate ligands [N4–H4A···O3iii or N4–H4C···O3iii; O1W–H1W···O4iii] and these groups create six-membered R22(8) rings (Bernstein et al., 1995) (Figure 2). The remaining hydrogen-bonds from the amine groups of the ethylendiamine ligands are connected to carboxylate O atoms of terminal nicotinate ligands of neighbouring complex molecules [N3–H3B···O4ii or N3–H3D···O4ii, symmetry codes: (ii) -x + 1, -y + 1, -z] (Figure 2). Further intermolecular hydrogen-bonds between uncoordinated water molecules [O2W–H3W···O2Wv, symmetry codes: (v) -x, -y, -z + 1], and between coordinated water molecules and carboxylate O atoms of bridging nicotinate ligands [O1W–H2W···O2iv, symmetry codes: (iv) x + 1, y, z] are shown in Figure 3.

Additional interactions between the pyridine rigs of nicotinate ligands are π-π stacking interactions (Janiak, 2000) between the two adjacent pyridine rings of terminal nicotinate ligands [N2/C8—C12] (πa-πaii) (Figure 2), and between the two adjacent pyridine rings of bridging nicotinate ligands [N1/C2—C6] (πb-πbvi) (Figure 3) [symmetry codes: (ii) -x + 1, -y + 1, -z; (vi) -x, -y + 1, -z - 1]. The centroid (Cg) distances Cg···Cg are 3.69 and 3.59 Å, respectively. The distances between parallel planes of the stacked pyridine rings are 3.43 and 3.53 Å, respectively.

Related literature top

For related literature, see: Bernstein et al. (1995); Chen (2003); Clegg et al. (1995); Evans & Lin (2001); Janiak (2000); Kang et al. (2007); Liang & Li (2005); Lu & Kohler (2002); Lu et al. (2007); Luo et al. (2004); Song et al. (2006); Xian et al. (2007); Zhang et al. (1996); Zhang et al. (2004). For related structures, see: Ayyappan et al. (2001); Abu-Youssef (2005); Chen et al. (2001, 2008); Lin et al. (2000); Liu et al. (2005); Madalan et al. (2005); Wang et al. (2002); Wasson & LaDuca (2007); Wu et al. (2003).

Experimental top

The title complex was formed in a methanolic solution (30 cm3) of Cd(nicotinate)2.H2O (1.25 mmol) by adding 1,2-ethylenediamine in the molar ratio of 1:1. The resulting solution was left to slowly evaporate at room temperature. Well shaped crystals, suitable for X-ray structure analysis were collected after a few days by filtration and finally dried in vacuo. Anal. Calc.: C, 37.14; H, 4.45; N, 12.37; Cd, 24.83; Found: C, 36.82; H, 4.53; N, 12.30; Cd, 24.65. Selected IR data (KBr) cm-1: 1611 vs,br νas(COO-); 1383 vs,br νs(COO-); 643m δ(pyridine ring in-plane bending); 432m χ(pyridine ring out-of-plane bending).

Refinement top

The 1,2-ethylenediamine ligand has orientational disorder [C13A—C14A and C13B—C14B] and the refined site-occupancy factors of both the disordered parts are 0.78 (1) and 0.22 (1), respectively. The disordered parts of the title compounds were restrained using SADI, DELU and SIMU commands (SHELXL97; Sheldrick, 2008). All H atoms of C–H (aromatic, methylene) and N–H (amine) bonds were placed in calculated positions (0.93, 0.97 and 0.89–0.92 Å, respectively); isotropic displaced parameters were fixed (Uiso(H) = 1.2 Uiso(C/N) of C or N atoms to which they were attached) using a riding model. The water H atoms were placed in calculed positions (O–H = 0.82–0.84 Å); isotropic displaced parameters were fixed (Uiso(H) = 1.5 Uiso(O)) of O atoms to which they were attached).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), with the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level. Bonds in the minor disordered parts are drawn as open-dashed lines.
[Figure 2] Fig. 2. The hydrogen-bonds and πa-πa stacking interactions in the crystal packing of (I). Only the major disordered part is shown. [symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) x, y - 1, z]
[Figure 3] Fig. 3. The hydrogen-bonds and πb-πb stacking interactions in the crystal packing of (I). Only the major disordered part is shown. [symmetry codes: (iii) x, y - 1, z; (iv) x + 1, y, z; (v) -x, -y, -z + 1]
Di-µ-nicotinato-κ2N:O;κ2O:N-bis[aqua(ethylenediamine- κ2N,N')(nicotinato-κN)cadmium(II)] dihydrate top
Crystal data top
[Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2OZ = 1
Mr = 905.18F(000) = 456
Triclinic, P1Dx = 1.722 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 7.678 (1) ÅCell parameters from 25 reflections
b = 10.364 (1) Åθ = 2.1–8.9°
c = 11.984 (2) ŵ = 1.29 mm1
α = 101.08 (1)°T = 294 K
β = 93.60 (1)°Prism, colourless
γ = 109.63 (1)°0.35 × 0.30 × 0.20 mm
V = 873.1 (2) Å3
Data collection top
Siemens P4
diffractometer
4491 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 30.0°, θmin = 1.8°
2θ/ω scansh = 110
Absorption correction: ψ scan
(XEMP; Siemens, 1994)
k = 1413
Tmin = 0.652, Tmax = 0.776l = 1616
6118 measured reflections3 standard reflections every 97 reflections
5071 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.1604P]
where P = (Fo2 + 2Fc2)/3
5071 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.57 e Å3
21 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2Oγ = 109.63 (1)°
Mr = 905.18V = 873.1 (2) Å3
Triclinic, P1Z = 1
a = 7.678 (1) ÅMo Kα radiation
b = 10.364 (1) ŵ = 1.29 mm1
c = 11.984 (2) ÅT = 294 K
α = 101.08 (1)°0.35 × 0.30 × 0.20 mm
β = 93.60 (1)°
Data collection top
Siemens P4
diffractometer
4491 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1994)
Rint = 0.055
Tmin = 0.652, Tmax = 0.7763 standard reflections every 97 reflections
6118 measured reflections intensity decay: 2.0%
5071 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03021 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.06Δρmax = 0.57 e Å3
5071 reflectionsΔρmin = 0.62 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50747 (2)0.217937 (14)0.263617 (13)0.03264 (6)
O10.3261 (3)0.3353 (2)0.35364 (17)0.0505 (5)
O1W0.7358 (3)0.13999 (17)0.18352 (18)0.0457 (4)
H1W0.71660.05580.16310.069*
H2W0.85050.18950.20050.069*
O20.1020 (3)0.3222 (2)0.21860 (16)0.0471 (4)
O2W0.1968 (6)0.0994 (5)0.4981 (3)0.1256 (15)
H3W0.10500.03140.50550.188*
H4W0.25790.14960.55950.188*
O30.6053 (4)0.8065 (2)0.2856 (2)0.0739 (8)
O40.6980 (4)0.87012 (19)0.12727 (19)0.0619 (6)
N10.2917 (3)0.6858 (2)0.56161 (17)0.0364 (4)
N20.6293 (3)0.41008 (18)0.17134 (17)0.0353 (4)
N30.2678 (3)0.0997 (2)0.11238 (19)0.0429 (4)
H3A0.16970.12390.12650.051*0.780 (10)
H3B0.30710.12250.04760.051*0.780 (10)
H3C0.20020.15320.10620.051*0.220 (10)
H3D0.31920.08630.04790.051*0.220 (10)
N40.3717 (3)0.0048 (2)0.30277 (19)0.0445 (5)
H4A0.45220.05220.29300.053*0.780 (10)
H4B0.35290.00510.37760.053*0.780 (10)
H4C0.46410.03460.32760.053*0.220 (10)
H4D0.30250.00060.36000.053*0.220 (10)
C10.2052 (3)0.3777 (2)0.3123 (2)0.0347 (4)
C20.1904 (3)0.5085 (2)0.38534 (19)0.0315 (4)
C30.2937 (3)0.5680 (2)0.4933 (2)0.0357 (4)
H30.36910.52330.51990.043*
C40.1810 (4)0.7494 (2)0.5236 (2)0.0412 (5)
H40.17770.83110.57020.049*
C50.0722 (4)0.6972 (3)0.4178 (2)0.0468 (6)
H50.00400.74290.39400.056*
C60.0771 (3)0.5761 (3)0.3470 (2)0.0407 (5)
H60.00580.54050.27490.049*
C70.6597 (4)0.7856 (2)0.1908 (2)0.0428 (5)
C80.6792 (3)0.6441 (2)0.1471 (2)0.0326 (4)
C90.6207 (3)0.5384 (2)0.20765 (19)0.0333 (4)
H90.57370.55760.27610.040*
C100.6977 (3)0.3842 (2)0.0733 (2)0.0386 (5)
H100.70410.29550.04780.046*
C110.7595 (4)0.4825 (3)0.0076 (2)0.0399 (5)
H110.80650.46050.06030.048*
C120.7494 (3)0.6147 (2)0.0455 (2)0.0358 (4)
H120.78950.68290.00300.043*
C13A0.2200 (8)0.0529 (4)0.1059 (4)0.0548 (13)0.780 (10)
H13A0.31860.08280.07670.066*0.780 (10)
H13B0.10520.10590.05390.066*0.780 (10)
C14A0.1963 (8)0.0807 (5)0.2237 (4)0.0604 (14)0.780 (10)
H14A0.09780.05040.25270.072*0.780 (10)
H14B0.16020.18080.21930.072*0.780 (10)
C13B0.1473 (18)0.0289 (13)0.1436 (17)0.056 (4)0.220 (10)
H13C0.06250.09230.07690.067*0.220 (10)
H13D0.07400.00520.20190.067*0.220 (10)
C14B0.270 (2)0.0967 (12)0.1881 (13)0.052 (4)0.220 (10)
H14C0.35800.10590.13540.062*0.220 (10)
H14D0.19590.18980.19670.062*0.220 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04196 (9)0.02134 (7)0.03364 (8)0.01255 (6)0.00412 (6)0.00197 (5)
O10.0542 (11)0.0569 (11)0.0438 (9)0.0363 (9)0.0027 (8)0.0076 (8)
O1W0.0458 (9)0.0247 (7)0.0671 (12)0.0154 (7)0.0149 (8)0.0040 (7)
O20.0444 (9)0.0463 (9)0.0415 (9)0.0158 (8)0.0034 (7)0.0076 (7)
O2W0.162 (4)0.189 (4)0.075 (2)0.125 (3)0.040 (2)0.022 (2)
O30.135 (2)0.0523 (12)0.0625 (14)0.0592 (14)0.0451 (15)0.0202 (11)
O40.1147 (19)0.0276 (8)0.0537 (12)0.0330 (10)0.0270 (12)0.0143 (8)
N10.0429 (10)0.0330 (9)0.0338 (9)0.0176 (8)0.0026 (7)0.0023 (7)
N20.0440 (10)0.0227 (7)0.0409 (10)0.0147 (7)0.0038 (8)0.0067 (7)
N30.0484 (11)0.0411 (10)0.0368 (10)0.0151 (9)0.0021 (8)0.0062 (8)
N40.0578 (13)0.0339 (9)0.0417 (11)0.0138 (9)0.0093 (9)0.0124 (8)
C10.0322 (10)0.0333 (10)0.0352 (10)0.0108 (8)0.0063 (8)0.0012 (8)
C20.0308 (9)0.0300 (9)0.0341 (10)0.0113 (8)0.0082 (8)0.0059 (8)
C30.0391 (11)0.0335 (10)0.0361 (10)0.0182 (9)0.0038 (8)0.0026 (8)
C40.0532 (14)0.0342 (11)0.0413 (12)0.0234 (10)0.0066 (10)0.0060 (9)
C50.0578 (15)0.0456 (13)0.0460 (13)0.0309 (12)0.0013 (11)0.0102 (11)
C60.0422 (12)0.0442 (12)0.0375 (11)0.0198 (10)0.0008 (9)0.0068 (9)
C70.0629 (15)0.0264 (9)0.0439 (12)0.0223 (10)0.0083 (11)0.0071 (9)
C80.0362 (10)0.0228 (8)0.0394 (10)0.0122 (7)0.0018 (8)0.0064 (7)
C90.0402 (11)0.0248 (9)0.0367 (10)0.0141 (8)0.0050 (8)0.0066 (8)
C100.0504 (13)0.0262 (9)0.0410 (11)0.0191 (9)0.0041 (9)0.0028 (8)
C110.0485 (13)0.0355 (11)0.0404 (11)0.0207 (10)0.0128 (9)0.0065 (9)
C120.0399 (11)0.0279 (9)0.0406 (11)0.0112 (8)0.0087 (9)0.0102 (8)
C13A0.069 (3)0.0353 (17)0.0425 (19)0.0009 (17)0.0001 (18)0.0024 (14)
C14A0.062 (3)0.048 (2)0.052 (2)0.007 (2)0.006 (2)0.0158 (19)
C13B0.043 (7)0.043 (7)0.063 (10)0.004 (5)0.002 (6)0.004 (6)
C14B0.055 (8)0.024 (5)0.064 (9)0.001 (5)0.011 (6)0.003 (5)
Geometric parameters (Å, º) top
Cd1—N32.321 (2)N4—H4D0.8980
Cd1—O12.325 (2)C1—C21.509 (3)
Cd1—N42.344 (2)C2—C31.385 (3)
Cd1—O1W2.348 (2)C2—C61.394 (3)
Cd1—N1i2.349 (2)C3—H30.9300
Cd1—N22.406 (2)C4—C51.378 (4)
O1—C11.264 (3)C4—H40.9300
O1W—H1W0.8187C5—C61.387 (3)
O1W—H2W0.8450C5—H50.9300
O2—C11.247 (3)C6—H60.9300
O2W—H3W0.8365C7—C81.519 (3)
O2W—H4W0.8232C8—C121.385 (3)
O3—C71.240 (3)C8—C91.395 (3)
O4—C71.243 (3)C9—H90.9300
N1—C31.339 (3)C10—C111.384 (3)
N1—C41.344 (3)C10—H100.9300
N1—Cd1i2.349 (2)C11—C121.388 (3)
N2—C101.334 (3)C11—H110.9300
N2—C91.343 (3)C12—H120.9300
N3—C13B1.477 (12)C13A—C14A1.504 (6)
N3—C13A1.484 (4)C13A—H13A0.9700
N3—H3A0.8860C13A—H13B0.9700
N3—H3B0.8955C14A—H14A0.9700
N3—H3C0.8870C14A—H14B0.9700
N3—H3D0.8982C13B—C14B1.479 (15)
N4—C14A1.474 (5)C13B—H13C0.9700
N4—C14B1.507 (12)C13B—H13D0.9700
N4—H4A0.9105C14B—H14C0.9700
N4—H4B0.9088C14B—H14D0.9700
N4—H4C0.9180
N3—Cd1—O190.64 (7)O2—C1—C2118.9 (2)
N3—Cd1—N476.38 (8)O1—C1—C2115.1 (2)
O1—Cd1—N4100.83 (9)C3—C2—C6117.3 (2)
N3—Cd1—O1W97.31 (8)C3—C2—C1120.63 (19)
O1—Cd1—O1W169.36 (7)C6—C2—C1122.1 (2)
N4—Cd1—O1W87.95 (7)N1—C3—C2124.0 (2)
N3—Cd1—N1i168.76 (7)N1—C3—H3118.0
O1—Cd1—N1i84.28 (7)C2—C3—H3118.0
N4—Cd1—N1i94.70 (7)N1—C4—C5122.1 (2)
O1W—Cd1—N1i89.07 (7)N1—C4—H4119.0
N3—Cd1—N291.32 (7)C5—C4—H4119.0
O1—Cd1—N288.34 (7)C4—C5—C6119.5 (2)
N4—Cd1—N2164.61 (7)C4—C5—H5120.2
O1W—Cd1—N284.44 (7)C6—C5—H5120.2
N1i—Cd1—N298.52 (7)C5—C6—C2119.1 (2)
C1—O1—Cd1130.80 (16)C5—C6—H6120.4
Cd1—O1W—H1W120.5C2—C6—H6120.4
Cd1—O1W—H2W121.2O3—C7—O4125.6 (2)
H1W—O1W—H2W113.0O3—C7—C8117.7 (2)
H3W—O2W—H4W113.8O4—C7—C8116.7 (2)
C3—N1—C4118.0 (2)C12—C8—C9118.18 (19)
C3—N1—Cd1i119.65 (15)C12—C8—C7121.6 (2)
C4—N1—Cd1i122.28 (16)C9—C8—C7120.2 (2)
C10—N2—C9117.98 (19)N2—C9—C8122.8 (2)
C10—N2—Cd1117.60 (14)N2—C9—H9118.6
C9—N2—Cd1124.23 (16)C8—C9—H9118.6
C13B—N3—Cd1107.2 (6)N2—C10—C11123.4 (2)
C13A—N3—Cd1107.0 (2)N2—C10—H10118.3
C13B—N3—H3A80.3C11—C10—H10118.3
C13A—N3—H3A109.8C10—C11—C12118.3 (2)
Cd1—N3—H3A109.2C10—C11—H11120.8
C13B—N3—H3B135.6C12—C11—H11120.8
C13A—N3—H3B111.4C8—C12—C11119.4 (2)
Cd1—N3—H3B109.0C8—C12—H12120.3
H3A—N3—H3B110.3C11—C12—H12120.3
C13B—N3—H3C107.7N3—C13A—C14A109.3 (4)
C13A—N3—H3C133.5N3—C13A—H13A109.8
Cd1—N3—H3C108.4C14A—C13A—H13A109.8
C13B—N3—H3D115.9N3—C13A—H13B109.8
C13A—N3—H3D86.8C14A—C13A—H13B109.8
Cd1—N3—H3D108.1H13A—C13A—H13B108.3
H3C—N3—H3D109.4N4—C14A—C13A110.5 (4)
C14A—N4—Cd1108.3 (2)N4—C14A—H14A109.6
C14B—N4—Cd1103.7 (6)C13A—C14A—H14A109.6
C14A—N4—H4A110.7N4—C14A—H14B109.6
C14B—N4—H4A85.4C13A—C14A—H14B109.6
Cd1—N4—H4A109.4H14A—C14A—H14B108.1
C14A—N4—H4B112.2N3—C13B—C14B107.7 (12)
C14B—N4—H4B137.7N3—C13B—H13C110.2
Cd1—N4—H4B109.4C14B—C13B—H13C110.2
H4A—N4—H4B106.8N3—C13B—H13D110.2
C14A—N4—H4C131.2C14B—C13B—H13D110.2
C14B—N4—H4C110.1H13C—C13B—H13D108.5
Cd1—N4—H4C109.3C13B—C14B—N4107.3 (12)
C14A—N4—H4D88.0C13B—C14B—H14C110.3
C14B—N4—H4D116.6N4—C14B—H14C110.3
Cd1—N4—H4D109.8C13B—C14B—H14D110.3
H4C—N4—H4D107.1N4—C14B—H14D110.3
O2—C1—O1126.0 (2)H14C—C14B—H14D108.5
N3—Cd1—O1—C133.5 (2)O1—C1—C2—C34.8 (3)
N4—Cd1—O1—C1109.7 (2)O2—C1—C2—C65.8 (3)
O1W—Cd1—O1—C1105.0 (4)O1—C1—C2—C6173.7 (2)
N1i—Cd1—O1—C1156.5 (2)C4—N1—C3—C20.8 (4)
N2—Cd1—O1—C157.8 (2)Cd1i—N1—C3—C2175.37 (17)
N3—Cd1—N2—C1065.68 (18)C6—C2—C3—N10.4 (4)
O1—Cd1—N2—C10156.28 (18)C1—C2—C3—N1178.1 (2)
N4—Cd1—N2—C1029.2 (4)C3—N1—C4—C50.2 (4)
O1W—Cd1—N2—C1031.54 (18)Cd1i—N1—C4—C5175.8 (2)
N1i—Cd1—N2—C10119.76 (17)N1—C4—C5—C60.6 (4)
N3—Cd1—N2—C9109.32 (19)C4—C5—C6—C20.9 (4)
O1—Cd1—N2—C918.72 (18)C3—C2—C6—C50.4 (4)
N4—Cd1—N2—C9145.8 (3)C1—C2—C6—C5179.0 (2)
O1W—Cd1—N2—C9153.46 (19)O3—C7—C8—C12176.1 (3)
N1i—Cd1—N2—C965.24 (19)O4—C7—C8—C124.7 (4)
O1—Cd1—N3—C13B87.9 (8)O3—C7—C8—C95.8 (4)
N4—Cd1—N3—C13B13.1 (8)O4—C7—C8—C9173.4 (3)
O1W—Cd1—N3—C13B99.2 (8)C10—N2—C9—C80.3 (3)
N1i—Cd1—N3—C13B25.0 (9)Cd1—N2—C9—C8174.71 (16)
N2—Cd1—N3—C13B176.2 (8)C12—C8—C9—N20.2 (3)
O1—Cd1—N3—C13A121.2 (3)C7—C8—C9—N2178.0 (2)
N4—Cd1—N3—C13A20.2 (3)C9—N2—C10—C110.1 (4)
O1W—Cd1—N3—C13A65.9 (3)Cd1—N2—C10—C11175.22 (19)
N1i—Cd1—N3—C13A58.3 (5)N2—C10—C11—C120.1 (4)
N2—Cd1—N3—C13A150.4 (3)C9—C8—C12—C110.1 (3)
N3—Cd1—N4—C14A10.2 (3)C7—C8—C12—C11178.2 (2)
O1—Cd1—N4—C14A77.8 (3)C10—C11—C12—C80.2 (4)
O1W—Cd1—N4—C14A108.2 (3)C13B—N3—C13A—C14A46.9 (11)
N1i—Cd1—N4—C14A162.9 (3)Cd1—N3—C13A—C14A48.5 (6)
N2—Cd1—N4—C14A47.9 (5)C14B—N4—C14A—C13A46.1 (10)
N3—Cd1—N4—C14B20.6 (7)Cd1—N4—C14A—C13A39.8 (6)
O1—Cd1—N4—C14B108.7 (7)N3—C13A—C14A—N461.5 (8)
O1W—Cd1—N4—C14B77.4 (7)C13A—N3—C13B—C14B47.9 (10)
N1i—Cd1—N4—C14B166.3 (7)Cd1—N3—C13B—C14B46.7 (16)
N2—Cd1—N4—C14B17.1 (8)N3—C13B—C14B—N470 (2)
Cd1—O1—C1—O230.5 (4)C14A—N4—C14B—C13B49.7 (10)
Cd1—O1—C1—C2148.90 (17)Cd1—N4—C14B—C13B53.2 (15)
O2—C1—C2—C3175.7 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4ii0.821.842.659 (2)174
O1W—H2W···O2iii0.841.932.762 (3)169
O2W—H3W···O2Wiv0.842.253.041 (10)158
O2W—H4W···O3i0.821.972.742 (5)157
N3—H3A···O20.892.373.099 (3)139
N3—H3B···O4v0.902.112.966 (3)160
N3—H3C···O20.892.363.099 (3)141
N3—H3D···O4v0.902.242.966 (3)138
N4—H4A···O3ii0.912.163.054 (3)169
N4—H4B···O2W0.912.222.975 (4)140
N4—H4C···O3ii0.922.263.054 (3)145
N4—H4D···O2W0.902.132.975 (4)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z; (iv) x, y, z+1; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C6H4NO2)4(C2H8N2)2(H2O)2]·2H2O
Mr905.18
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.678 (1), 10.364 (1), 11.984 (2)
α, β, γ (°)101.08 (1), 93.60 (1), 109.63 (1)
V3)873.1 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1994)
Tmin, Tmax0.652, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
6118, 5071, 4491
Rint0.055
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.06
No. of reflections5071
No. of parameters245
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.62

Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4i0.821.842.659 (2)173.6
O1W—H2W···O2ii0.841.932.762 (3)169.0
O2W—H3W···O2Wiii0.842.253.041 (10)157.9
O2W—H4W···O3iv0.821.972.742 (5)156.7
N3—H3A···O20.892.373.099 (3)139.0
N3—H3B···O4v0.902.112.966 (3)159.8
N3—H3C···O20.892.363.099 (3)141.2
N3—H3D···O4v0.902.242.966 (3)138.3
N4—H4A···O3i0.912.163.054 (3)168.8
N4—H4B···O2W0.912.222.975 (4)139.7
N4—H4C···O3i0.922.263.054 (3)145.1
N4—H4D···O2W0.902.132.975 (4)157.1
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y+1, z.
Table 2. Comparative M···M distances (Å) and chromophores for selected dinuclear and polymeric complexes with 12-membered (MNC3O)2 rings top
CompoundBonding modeM···MChromophore
Iaµ2-nic-κ2N:O7.355 (1)CdN4O2
IIbµ2-nic-κ2N:O6.904 (2)CuN4O
IIIcµ2-nic-κ2N:O6.972 (2)CuN4O
IVdµ3-nic-κ3N:O:O'7.208 (1)MnN2O4
Veµ3-nic-κ3N:O:O'7.304 (3)CdN2O4
VIfµ3-nic-κ3N:O:O'6.736 (1)CuN3O2
VIIgµ3-nic-κ3N:O:O'6.680 (1)CuN3O2
VIIIhµ3-nic-κ3N:O:O'6.646 (2)NiN2O4
IXiµ3-nic-κ3N:O:O'6.90 (1)NiN2O4
Xjµ3-nic-κ3N:O:O'6.622 (2)NiN2O4
XIkµ3-nic-κ3N:O:O'7.324 (1)MnN2O4
XIIlµ3-nic-κ3N:O:O'6.890 (2)NiN2O4
µ2-nic-κ2N:O7.027 (2)NiN3O3
(a) [Cd(µ2-nic)(nic)(en)(H2O)]2.2H2O (this work); (b) [Cu(µ2-nic)(dien)]2(nic)2 (dien is diethylenetriamine) (Chen et al., 2008); (c) [Cu(µ2-nic)(dien)]2(BF4)2.2MeOH [dien is diethylenetriamine] (Chen et al., 2008); (d) [Mn33-nic)42-N3)2(H2O)2]n (Chen et al., 2001); (e) [Cd33-nic)42-N3)2(H2O)2]n (Abu-Youssef, 2005); (f) [Cu23-nic)2(Me2bipy)2]n.2nClO4 [Me2bipy is 4,4'-dimethyl-2,2'-bipyridine] (Madalan et al., 2005); (g) [Cu23-nic)2(bipy)2]n.2nClO4.2H2O [bipy is 2,2'-bipyridine] (Madalan et al., 2005); (h) [Ni43-nic)42-nic)42-H2O)2]n.2nEtOH.2nH2O (Ayyappan et al., 2001); (i) [Ni43-nic)42-nic)42-H2O)2]n (Wu et al., 2003); (j) [Ni43-nic)42-nic)42-H2O)2]n.2nH2O (Wasson & LaDuca, 2007); (k) [Mn(µ3-nic)2]n (Lin et al., 2000; Wang et al., 2002); (l) [Ni33-nic)22-nic)22-N3)22-Hnic)2]n (Liu et al., 2005).
 

Acknowledgements

We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (grant Nos. 1/4454/07 and 1/0353/08) for financial support.

References

First citationAbu-Youssef, M. A. M. (2005). Polyhedron, 24, 1829–1836.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAyyappan, P., Evans, O. R. & Lin, W.-L. (2001). Inorg. Chem. 40, 4627–4632.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChen, C., Chan, Z.-K., Yeh, C.-W. & Chen, J.-D. (2008). Struct. Chem. In the press. doi: 10.1007/s11224-007-9256-9.  Google Scholar
First citationChen, H.-J. (2003). Acta Cryst. C59, m371–m372.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, H.-J., Mao, Z.-W., Gao, S. & Chen, X.-M. (2001). Chem. Commun. pp. 2320–2321.  Web of Science CSD CrossRef Google Scholar
First citationClegg, W., Cressey, J. T., McCamley, A. & Straughan, B. P. (1995). Acta Cryst. C51, 234–235.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvans, O. R. & Lin, W. (2001). Chem. Mater. 13, 3009–3017.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKang, Y., Zhang, J., Qin, Y.-Y., Li, Z.-J. & Yao, Y.-G. (2007). J. Mol. Struct. 827, 126–129.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiang, Y. & Li, W. (2005). Acta Cryst. E61, m1135–m1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, W.-B., Chapman, M. E., Wang, Z. & Lee, G. T. (2000). Inorg. Chem. 39, 4169–4173.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, F.-C., Zeng, Y.-F., Li, J.-R., Bu, X.-H., Zhang, H.-J. & Ribas, J. (2005). Inorg. Chem. 44, 7298–7300.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, J. Y., Achten, M. A. & Zhang, A. (2007). Inorg. Chem. Commun. 10, 114–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, J. Y. & Kohler, E. E. (2002). Inorg. Chem. Commun. 5, 196–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, J., Jiang, F., Wang, R., Han, L., Lin, Z., Cao, R. & Hong, M. (2004). J. Mol. Struct. 707, 211–216.  Web of Science CSD CrossRef CAS Google Scholar
First citationMadalan, A. M., Paraschiv, C., Sutter, J.-P., Schmidtmann, M., Müller, A. & Andruh, M. (2005). Cryst. Growth Des. 5, 707–711.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSong, Y.-S., Yan, B. & Chen, Z.-X. (2006). J. Solid State Chem. 179, 4037–4046.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, W.-G., Ma, C.-B., Zhang, X.-F., Chen, C.-N., Liu, Q.-T., Chen, F., Liao, D.-Z. & Li, L.-C. (2002). Bull. Chem. Soc. Jpn, 75, 2609–2614.  Web of Science CSD CrossRef CAS Google Scholar
First citationWasson, A. E. & LaDuca, R. L. (2007). Polyhedron, 26, 1001–1011.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2003). Z. Anorg. Allg. Chem. 629, 693–696.  Web of Science CSD CrossRef CAS Google Scholar
First citationXian, Y., Niu, S. Y., Jin, J., Sun, L. P., Yang, G. D. & Ye, L. (2007). Z. Anorg. Allg. Chem. 633, 1274–1278.  Web of Science CSD CrossRef Google Scholar
First citationZhang, C., Xu, D., Xu, Y. & Huang, X. (1996). Acta Cryst. C52, 591–593.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, J., Li, Z.-J., Wen, Y.-H., Kang, Y., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. C60, m389–m391.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 5| May 2008| Pages m665-m666
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds