Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C30H28N6·2H2O, is an example of a new N-donor neutral organic ligand. The asymmetric unit consists of two half-molecules (organic) and two water molecules; each independent organic molecule is centrosymmetric. The water mol­ecules are linked by O—H...O hydrogen bonds, forming infinite chains stretching parallel to the a axis. These water chains also link the mol­ecules of the title compound via C—H...O and O—H...N hydrogen bonds, generating a two-dimensional supra­molecular layer-like structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053949/zl2075sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053949/zl2075Isup2.hkl
Contains datablock I

CCDC reference: 672790

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.060
  • wR factor = 0.137
  • Data-to-parameter ratio = 17.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 40 Perc. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
Alert level G REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 28.27 From the CIF: _reflns_number_total 6112 From the CIF: _diffrn_reflns_limit_ max hkl 6. 35. 21. From the CIF: _diffrn_reflns_limit_ min hkl -6. -34. -24. TEST1: Expected hkl limits for theta max Calculated maximum hkl 6. 37. 25. Calculated minimum hkl -6. -37. -25. PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The research on coordination polymers exhibiting novel structures and properties is an attractive field (Leininger et al., 2000). The key factor for construction of coordination polymers is the selection of the organic ligand. Among various organic ligands, flexible N-donor ligands are beneficial when trying to form helical and interpenetrating structures (Chesnut et al., 1999; Chu et al., 2007; Liu & Tilley 1997; Lo et al., 2000; Tong et al., 1999). In this paper, we describe the isolation and structural characterization of a new N-donor neutral ligand, 1,4-bis(1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazol-2-yl)butane (hereafter L).

The asymmetric part of the unit cell contains two crystallographically independent L molecules located each on an inversion center and two water molecules (Fig. 1). The butyl groups in different L molecules display TTT (T = trans) conformations. The dihedral angles between the phenyl and pyridine rings are 82.2 and 106.2°, respectively, in the two different L molceules. The water molecules are linked by O—H···O bonds to form an infinite water chain along the a axis. In addition, the water molecules in the water chains donate hydrogen bonds to N atoms of L molecules, and L molecules donate C—H···O bonds to water molecules. So the water chains link all L molecules along the c axis to generate a two dimensional supramolecular layerlike structure (Fig. 2). The sheet is waved and parallel to the a,c plane (Fig. 3).

Related literature top

For related literature about coordination polymers, see: Leininger et al. (2000). For related literature about flexible neutral N-donor ligands related to the title compound and their ability to form helical and interpenetrating structures, see: Chesnut et al. (1999); Chu et al. (2007); Liu & Tilley (1997); Lo et al. (2000); Tong et al. (1999). For the synthesis of 1,4-bis(benzimidazol-2-yl)butane, see: (Chen et al. (2002).

Experimental top

A mixture of 1,4-bis(benzimidazol-2-yl)butane (Chen et al., 2002) (2.90 g, 10 mmol) and NaOH (0.80 g, 20 mmol) in DMSO (30 ml) was stirred at 60°C for 1 h, then 4-(chloromethyl)pyridine (5.10 g, 40 mmol) was added. The mixture was cooled to room temperature after stirring at 60°C for 24 h, and then poured into 200 ml of water. A colorless solid of L formed immediately, which was isolated by filtration in 65% yield after drying in air. Crystals suitable for X-ray diffraction were grown from 70% ethanol.

Refinement top

All H atoms on C atoms were poisitioned geometrically and refined as riding atoms, with C—H = 0.93–0.97 Å, and Uiso = 1.2 or 1.5 Ueq (C). The H atoms of the water molecule were located in a difference Fourier map and then refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the title molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Symmetry codes: (iv) 3 - x, 1 - y, 2 - z; (v) 2 - x, 1 - y, 1 - z.
[Figure 3] Fig. 3. and 3. View of two dimensional supramolecular layerlike strucutre of the title molecule along different directions. Green dashed lines represent O—H···O hydrogen bonds within the water chains, gray dashed lines represent of C—H···O bonds. All H atoms except H1A, H1B and H13 are omitted for clarity.
1,4-Bis[1-(pyridin-4-ylmethyl)-1H-benzimidazol-2-yl]butane dihydrate top
Crystal data top
C30H28N6·2H2OZ = 4
Mr = 508.62F(000) = 1080
Monoclinic, P21/nDx = 1.285 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71069 Å
a = 4.9430 (2) Åθ = 1.8–28.3°
b = 27.969 (5) ŵ = 0.08 mm1
c = 19.042 (5) ÅT = 293 K
β = 93.295 (5)°Block, colorless
V = 2628.2 (8) Å30.35 × 0.32 × 0.28 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
6112 independent reflections
Radiation source: fine-focus sealed tube2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 66
Tmin = 0.971, Tmax = 0.977k = 3435
16155 measured reflectionsl = 2421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
6112 reflections(Δ/σ)max < 0.001
355 parametersΔρmax = 0.16 e Å3
6 restraintsΔρmin = 0.24 e Å3
Crystal data top
C30H28N6·2H2OV = 2628.2 (8) Å3
Mr = 508.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9430 (2) ŵ = 0.08 mm1
b = 27.969 (5) ÅT = 293 K
c = 19.042 (5) Å0.35 × 0.32 × 0.28 mm
β = 93.295 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6112 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
2470 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.977Rint = 0.065
16155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0606 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.16 e Å3
6112 reflectionsΔρmin = 0.24 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8933 (5)0.50658 (8)0.47192 (11)0.0472 (6)
H10.95610.53360.44530.057*
H20.72980.51630.49390.057*
C20.8277 (5)0.46522 (8)0.42202 (12)0.0486 (7)
H30.99110.45620.39950.058*
H40.77090.43800.44910.058*
C30.6115 (5)0.47634 (9)0.36662 (12)0.0444 (6)
C40.2902 (5)0.51006 (9)0.30361 (12)0.0468 (6)
C50.0874 (6)0.54023 (10)0.27606 (13)0.0584 (7)
H50.04670.56870.29830.070*
C60.0516 (6)0.52635 (11)0.21446 (15)0.0687 (8)
H60.18820.54590.19480.082*
C70.0090 (6)0.48374 (11)0.18125 (14)0.0662 (8)
H70.08770.47570.13960.079*
C80.2062 (6)0.45308 (10)0.20766 (13)0.0573 (7)
H80.24550.42460.18520.069*
C90.3437 (5)0.46709 (9)0.27001 (12)0.0455 (6)
C100.6533 (5)0.39772 (9)0.30030 (13)0.0566 (7)
H10A0.82510.39400.32700.068*
H10B0.68530.39350.25090.068*
C110.4576 (5)0.35964 (9)0.32270 (14)0.0518 (7)
C120.3915 (6)0.35553 (10)0.39164 (16)0.0730 (9)
H120.46900.37620.42530.088*
C130.2124 (7)0.32119 (11)0.41118 (16)0.0839 (10)
H130.17330.31920.45830.101*
C140.1546 (7)0.29493 (11)0.29927 (18)0.0778 (9)
H140.07260.27400.26650.093*
C150.3333 (6)0.32844 (10)0.27557 (15)0.0662 (8)
H150.36890.32980.22820.079*
C160.4202 (5)0.47921 (8)0.01279 (13)0.0568 (7)
H16A0.22860.48600.00460.068*
H16B0.45710.47590.06310.068*
C170.4827 (6)0.43240 (9)0.02227 (13)0.0630 (8)
H17A0.43780.43530.07230.076*
H17B0.67590.42640.01600.076*
C180.3344 (6)0.39059 (9)0.00522 (13)0.0533 (7)
C190.0803 (6)0.34537 (10)0.06411 (13)0.0563 (7)
C200.1044 (6)0.32642 (12)0.10847 (15)0.0758 (9)
H200.20570.34620.13610.091*
C210.1343 (7)0.27759 (14)0.11065 (16)0.0844 (10)
H210.25850.26430.13990.101*
C220.0181 (7)0.24777 (12)0.06990 (18)0.0843 (10)
H220.00310.21480.07340.101*
C230.1984 (6)0.26558 (11)0.02472 (16)0.0736 (9)
H230.29730.24560.00330.088*
C240.2264 (6)0.31486 (10)0.02284 (14)0.0555 (7)
C250.5705 (6)0.32965 (9)0.06941 (14)0.0639 (8)
H25A0.62880.29710.05950.077*
H25B0.73020.34990.06660.077*
C260.2227 (6)0.30358 (10)0.16366 (16)0.0681 (8)
H260.14730.28290.13190.082*
C270.4421 (6)0.33192 (9)0.14281 (14)0.0549 (7)
C280.5399 (6)0.36186 (10)0.19213 (16)0.0721 (9)
H280.68570.38190.18040.087*
C290.4197 (8)0.36214 (12)0.25995 (18)0.0842 (10)
H290.48920.38280.29270.101*
C300.1172 (7)0.30636 (11)0.23204 (18)0.0759 (9)
H300.03050.28710.24500.091*
N10.1506 (5)0.39272 (8)0.05213 (11)0.0595 (6)
N20.3876 (4)0.34486 (7)0.01566 (11)0.0540 (6)
N30.0923 (5)0.29067 (9)0.36614 (16)0.0804 (8)
N40.5492 (4)0.44589 (7)0.31133 (10)0.0459 (5)
N50.4621 (4)0.51524 (7)0.36370 (10)0.0469 (5)
N60.2121 (6)0.33468 (10)0.28065 (13)0.0762 (7)
O1W0.5470 (4)0.39740 (7)0.55905 (10)0.0684 (6)
O2W0.0482 (4)0.35252 (8)0.57538 (11)0.0784 (6)
H1A0.550 (6)0.4250 (7)0.5783 (16)0.118*
H1B0.401 (5)0.3840 (10)0.5656 (17)0.118*
H2A0.106 (5)0.3658 (11)0.5693 (15)0.118*
H2B0.057 (6)0.3405 (11)0.6183 (11)0.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (16)0.0508 (16)0.0471 (16)0.0049 (13)0.0018 (12)0.0030 (12)
C20.0456 (17)0.0524 (17)0.0471 (16)0.0061 (13)0.0019 (13)0.0028 (12)
C30.0450 (16)0.0453 (16)0.0429 (15)0.0086 (13)0.0026 (13)0.0038 (12)
C40.0454 (17)0.0516 (17)0.0438 (16)0.0035 (14)0.0050 (13)0.0007 (13)
C50.059 (2)0.0585 (19)0.0576 (18)0.0034 (15)0.0012 (15)0.0016 (14)
C60.059 (2)0.081 (2)0.065 (2)0.0065 (17)0.0061 (16)0.0095 (17)
C70.065 (2)0.085 (2)0.0473 (17)0.0089 (19)0.0062 (15)0.0023 (16)
C80.059 (2)0.067 (2)0.0457 (17)0.0034 (16)0.0011 (15)0.0061 (13)
C90.0438 (17)0.0519 (17)0.0410 (15)0.0071 (13)0.0035 (13)0.0003 (13)
C100.0514 (18)0.0609 (19)0.0577 (17)0.0003 (15)0.0041 (14)0.0125 (14)
C110.0539 (18)0.0449 (17)0.0564 (18)0.0010 (14)0.0019 (14)0.0040 (13)
C120.094 (3)0.066 (2)0.059 (2)0.0238 (18)0.0002 (18)0.0039 (15)
C130.118 (3)0.071 (2)0.063 (2)0.028 (2)0.006 (2)0.0001 (17)
C140.090 (3)0.065 (2)0.078 (2)0.0169 (19)0.002 (2)0.0156 (17)
C150.077 (2)0.060 (2)0.0617 (19)0.0070 (17)0.0044 (16)0.0133 (15)
C160.0577 (19)0.0501 (18)0.0631 (17)0.0000 (14)0.0066 (14)0.0025 (13)
C170.075 (2)0.0510 (18)0.0643 (19)0.0027 (15)0.0140 (16)0.0023 (14)
C180.0615 (19)0.0475 (18)0.0512 (17)0.0001 (15)0.0052 (15)0.0023 (13)
C190.0606 (19)0.060 (2)0.0489 (17)0.0103 (16)0.0045 (15)0.0031 (14)
C200.081 (2)0.087 (3)0.060 (2)0.020 (2)0.0124 (17)0.0076 (17)
C210.091 (3)0.095 (3)0.067 (2)0.033 (2)0.0096 (19)0.009 (2)
C220.097 (3)0.065 (2)0.091 (3)0.021 (2)0.003 (2)0.0161 (19)
C230.079 (2)0.059 (2)0.084 (2)0.0044 (18)0.0083 (19)0.0077 (17)
C240.0586 (19)0.0515 (19)0.0561 (18)0.0039 (15)0.0001 (15)0.0057 (14)
C250.064 (2)0.0611 (19)0.067 (2)0.0088 (15)0.0113 (17)0.0009 (15)
C260.073 (2)0.065 (2)0.068 (2)0.0030 (17)0.0106 (18)0.0007 (15)
C270.059 (2)0.0496 (18)0.0570 (18)0.0074 (15)0.0091 (15)0.0030 (14)
C280.074 (2)0.074 (2)0.069 (2)0.0097 (17)0.0095 (18)0.0034 (17)
C290.093 (3)0.084 (3)0.077 (3)0.008 (2)0.011 (2)0.0129 (18)
C300.072 (2)0.073 (2)0.082 (3)0.0046 (18)0.008 (2)0.0100 (19)
N10.0694 (17)0.0542 (16)0.0560 (15)0.0058 (13)0.0115 (13)0.0080 (11)
N20.0601 (15)0.0473 (14)0.0556 (14)0.0010 (12)0.0121 (12)0.0002 (11)
N30.095 (2)0.0646 (18)0.0815 (19)0.0158 (15)0.0009 (17)0.0012 (15)
N40.0495 (14)0.0434 (13)0.0447 (12)0.0027 (11)0.0016 (11)0.0047 (10)
N50.0442 (13)0.0499 (14)0.0464 (13)0.0038 (11)0.0001 (11)0.0055 (10)
N60.081 (2)0.079 (2)0.0691 (18)0.0029 (16)0.0082 (15)0.0018 (15)
O1W0.0648 (14)0.0652 (14)0.0756 (14)0.0039 (11)0.0054 (12)0.0102 (11)
O2W0.0671 (15)0.0882 (17)0.0804 (15)0.0068 (12)0.0079 (13)0.0006 (12)
Geometric parameters (Å, º) top
C1—C1i1.504 (4)C16—H16A0.9700
C1—C21.520 (3)C16—H16B0.9700
C1—H10.9700C17—C181.491 (3)
C1—H20.9700C17—H17A0.9700
C2—C31.491 (3)C17—H17B0.9700
C2—H30.9700C18—N11.312 (3)
C2—H40.9700C18—N21.369 (3)
C3—N51.314 (3)C19—C201.384 (4)
C3—N41.375 (3)C19—C241.390 (4)
C4—C51.390 (3)C19—N11.391 (3)
C4—N51.393 (3)C20—C211.375 (4)
C4—C91.394 (3)C20—H200.9300
C5—C61.380 (3)C21—C221.390 (4)
C5—H50.9300C21—H210.9300
C6—C71.390 (4)C22—C231.368 (4)
C6—H60.9300C22—H220.9300
C7—C81.372 (4)C23—C241.386 (3)
C7—H70.9300C23—H230.9300
C8—C91.390 (3)C24—N21.394 (3)
C8—H80.9300C25—N21.467 (3)
C9—N41.382 (3)C25—C271.503 (3)
C10—N41.462 (3)C25—H25A0.9700
C10—C111.516 (3)C25—H25B0.9700
C10—H10A0.9700C26—C301.377 (4)
C10—H10B0.9700C26—C271.383 (4)
C11—C151.372 (3)C26—H260.9300
C11—C121.376 (3)C27—C281.367 (3)
C12—C131.372 (4)C28—C291.390 (4)
C12—H120.9300C28—H280.9300
C13—N31.326 (3)C29—N61.324 (4)
C13—H130.9300C29—H290.9300
C14—N31.332 (3)C30—N61.324 (4)
C14—C151.381 (4)C30—H300.9300
C14—H140.9300O1W—H1A0.855 (16)
C15—H150.9300O1W—H1B0.830 (17)
C16—C16ii1.502 (4)O2W—H2A0.849 (17)
C16—C171.510 (3)O2W—H2B0.882 (16)
C1i—C1—C2112.0 (2)C18—C17—C16114.1 (2)
C1i—C1—H1109.2C18—C17—H17A108.7
C2—C1—H1109.2C16—C17—H17A108.7
C1i—C1—H2109.2C18—C17—H17B108.7
C2—C1—H2109.2C16—C17—H17B108.7
H1—C1—H2107.9H17A—C17—H17B107.6
C3—C2—C1113.7 (2)N1—C18—N2113.1 (2)
C3—C2—H3108.8N1—C18—C17125.3 (2)
C1—C2—H3108.8N2—C18—C17121.6 (2)
C3—C2—H4108.8C20—C19—C24119.5 (3)
C1—C2—H4108.8C20—C19—N1130.1 (3)
H3—C2—H4107.7C24—C19—N1110.4 (2)
N5—C3—N4112.3 (2)C21—C20—C19118.3 (3)
N5—C3—C2125.5 (2)C21—C20—H20120.8
N4—C3—C2122.2 (2)C19—C20—H20120.8
C5—C4—N5129.8 (2)C20—C21—C22121.1 (3)
C5—C4—C9120.1 (2)C20—C21—H21119.4
N5—C4—C9110.1 (2)C22—C21—H21119.4
C6—C5—C4117.6 (3)C23—C22—C21121.7 (3)
C6—C5—H5121.2C23—C22—H22119.1
C4—C5—H5121.2C21—C22—H22119.1
C5—C6—C7121.2 (3)C22—C23—C24116.6 (3)
C5—C6—H6119.4C22—C23—H23121.7
C7—C6—H6119.4C24—C23—H23121.7
C8—C7—C6122.4 (3)C23—C24—C19122.7 (3)
C8—C7—H7118.8C23—C24—N2132.3 (3)
C6—C7—H7118.8C19—C24—N2105.0 (2)
C7—C8—C9116.1 (3)N2—C25—C27113.1 (2)
C7—C8—H8122.0N2—C25—H25A109.0
C9—C8—H8122.0C27—C25—H25A109.0
N4—C9—C8132.3 (2)N2—C25—H25B109.0
N4—C9—C4105.1 (2)C27—C25—H25B109.0
C8—C9—C4122.6 (2)H25A—C25—H25B107.8
N4—C10—C11111.8 (2)C30—C26—C27119.2 (3)
N4—C10—H10A109.3C30—C26—H26120.4
C11—C10—H10A109.3C27—C26—H26120.4
N4—C10—H10B109.3C28—C27—C26117.1 (3)
C11—C10—H10B109.3C28—C27—C25121.2 (3)
H10A—C10—H10B107.9C26—C27—C25121.7 (3)
C15—C11—C12116.7 (3)C27—C28—C29119.5 (3)
C15—C11—C10122.1 (3)C27—C28—H28120.2
C12—C11—C10121.2 (2)C29—C28—H28120.2
C13—C12—C11120.6 (3)N6—C29—C28123.8 (3)
C13—C12—H12119.7N6—C29—H29118.1
C11—C12—H12119.7C28—C29—H29118.1
N3—C13—C12123.2 (3)N6—C30—C26124.4 (3)
N3—C13—H13118.4N6—C30—H30117.8
C12—C13—H13118.4C26—C30—H30117.8
N3—C14—C15124.1 (3)C18—N1—C19104.9 (2)
N3—C14—H14118.0C18—N2—C24106.5 (2)
C15—C14—H14118.0C18—N2—C25127.6 (2)
C11—C15—C14119.3 (3)C24—N2—C25125.9 (2)
C11—C15—H15120.4C13—N3—C14116.2 (3)
C14—C15—H15120.4C3—N4—C9107.2 (2)
C16ii—C16—C17113.8 (3)C3—N4—C10128.0 (2)
C16ii—C16—H16A108.8C9—N4—C10124.5 (2)
C17—C16—H16A108.8C3—N5—C4105.27 (19)
C16ii—C16—H16B108.8C29—N6—C30116.0 (3)
C17—C16—H16B108.8H1A—O1W—H1B110 (2)
H16A—C16—H16B107.7H2A—O2W—H2B107 (2)
C1i—C1—C2—C3178.4 (2)N2—C25—C27—C28116.8 (3)
C1—C2—C3—N58.1 (3)N2—C25—C27—C2663.9 (3)
C1—C2—C3—N4171.3 (2)C26—C27—C28—C290.8 (4)
N5—C4—C5—C6179.3 (2)C25—C27—C28—C29178.5 (3)
C9—C4—C5—C61.3 (4)C27—C28—C29—N60.1 (5)
C4—C5—C6—C70.1 (4)C27—C26—C30—N60.1 (5)
C5—C6—C7—C80.6 (4)N2—C18—N1—C191.0 (3)
C6—C7—C8—C90.1 (4)C17—C18—N1—C19176.9 (2)
C7—C8—C9—N4179.7 (2)C20—C19—N1—C18179.9 (3)
C7—C8—C9—C41.2 (4)C24—C19—N1—C180.2 (3)
C5—C4—C9—N4178.8 (2)N1—C18—N2—C241.4 (3)
N5—C4—C9—N40.8 (3)C17—C18—N2—C24176.6 (2)
C5—C4—C9—C81.9 (4)N1—C18—N2—C25176.8 (2)
N5—C4—C9—C8178.5 (2)C17—C18—N2—C255.2 (4)
N4—C10—C11—C15115.2 (3)C23—C24—N2—C18178.8 (3)
N4—C10—C11—C1263.3 (3)C19—C24—N2—C181.2 (3)
C15—C11—C12—C130.9 (4)C23—C24—N2—C253.0 (5)
C10—C11—C12—C13179.4 (3)C19—C24—N2—C25177.1 (2)
C11—C12—C13—N30.5 (5)C27—C25—N2—C1883.2 (3)
C12—C11—C15—C140.7 (4)C27—C25—N2—C2494.7 (3)
C10—C11—C15—C14179.2 (3)C12—C13—N3—C140.1 (5)
N3—C14—C15—C110.1 (5)C15—C14—N3—C130.3 (5)
C16ii—C16—C17—C18177.3 (3)N5—C3—N4—C90.1 (3)
C16—C17—C18—N14.5 (4)C2—C3—N4—C9179.5 (2)
C16—C17—C18—N2173.3 (2)N5—C3—N4—C10173.8 (2)
C24—C19—C20—C210.8 (4)C2—C3—N4—C106.8 (4)
N1—C19—C20—C21179.6 (3)C8—C9—N4—C3178.8 (3)
C19—C20—C21—C220.5 (5)C4—C9—N4—C30.4 (2)
C20—C21—C22—C231.7 (5)C8—C9—N4—C107.2 (4)
C21—C22—C23—C241.5 (5)C4—C9—N4—C10173.6 (2)
C22—C23—C24—C190.2 (4)C11—C10—N4—C398.6 (3)
C22—C23—C24—N2179.8 (3)C11—C10—N4—C974.2 (3)
C20—C19—C24—C230.9 (4)N4—C3—N5—C40.5 (3)
N1—C19—C24—C23179.4 (2)C2—C3—N5—C4179.9 (2)
C20—C19—C24—N2179.1 (2)C5—C4—N5—C3178.7 (2)
N1—C19—C24—N20.6 (3)C9—C4—N5—C30.8 (3)
C30—C26—C27—C280.8 (4)C28—C29—N6—C301.0 (5)
C30—C26—C27—C25178.5 (2)C26—C30—N6—C291.0 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N5iii0.86 (2)2.01 (2)2.854 (3)171 (3)
O1W—H1B···O2W0.83 (2)1.97 (2)2.800 (3)177 (3)
O2W—H2B···N6iv0.88 (2)2.04 (2)2.858 (3)154 (3)
O2W—H2A···O1Wv0.85 (2)1.93 (2)2.779 (3)178 (3)
C13—H13···O2W0.932.533.390 (4)155
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC30H28N6·2H2O
Mr508.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.9430 (2), 27.969 (5), 19.042 (5)
β (°) 93.295 (5)
V3)2628.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.32 × 0.28
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.971, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
16155, 6112, 2470
Rint0.065
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.137, 1.00
No. of reflections6112
No. of parameters355
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N5i0.86 (2)2.01 (2)2.854 (3)171 (3)
O1W—H1B···O2W0.83 (2)1.97 (2)2.800 (3)177 (3)
O2W—H2B···N6ii0.88 (2)2.04 (2)2.858 (3)154 (3)
O2W—H2A···O1Wiii0.85 (2)1.93 (2)2.779 (3)178 (3)
C13—H13···O2W0.932.533.390 (4)154.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds