Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C29H30ClN3O3, is a conformationally restricted model compound for dipeptides. The diastereomers were separated by column chromaography and the absolute configuration of the phenyl­alanine cyclo­propyl unit of the investigated enatiomer was found to be 2S,3S by anomalous dispersion. The crystal structure involves intermolecular N—H...O and C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038391/zl2036sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038391/zl2036Isup2.hkl
Contains datablock I

CCDC reference: 660237

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.087
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.720 0.948 Tmin(prime) and Tmax expected: 0.914 0.948 RR(prime) = 0.788 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.79 PLAT411_ALERT_2_C Short Inter H...H Contact H12 .. H29 .. 2.13 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.34 From the CIF: _reflns_number_total 4678 Count of symmetry unique reflns 2622 Completeness (_total/calc) 178.41% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2056 Fraction of Friedel pairs measured 0.784 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C1 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C12 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The synthesis of conformationally restricted model peptides has become one of the research foci in bioorganic and medicinal chemistry in recent years. One common strategy in the design of conformationally restricted model peptides is to incorporate conformationally restricted amino acids into peptide chains to reduce the degrees of freedom of the peptide, which will greatly enhance their selectivity to the receptor, a prerequisite for their successful use as biologically active compounds (Jiménez et al., 2005; Royo et al., 2005; Casanovas et al., 2003).

The title compound (I) (PhCO-c3diAr-Val-NHCH3) is a conformationally restricted model dipeptide. The absolute configuration of the c3diAr residue was established as (2S,3S) (Fig.1). The two substituents of the phenyl and p-chloro-phenyl on the three-membered ring are in a trans arrangement. The rigidity of the three-membered ring fixes the side chain in a well defined orientation and this disposition is different for each stereoisomer. There is a compromise between the inflexible molecule and its desire to form strong N—H···O hydrogen bonds that leads to a very short H···H contact of 2.134 (1) Angstrom (H29···H12). The crystal packing is stabilized by several N—H···O hydrogen bonds and there are also a several relatively short intermolecular C—H···O hydrogen bonds (Table 1). All these interactions link the molecules into one-dimensional chains and are attributable to stabilize the structure (Fig. 2).

Related literature top

For related literature, see: Casanovas et al. (2003); Huang et al. (2007); Jiménez et al. (2005); Royo et al. (2005); Su et al. (2003).

Experimental top

0.83 g (2.12 mmol) of 1-benzoylamino-2-(4-chloro-phenyl)-3-phenyl- cyclopropanecarboxylic acid (1), obtained by treatment of 1-benzoylamino-2-(4-chloro-phenyl)-3-phenyl-cyclopropanecarboxylic acid methyl ester with a solution of 2 M potassium hydroxide in anhydrous methanol (Su et al., 2003, Huang et al., 2007), was coupled with 2-amino-3-methyl-butyric acid methyl ester hydrochloride (0.36 g, 2.12 mmol) at 254 K by the classic mixed anhydride method using isobutyl chloroformate as the coupling agent. Then the resulting mixture of diastereoisomers (2 and 3 in Figure 3) (0.65 g, white solid) was aminolyzed in a 9.8 M methanolic solution of MeNH2 (15 ml). A careful column chromatography on silica gel (eluent: CHCl3/AcOEt 5:3, v/v) affords the corresponding enantiomerically pure dipeptides PhCO-(2S,3S)-c3diAr-Val-NHCH3 (4) and PhCO-(2R,3R)-c3diAr-Val-NHCH3 (5) in 36% and 26% yield respectively (Fig. 3). Recrystallization from CH2Cl2/CH3OH (5:1 v/v) afforded colourless crystals (m.p. 516–517 K) of PhCO-(2S,3S)-c3diAr-Val-NHCH3 (4).

Refinement top

The H atoms bound to C atoms were positioned geometrically and included in the refinement in the riding-model approximation, with C—H = 0.94–0.99 Å and with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for all other H atoms.

Structure description top

The synthesis of conformationally restricted model peptides has become one of the research foci in bioorganic and medicinal chemistry in recent years. One common strategy in the design of conformationally restricted model peptides is to incorporate conformationally restricted amino acids into peptide chains to reduce the degrees of freedom of the peptide, which will greatly enhance their selectivity to the receptor, a prerequisite for their successful use as biologically active compounds (Jiménez et al., 2005; Royo et al., 2005; Casanovas et al., 2003).

The title compound (I) (PhCO-c3diAr-Val-NHCH3) is a conformationally restricted model dipeptide. The absolute configuration of the c3diAr residue was established as (2S,3S) (Fig.1). The two substituents of the phenyl and p-chloro-phenyl on the three-membered ring are in a trans arrangement. The rigidity of the three-membered ring fixes the side chain in a well defined orientation and this disposition is different for each stereoisomer. There is a compromise between the inflexible molecule and its desire to form strong N—H···O hydrogen bonds that leads to a very short H···H contact of 2.134 (1) Angstrom (H29···H12). The crystal packing is stabilized by several N—H···O hydrogen bonds and there are also a several relatively short intermolecular C—H···O hydrogen bonds (Table 1). All these interactions link the molecules into one-dimensional chains and are attributable to stabilize the structure (Fig. 2).

For related literature, see: Casanovas et al. (2003); Huang et al. (2007); Jiménez et al. (2005); Royo et al. (2005); Su et al. (2003).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the interactions by H-bonding between adjacent molecules in the unit cell. Displacement ellipsoids drawn at the 30% probability level and H-bonds are indicated as green lines.
[Figure 3] Fig. 3. Synthesis of the title compound.
(1S,2S,3S)-N-(2-(4-Chlorophenyl)-1-{N-[2-methyl-1-(N– methylcarbamoyl)propyl]carbamoyl}-3-phenylcyclopropyl)benzamide top
Crystal data top
C29H30ClN3O3F(000) = 532
Mr = 504.01Dx = 1.247 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 5213 reflections
a = 10.8821 (19) Åθ = 3.2–25.3°
b = 9.5688 (16) ŵ = 0.18 mm1
c = 12.952 (2) ÅT = 223 K
β = 95.754 (4)°Block, colourless
V = 1341.9 (4) Å30.50 × 0.36 × 0.30 mm
Z = 2
Data collection top
Rigaku Mercury
diffractometer
4678 independent reflections
Radiation source: fine-focus sealed tube4334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.2°
ω scansh = 1213
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1111
Tmin = 0.720, Tmax = 0.948l = 1515
13162 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.1618P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4678 reflectionsΔρmax = 0.13 e Å3
329 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), with 2067 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C29H30ClN3O3V = 1341.9 (4) Å3
Mr = 504.01Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.8821 (19) ŵ = 0.18 mm1
b = 9.5688 (16) ÅT = 223 K
c = 12.952 (2) Å0.50 × 0.36 × 0.30 mm
β = 95.754 (4)°
Data collection top
Rigaku Mercury
diffractometer
4678 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
4334 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.948Rint = 0.028
13162 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.13 e Å3
S = 1.09Δρmin = 0.19 e Å3
4678 reflectionsAbsolute structure: Flack (1983), with 2067 Friedel pairs
329 parametersAbsolute structure parameter: 0.03 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04548 (6)0.93271 (10)0.97899 (5)0.0693 (2)
O10.51546 (14)0.93017 (16)0.76039 (11)0.0401 (4)
O20.44949 (13)1.03295 (14)0.51521 (12)0.0343 (3)
O30.69537 (14)0.97648 (15)0.32163 (12)0.0387 (4)
N10.40924 (14)0.75020 (17)0.68410 (12)0.0281 (4)
H10.39000.66200.68490.034*
N20.55739 (14)0.83074 (16)0.53124 (13)0.0276 (4)
H20.55470.74270.54780.033*
N30.61830 (17)0.75935 (18)0.32730 (13)0.0367 (4)
H30.59690.69120.36620.044*
C10.36200 (17)0.83804 (19)0.59967 (15)0.0271 (4)
C20.23957 (17)0.9144 (2)0.60451 (15)0.0308 (4)
H2B0.23571.00550.56810.037*
C30.24678 (18)0.7912 (2)0.53285 (15)0.0297 (4)
H3B0.20900.70440.55680.036*
C40.48463 (19)0.8075 (2)0.76281 (16)0.0319 (5)
C50.5331 (2)0.7109 (2)0.84811 (15)0.0344 (5)
C60.6533 (2)0.7319 (3)0.89339 (17)0.0434 (6)
H60.70020.80650.87100.052*
C70.7041 (3)0.6441 (3)0.97087 (19)0.0553 (7)
H70.78600.65740.99960.066*
C80.6352 (3)0.5375 (3)1.00590 (19)0.0567 (7)
H80.67010.47731.05820.068*
C90.5153 (3)0.5188 (3)0.9647 (2)0.0634 (8)
H90.46710.44770.99050.076*
C100.4646 (3)0.6050 (3)0.88447 (18)0.0510 (7)
H100.38310.59030.85530.061*
C110.46021 (17)0.9113 (2)0.54537 (14)0.0265 (4)
C120.66756 (17)0.8836 (2)0.48946 (15)0.0290 (4)
H120.67670.98310.50970.035*
C130.65934 (18)0.8770 (2)0.37172 (16)0.0308 (5)
C140.6078 (3)0.7401 (3)0.21541 (17)0.0482 (6)
H14A0.54140.79810.18350.072*
H14B0.59010.64280.19900.072*
H14C0.68480.76670.18900.072*
C150.78250 (18)0.8054 (2)0.53901 (17)0.0370 (5)
H150.77250.70520.52130.044*
C160.7953 (2)0.8184 (3)0.65662 (19)0.0559 (7)
H16A0.87100.77320.68510.084*
H16B0.72530.77400.68400.084*
H16C0.79780.91650.67580.084*
C170.8986 (2)0.8572 (4)0.4957 (2)0.0622 (8)
H17A0.88760.85240.42050.093*
H17B0.96800.79920.52160.093*
H17C0.91440.95320.51710.093*
C180.16989 (17)0.9123 (2)0.69795 (15)0.0325 (5)
C190.1195 (2)1.0362 (2)0.72906 (18)0.0394 (5)
H190.13091.11810.69100.047*
C200.0527 (2)1.0435 (3)0.81444 (19)0.0465 (6)
H200.01811.12860.83350.056*
C210.03798 (19)0.9244 (3)0.87064 (16)0.0435 (5)
C220.0854 (2)0.7992 (3)0.84255 (18)0.0434 (6)
H220.07420.71830.88170.052*
C230.1505 (2)0.7927 (2)0.75545 (17)0.0381 (5)
H230.18170.70640.73520.046*
C240.23451 (18)0.8098 (2)0.41708 (16)0.0308 (4)
C250.1599 (2)0.9128 (3)0.36832 (17)0.0420 (5)
H250.11800.97540.40840.050*
C260.1466 (2)0.9245 (3)0.26140 (19)0.0556 (7)
H260.09610.99510.22950.067*
C270.2066 (2)0.8335 (3)0.20145 (19)0.0543 (7)
H270.19630.84110.12870.065*
C280.2814 (2)0.7317 (3)0.24767 (17)0.0473 (6)
H280.32290.66960.20680.057*
C290.2959 (2)0.7204 (2)0.35476 (16)0.0378 (5)
H290.34830.65100.38600.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0616 (4)0.1030 (6)0.0466 (4)0.0071 (4)0.0225 (3)0.0152 (4)
O10.0530 (9)0.0268 (8)0.0392 (8)0.0032 (7)0.0017 (7)0.0039 (7)
O20.0374 (8)0.0221 (8)0.0439 (9)0.0009 (6)0.0059 (7)0.0054 (6)
O30.0479 (9)0.0266 (8)0.0430 (9)0.0031 (7)0.0117 (7)0.0034 (6)
N10.0325 (9)0.0230 (9)0.0283 (9)0.0006 (7)0.0012 (7)0.0025 (7)
N20.0297 (8)0.0196 (8)0.0342 (9)0.0003 (7)0.0072 (7)0.0005 (7)
N30.0503 (11)0.0292 (10)0.0313 (9)0.0060 (8)0.0071 (8)0.0007 (8)
C10.0307 (10)0.0229 (10)0.0277 (10)0.0016 (8)0.0024 (8)0.0013 (8)
C20.0285 (10)0.0289 (11)0.0349 (11)0.0023 (9)0.0031 (8)0.0039 (9)
C30.0278 (10)0.0295 (11)0.0314 (11)0.0040 (8)0.0020 (8)0.0028 (9)
C40.0355 (11)0.0307 (12)0.0298 (11)0.0021 (9)0.0052 (9)0.0040 (9)
C50.0473 (13)0.0316 (11)0.0241 (10)0.0022 (10)0.0027 (9)0.0018 (9)
C60.0494 (14)0.0499 (14)0.0302 (12)0.0028 (11)0.0000 (10)0.0003 (11)
C70.0597 (16)0.073 (2)0.0304 (13)0.0187 (15)0.0062 (12)0.0018 (12)
C80.085 (2)0.0533 (16)0.0292 (12)0.0142 (15)0.0068 (13)0.0020 (12)
C90.099 (2)0.0501 (16)0.0384 (14)0.0173 (15)0.0051 (15)0.0113 (12)
C100.0643 (17)0.0509 (15)0.0352 (13)0.0126 (13)0.0084 (12)0.0073 (12)
C110.0285 (10)0.0242 (11)0.0260 (10)0.0022 (8)0.0010 (8)0.0018 (8)
C120.0283 (10)0.0241 (10)0.0352 (11)0.0021 (8)0.0059 (9)0.0019 (8)
C130.0280 (10)0.0271 (11)0.0377 (11)0.0024 (8)0.0061 (9)0.0017 (9)
C140.0708 (16)0.0410 (14)0.0331 (12)0.0061 (13)0.0069 (11)0.0040 (10)
C150.0301 (10)0.0408 (13)0.0397 (12)0.0033 (9)0.0007 (9)0.0066 (10)
C160.0470 (14)0.076 (2)0.0427 (14)0.0094 (14)0.0037 (11)0.0017 (13)
C170.0314 (12)0.093 (2)0.0618 (17)0.0015 (13)0.0043 (12)0.0001 (16)
C180.0247 (9)0.0368 (12)0.0353 (11)0.0014 (9)0.0000 (8)0.0008 (10)
C190.0376 (12)0.0381 (12)0.0424 (13)0.0015 (10)0.0041 (10)0.0028 (10)
C200.0414 (13)0.0520 (15)0.0464 (14)0.0052 (12)0.0053 (11)0.0135 (12)
C210.0331 (11)0.0657 (16)0.0318 (11)0.0050 (12)0.0044 (9)0.0103 (12)
C220.0380 (12)0.0546 (15)0.0380 (13)0.0050 (11)0.0064 (10)0.0074 (11)
C230.0353 (11)0.0380 (13)0.0413 (12)0.0009 (10)0.0057 (10)0.0020 (10)
C240.0275 (10)0.0315 (11)0.0329 (11)0.0064 (9)0.0013 (8)0.0056 (9)
C250.0404 (12)0.0446 (14)0.0397 (12)0.0048 (11)0.0023 (10)0.0077 (11)
C260.0577 (15)0.0586 (16)0.0473 (14)0.0079 (14)0.0106 (12)0.0181 (14)
C270.0585 (15)0.0732 (19)0.0300 (12)0.0068 (15)0.0016 (11)0.0097 (12)
C280.0528 (14)0.0550 (15)0.0344 (13)0.0027 (13)0.0059 (11)0.0005 (11)
C290.0398 (12)0.0373 (12)0.0357 (12)0.0004 (10)0.0008 (10)0.0030 (10)
Geometric parameters (Å, º) top
Cl1—C211.748 (2)C12—H120.9900
O1—C41.222 (3)C14—H14A0.9700
O2—C111.230 (2)C14—H14B0.9700
O3—C131.238 (2)C14—H14C0.9700
N1—C41.358 (3)C15—C171.516 (3)
N1—C11.433 (2)C15—C161.521 (3)
N1—H10.8700C15—H150.9900
N2—C111.336 (2)C16—H16A0.9700
N2—C121.455 (2)C16—H16B0.9700
N2—H20.8700C16—H16C0.9700
N3—C131.321 (3)C17—H17A0.9700
N3—C141.454 (3)C17—H17B0.9700
N3—H30.8700C17—H17C0.9700
C1—C111.510 (3)C18—C191.384 (3)
C1—C31.518 (3)C18—C231.393 (3)
C1—C21.526 (3)C19—C201.385 (3)
C2—C181.491 (3)C19—H190.9400
C2—C31.507 (3)C20—C211.370 (4)
C2—H2B0.9900C20—H200.9400
C3—C241.503 (3)C21—C221.369 (4)
C3—H3B0.9900C22—C231.392 (3)
C4—C51.496 (3)C22—H220.9400
C5—C101.369 (3)C23—H230.9400
C5—C61.393 (3)C24—C251.389 (3)
C6—C71.381 (3)C24—C291.392 (3)
C6—H60.9400C25—C261.382 (3)
C7—C81.369 (4)C25—H250.9400
C7—H70.9400C26—C271.375 (4)
C8—C91.371 (4)C26—H260.9400
C8—H80.9400C27—C281.368 (4)
C9—C101.396 (3)C27—H270.9400
C9—H90.9400C28—C291.384 (3)
C10—H100.9400C28—H280.9400
C12—C131.520 (3)C29—H290.9400
C12—C151.541 (3)
C4—N1—C1118.66 (16)N3—C14—H14A109.5
C4—N1—H1120.7N3—C14—H14B109.5
C1—N1—H1120.7H14A—C14—H14B109.5
C11—N2—C12122.92 (16)N3—C14—H14C109.5
C11—N2—H2118.5H14A—C14—H14C109.5
C12—N2—H2118.5H14B—C14—H14C109.5
C13—N3—C14122.09 (19)C17—C15—C16110.4 (2)
C13—N3—H3119.0C17—C15—C12111.0 (2)
C14—N3—H3119.0C16—C15—C12111.50 (18)
N1—C1—C11114.29 (16)C17—C15—H15107.9
N1—C1—C3118.32 (16)C16—C15—H15107.9
C11—C1—C3117.03 (16)C12—C15—H15107.9
N1—C1—C2119.81 (16)C15—C16—H16A109.5
C11—C1—C2117.30 (16)C15—C16—H16B109.5
C3—C1—C259.35 (13)H16A—C16—H16B109.5
C18—C2—C3123.47 (18)C15—C16—H16C109.5
C18—C2—C1122.95 (17)H16A—C16—H16C109.5
C3—C2—C160.06 (13)H16B—C16—H16C109.5
C18—C2—H2B113.4C15—C17—H17A109.5
C3—C2—H2B113.4C15—C17—H17B109.5
C1—C2—H2B113.4H17A—C17—H17B109.5
C24—C3—C2121.14 (18)C15—C17—H17C109.5
C24—C3—C1121.31 (17)H17A—C17—H17C109.5
C2—C3—C160.59 (13)H17B—C17—H17C109.5
C24—C3—H3B114.5C19—C18—C23117.56 (19)
C2—C3—H3B114.5C19—C18—C2118.3 (2)
C1—C3—H3B114.5C23—C18—C2124.2 (2)
O1—C4—N1120.99 (19)C18—C19—C20122.1 (2)
O1—C4—C5122.35 (19)C18—C19—H19119.0
N1—C4—C5116.56 (18)C20—C19—H19119.0
C10—C5—C6118.9 (2)C21—C20—C19118.7 (2)
C10—C5—C4123.2 (2)C21—C20—H20120.6
C6—C5—C4117.9 (2)C19—C20—H20120.6
C7—C6—C5120.5 (2)C22—C21—C20121.3 (2)
C7—C6—H6119.7C22—C21—Cl1119.6 (2)
C5—C6—H6119.7C20—C21—Cl1119.1 (2)
C8—C7—C6120.1 (3)C21—C22—C23119.4 (2)
C8—C7—H7119.9C21—C22—H22120.3
C6—C7—H7119.9C23—C22—H22120.3
C7—C8—C9120.0 (2)C22—C23—C18120.9 (2)
C7—C8—H8120.0C22—C23—H23119.6
C9—C8—H8120.0C18—C23—H23119.6
C8—C9—C10120.1 (3)C25—C24—C29117.74 (19)
C8—C9—H9119.9C25—C24—C3121.83 (19)
C10—C9—H9119.9C29—C24—C3120.41 (18)
C5—C10—C9120.4 (2)C26—C25—C24120.7 (2)
C5—C10—H10119.8C26—C25—H25119.6
C9—C10—H10119.8C24—C25—H25119.6
O2—C11—N2123.64 (18)C27—C26—C25120.4 (2)
O2—C11—C1122.59 (18)C27—C26—H26119.8
N2—C11—C1113.75 (16)C25—C26—H26119.8
N2—C12—C13113.02 (16)C28—C27—C26120.0 (2)
N2—C12—C15109.95 (16)C28—C27—H27120.0
C13—C12—C15111.18 (16)C26—C27—H27120.0
N2—C12—H12107.5C27—C28—C29119.8 (2)
C13—C12—H12107.5C27—C28—H28120.1
C15—C12—H12107.5C29—C28—H28120.1
O3—C13—N3122.54 (19)C28—C29—C24121.3 (2)
O3—C13—C12120.27 (18)C28—C29—H29119.3
N3—C13—C12117.11 (18)C24—C29—H29119.3
C4—N1—C1—C1156.8 (2)C11—N2—C12—C1388.6 (2)
C4—N1—C1—C3159.11 (18)C11—N2—C12—C15146.52 (18)
C4—N1—C1—C290.1 (2)C14—N3—C13—O32.5 (3)
N1—C1—C2—C185.4 (3)C14—N3—C13—C12179.27 (19)
C11—C1—C2—C18140.58 (19)N2—C12—C13—O3137.01 (18)
C3—C1—C2—C18112.6 (2)C15—C12—C13—O398.8 (2)
N1—C1—C2—C3107.22 (19)N2—C12—C13—N346.2 (2)
C11—C1—C2—C3106.77 (19)C15—C12—C13—N378.0 (2)
C18—C2—C3—C24137.30 (19)N2—C12—C15—C17179.2 (2)
C1—C2—C3—C24110.9 (2)C13—C12—C15—C1753.3 (2)
C18—C2—C3—C1111.8 (2)N2—C12—C15—C1657.2 (2)
N1—C1—C3—C24139.70 (19)C13—C12—C15—C16176.83 (19)
C11—C1—C3—C243.4 (3)C3—C2—C18—C19149.82 (19)
C2—C1—C3—C24110.6 (2)C1—C2—C18—C19136.7 (2)
N1—C1—C3—C2109.70 (19)C3—C2—C18—C2329.1 (3)
C11—C1—C3—C2107.23 (19)C1—C2—C18—C2344.3 (3)
C1—N1—C4—O12.6 (3)C23—C18—C19—C200.5 (3)
C1—N1—C4—C5178.99 (17)C2—C18—C19—C20179.5 (2)
O1—C4—C5—C10146.1 (2)C18—C19—C20—C211.1 (3)
N1—C4—C5—C1037.5 (3)C19—C20—C21—C221.5 (3)
O1—C4—C5—C632.8 (3)C19—C20—C21—Cl1179.66 (17)
N1—C4—C5—C6143.5 (2)C20—C21—C22—C230.3 (3)
C10—C5—C6—C72.5 (3)Cl1—C21—C22—C23179.18 (17)
C4—C5—C6—C7178.5 (2)C21—C22—C23—C181.3 (3)
C5—C6—C7—C81.8 (4)C19—C18—C23—C221.7 (3)
C6—C7—C8—C90.6 (4)C2—C18—C23—C22179.35 (19)
C7—C8—C9—C102.3 (4)C2—C3—C24—C2532.7 (3)
C6—C5—C10—C90.8 (4)C1—C3—C24—C25105.0 (2)
C4—C5—C10—C9179.7 (2)C2—C3—C24—C29149.11 (19)
C8—C9—C10—C51.6 (4)C1—C3—C24—C2976.8 (3)
C12—N2—C11—O27.5 (3)C29—C24—C25—C260.7 (3)
C12—N2—C11—C1174.07 (16)C3—C24—C25—C26177.6 (2)
N1—C1—C11—O2140.36 (18)C24—C25—C26—C270.4 (4)
C3—C1—C11—O275.1 (2)C25—C26—C27—C280.9 (4)
C2—C1—C11—O27.5 (3)C26—C27—C28—C290.3 (4)
N1—C1—C11—N241.2 (2)C27—C28—C29—C240.8 (3)
C3—C1—C11—N2103.4 (2)C25—C24—C29—C281.3 (3)
C2—C1—C11—N2170.97 (16)C3—C24—C29—C28177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.872.002.854 (2)166
N2—H2···O2i0.872.172.912 (2)144
N3—H3···O2i0.872.253.114 (2)173
C14—H14B···O1i0.972.423.283 (3)148
Symmetry code: (i) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC29H30ClN3O3
Mr504.01
Crystal system, space groupMonoclinic, P21
Temperature (K)223
a, b, c (Å)10.8821 (19), 9.5688 (16), 12.952 (2)
β (°) 95.754 (4)
V3)1341.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.50 × 0.36 × 0.30
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.720, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
13162, 4678, 4334
Rint0.028
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.087, 1.09
No. of reflections4678
No. of parameters329
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.19
Absolute structureFlack (1983), with 2067 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: CrystalClear (Rigaku/MSC, 2000), CrystalClear, CrystalStructure (Rigaku, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.872.002.854 (2)166.2
N2—H2···O2i0.872.172.912 (2)143.6
N3—H3···O2i0.872.253.114 (2)172.5
C14—H14B···O1i0.972.423.283 (3)147.9
Symmetry code: (i) x+1, y1/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds