Download citation
Download citation
link to html
In the title compound, [Co(C7H3NO4)(C10H8N2)]n, the CoII atom has a distorted octa­hedral coordination geometry, being coordinated by three N atoms and three carboxylate O atoms from chelating 2,2′-bipyridine and pyridine-3,4-dicarboxyl­ate ligands. The compound exhibits a two-dimensional layer structure. This supra­molecular network is consolidated by π–π stacking inter­actions [3.979 (3) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702541X/zl2031sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702541X/zl2031Isup2.hkl
Contains datablock I

CCDC reference: 654690

Key indicators

  • Single-crystal X-ray study
  • T = 113 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.036
  • wR factor = 0.076
  • Data-to-parameter ratio = 11.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.58 Ratio
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 27.91 From the CIF: _reflns_number_total 2503 Count of symmetry unique reflns 1762 Completeness (_total/calc) 142.05% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 741 Fraction of Friedel pairs measured 0.421 Are heavy atom types Z>Si present yes PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (2) 1.81 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The rational design and construction of metal-organic polymers is of current interest in the fields of supramolecular chemistry and crystal engineering. The pyridine-3,4-dicarboxylate anion (PDB) has recently been found by us and others to act as an excellent building block in the construction of coordination polymers. Some two-dimensional layered structures of metal-organic polymers containing PDB have been reported previously (Qin et al., 2005; Wang et al., 2005). We present here the crystal structure of the title compound, (I), which is another example of a coordination polymer compound with a layered structure.

As shown in Fig. 1, the asymmetric unit of (I) contains one Co II atom, one PDB and one 2,2'-bipyridine (bpy) ligand. The CoII center exhibits a distorted octahedral geometry and its coordination environment is made up of three O atoms from two different PDB ligands and three N atoms from one chelating bpy and one PDB ligand. The Co—O bond distances range from 2.005 (2) to 2.206 (2) Å, while the Co—N bond distances range from 2.081 (3) to 2.145 (3) Å.

Each PDB ligand is connecting three different CoII atoms, with the CoII ions linked by the PDB ligands in such a way as to form a two-dimensionally layered structure as shown in Figure 2. The bpy groups bristle out in opposite directions and nearly perpendicular to the two-dimensional layer (Figure 3). Via π-π stacking interactions the bpy extend the layered structure into a three-dimensional supramolecular network, the closets face-to-face distance between neighbouring parallel planes is 3.979 (3)Å (Ring 1: N2, C8 to C12, Ring 2: N3, C13 to C17, symmetry code for Ring 2: x, 1 - y, 1/2 + z).

Related literature top

For related literature, see: Qin et al. (2005); Wang et al. (2005).

Experimental top

A mixture of CoCl2.6H2O (0.3 mmol), pyridine-3,4-dicarboxylic acid (0.3 mmol), 2,2'-bipyridine (0.3 mmol), NaF (0.3 mmol) and water (8 mL) was placed in a 15 mL Teflon reactor, which was then heated to 443 K for 5 d. The reactor was cooled to room temperature at a rate of 10 K h-1. CHN analysis for (I) (found/calculated): C 53.45 (53.70), H 2.87 (2.92), N 10.98% (11.05%).

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.95 Å, and treated as riding atoms in the final cycles of refinement, with Uiso(H) = 1.2Ueq(C).

Structure description top

The rational design and construction of metal-organic polymers is of current interest in the fields of supramolecular chemistry and crystal engineering. The pyridine-3,4-dicarboxylate anion (PDB) has recently been found by us and others to act as an excellent building block in the construction of coordination polymers. Some two-dimensional layered structures of metal-organic polymers containing PDB have been reported previously (Qin et al., 2005; Wang et al., 2005). We present here the crystal structure of the title compound, (I), which is another example of a coordination polymer compound with a layered structure.

As shown in Fig. 1, the asymmetric unit of (I) contains one Co II atom, one PDB and one 2,2'-bipyridine (bpy) ligand. The CoII center exhibits a distorted octahedral geometry and its coordination environment is made up of three O atoms from two different PDB ligands and three N atoms from one chelating bpy and one PDB ligand. The Co—O bond distances range from 2.005 (2) to 2.206 (2) Å, while the Co—N bond distances range from 2.081 (3) to 2.145 (3) Å.

Each PDB ligand is connecting three different CoII atoms, with the CoII ions linked by the PDB ligands in such a way as to form a two-dimensionally layered structure as shown in Figure 2. The bpy groups bristle out in opposite directions and nearly perpendicular to the two-dimensional layer (Figure 3). Via π-π stacking interactions the bpy extend the layered structure into a three-dimensional supramolecular network, the closets face-to-face distance between neighbouring parallel planes is 3.979 (3)Å (Ring 1: N2, C8 to C12, Ring 2: N3, C13 to C17, symmetry code for Ring 2: x, 1 - y, 1/2 + z).

For related literature, see: Qin et al. (2005); Wang et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and with 30% probability displacement ellipsoids. [Symmetry codes: (#1) x + 1, y, z; (#2) x + 1/2, -y, z + 1/2; (#3) x - 1, y, z; (#4) x - 1/2, -y, z - 1/2.]
[Figure 2] Fig. 2. A packing model of (I), view perpendicular to the two-dimensional layer. H atoms have been ommited for clarity.
[Figure 3] Fig. 3. A packing model of (I) showing the π-π interactions of the bipyridine units connecting the two-dimensional layers to a three-dimensional supramolecular structure. H atoms have been ommited for clarity.
Poly[[(2,2-bipyridine-κ2N,N')cobalt(II)]-µ3– pyridine-3,4-dicarboxylato-κ4N:O4,O4':O2] top
Crystal data top
[Co(C7H3NO4)(C10H8N2)]F(000) = 386
Mr = 380.22Dx = 1.720 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 7.6088 (15) ÅCell parameters from 2320 reflections
b = 9.3094 (19) Åθ = 2.3–22.5°
c = 12.270 (4) ŵ = 1.20 mm1
β = 122.38 (2)°T = 113 K
V = 734.0 (3) Å3Block, red
Z = 20.10 × 0.08 × 0.04 mm
Data collection top
Rigaku Saturn
diffractometer
2503 independent reflections
Radiation source: fine-focus sealed tube2213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω scansh = 109
Absorption correction: multi-scan
CrystalClear (Rigaku/MSC, 2005)
k = 1212
Tmin = 0.872, Tmax = 0.954l = 1016
5529 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2503 reflectionsΔρmax = 0.36 e Å3
226 parametersΔρmin = 0.39 e Å3
2 restraintsAbsolute structure: Flack (1983), with 744 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (17)
Crystal data top
[Co(C7H3NO4)(C10H8N2)]V = 734.0 (3) Å3
Mr = 380.22Z = 2
Monoclinic, PcMo Kα radiation
a = 7.6088 (15) ŵ = 1.20 mm1
b = 9.3094 (19) ÅT = 113 K
c = 12.270 (4) Å0.10 × 0.08 × 0.04 mm
β = 122.38 (2)°
Data collection top
Rigaku Saturn
diffractometer
2503 independent reflections
Absorption correction: multi-scan
CrystalClear (Rigaku/MSC, 2005)
2213 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.954Rint = 0.048
5529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.36 e Å3
S = 1.00Δρmin = 0.39 e Å3
2503 reflectionsAbsolute structure: Flack (1983), with 744 Friedel pairs
226 parametersAbsolute structure parameter: 0.011 (17)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50834 (8)0.24293 (4)0.20068 (6)0.00871 (11)
O10.4769 (4)0.0409 (2)0.2777 (3)0.0112 (5)
O20.2656 (4)0.2200 (3)0.2460 (3)0.0113 (6)
O30.2251 (4)0.2032 (3)0.2097 (3)0.0129 (6)
O40.1534 (4)0.0769 (3)0.0818 (2)0.0127 (5)
N10.2994 (5)0.1568 (3)0.5116 (3)0.0099 (6)
N20.4530 (5)0.4600 (3)0.1544 (3)0.0128 (6)
N30.6816 (5)0.3421 (3)0.3838 (3)0.0120 (7)
C10.3287 (5)0.0950 (3)0.2830 (4)0.0101 (7)
C20.2350 (6)0.0062 (4)0.3423 (4)0.0100 (7)
C30.3636 (5)0.0813 (3)0.4451 (4)0.0107 (7)
H30.50520.08920.47080.013*
C40.0944 (5)0.1461 (3)0.4696 (4)0.0110 (7)
H40.04350.20120.51220.013*
C50.0422 (5)0.0603 (3)0.3693 (4)0.0113 (7)
H50.18330.05490.34510.014*
C60.0253 (5)0.0196 (3)0.3022 (3)0.0092 (7)
C70.1292 (5)0.1065 (3)0.1871 (3)0.0099 (7)
C80.3328 (7)0.5112 (4)0.0342 (4)0.0154 (8)
H80.27860.44570.03600.018*
C90.2839 (7)0.6566 (4)0.0078 (4)0.0233 (9)
H90.19850.69010.07840.028*
C100.3635 (7)0.7499 (4)0.1107 (4)0.0209 (9)
H100.33220.84950.09600.025*
C110.4897 (6)0.6986 (4)0.2361 (4)0.0166 (8)
H110.54660.76200.30770.020*
C120.5303 (6)0.5526 (4)0.2537 (4)0.0114 (7)
C130.6628 (6)0.4874 (4)0.3840 (4)0.0128 (8)
C140.7617 (6)0.5654 (4)0.4969 (4)0.0173 (8)
H140.74770.66690.49520.021*
C150.8815 (7)0.4939 (4)0.6129 (4)0.0217 (9)
H150.95020.54580.69180.026*
C160.9007 (7)0.3454 (4)0.6133 (4)0.0215 (9)
H160.98210.29410.69200.026*
C170.7985 (6)0.2745 (4)0.4967 (4)0.0164 (8)
H170.81170.17310.49640.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00969 (18)0.00813 (19)0.0088 (2)0.0001 (2)0.00528 (17)0.0001 (2)
O10.0093 (12)0.0120 (12)0.0105 (14)0.0022 (9)0.0040 (12)0.0012 (10)
O20.0130 (14)0.0106 (12)0.0115 (15)0.0013 (10)0.0073 (13)0.0005 (11)
O30.0083 (13)0.0113 (11)0.0177 (16)0.0008 (10)0.0061 (13)0.0022 (11)
O40.0110 (13)0.0182 (13)0.0061 (14)0.0008 (11)0.0028 (12)0.0007 (10)
N10.0131 (16)0.0094 (13)0.0104 (18)0.0003 (12)0.0084 (16)0.0001 (12)
N20.0193 (18)0.0105 (14)0.0128 (16)0.0007 (12)0.0114 (16)0.0002 (12)
N30.0130 (16)0.0113 (14)0.0116 (18)0.0008 (12)0.0066 (16)0.0031 (13)
C10.0066 (16)0.0113 (16)0.0083 (19)0.0012 (13)0.0012 (16)0.0010 (14)
C20.0095 (17)0.0102 (16)0.0095 (19)0.0015 (14)0.0046 (17)0.0016 (14)
C30.0109 (17)0.0110 (16)0.010 (2)0.0048 (13)0.0057 (17)0.0065 (14)
C40.0116 (17)0.0122 (16)0.0103 (19)0.0027 (14)0.0067 (17)0.0021 (14)
C50.0095 (17)0.0123 (16)0.0120 (19)0.0006 (13)0.0056 (17)0.0016 (14)
C60.0093 (17)0.0075 (15)0.0088 (19)0.0017 (13)0.0037 (16)0.0034 (13)
C70.0098 (17)0.0104 (15)0.0092 (19)0.0017 (13)0.0048 (17)0.0011 (13)
C80.023 (2)0.0125 (18)0.011 (2)0.0022 (16)0.0093 (19)0.0011 (15)
C90.033 (2)0.0196 (19)0.014 (2)0.0044 (18)0.010 (2)0.0055 (17)
C100.034 (2)0.0096 (17)0.022 (2)0.0023 (17)0.016 (2)0.0039 (16)
C110.022 (2)0.0116 (16)0.017 (2)0.0013 (15)0.010 (2)0.0012 (15)
C120.0102 (16)0.0113 (16)0.014 (2)0.0036 (14)0.0070 (18)0.0030 (14)
C130.0105 (17)0.0149 (18)0.016 (2)0.0003 (15)0.0087 (18)0.0014 (16)
C140.021 (2)0.0140 (17)0.016 (2)0.0063 (15)0.009 (2)0.0079 (16)
C150.026 (2)0.020 (2)0.013 (2)0.0017 (17)0.006 (2)0.0076 (17)
C160.026 (2)0.021 (2)0.015 (2)0.0049 (17)0.009 (2)0.0022 (17)
C170.0186 (19)0.0164 (17)0.015 (2)0.0002 (15)0.0094 (19)0.0011 (15)
Geometric parameters (Å, º) top
Co1—O3i2.005 (2)C4—C51.365 (5)
Co1—N22.081 (3)C4—H40.9500
Co1—N32.113 (3)C5—C61.395 (4)
Co1—N1ii2.145 (3)C5—H50.9500
Co1—O12.175 (2)C6—C71.501 (5)
Co1—O22.206 (2)C8—C91.395 (5)
Co1—C12.503 (3)C8—H80.9500
O1—C11.267 (4)C9—C101.377 (6)
O2—C11.249 (4)C9—H90.9500
O3—C71.279 (4)C10—C111.391 (6)
O3—Co1iii2.005 (2)C10—H100.9500
O4—C71.235 (4)C11—C121.384 (5)
N1—C31.350 (4)C11—H110.9500
N1—C41.359 (4)C12—C131.488 (6)
N1—Co1iv2.145 (3)C13—C141.377 (5)
N2—C81.339 (5)C14—C151.382 (6)
N2—C121.344 (5)C14—H140.9500
N3—C171.336 (5)C15—C161.390 (5)
N3—C131.361 (4)C15—H150.9500
C1—C21.509 (4)C16—C171.377 (6)
C2—C31.375 (5)C16—H160.9500
C2—C61.401 (4)C17—H170.9500
C3—H30.9500
O3i—Co1—N2104.20 (11)C2—C3—H3118.2
O3i—Co1—N389.16 (12)N1—C4—C5123.4 (3)
N2—Co1—N377.63 (12)N1—C4—H4118.3
O3i—Co1—N1ii97.62 (11)C5—C4—H4118.3
N2—Co1—N1ii98.26 (12)C4—C5—C6120.1 (3)
N3—Co1—N1ii172.80 (12)C4—C5—H5120.0
O3i—Co1—O199.20 (10)C6—C5—H5120.0
N2—Co1—O1154.86 (9)C5—C6—C2117.1 (3)
N3—Co1—O193.81 (11)C5—C6—C7119.5 (3)
N1ii—Co1—O187.51 (10)C2—C6—C7123.3 (3)
O3i—Co1—O2157.94 (10)O4—C7—O3127.0 (3)
N2—Co1—O295.05 (10)O4—C7—C6117.8 (3)
N3—Co1—O284.49 (11)O3—C7—C6115.2 (3)
N1ii—Co1—O290.04 (10)N2—C8—C9122.7 (4)
O1—Co1—O260.33 (9)N2—C8—H8118.6
O3i—Co1—C1129.11 (11)C9—C8—H8118.6
N2—Co1—C1124.77 (11)C10—C9—C8117.8 (4)
N3—Co1—C188.61 (11)C10—C9—H9121.1
N1ii—Co1—C188.97 (11)C8—C9—H9121.1
O1—Co1—C130.42 (9)C9—C10—C11120.1 (3)
O2—Co1—C129.91 (10)C9—C10—H10119.9
C1—O1—Co189.25 (19)C11—C10—H10119.9
C1—O2—Co188.32 (18)C12—C11—C10118.3 (4)
C7—O3—Co1iii142.7 (2)C12—C11—H11120.8
C3—N1—C4116.4 (3)C10—C11—H11120.8
C3—N1—Co1iv123.3 (2)N2—C12—C11122.3 (4)
C4—N1—Co1iv118.2 (2)N2—C12—C13115.3 (3)
C8—N2—C12118.7 (3)C11—C12—C13122.3 (3)
C8—N2—Co1124.4 (2)N3—C13—C14121.6 (4)
C12—N2—Co1116.7 (2)N3—C13—C12114.5 (3)
C17—N3—C13118.6 (4)C14—C13—C12123.8 (3)
C17—N3—Co1125.9 (2)C13—C14—C15119.1 (3)
C13—N3—Co1115.4 (3)C13—C14—H14120.5
O2—C1—O1122.1 (3)C15—C14—H14120.5
O2—C1—C2119.8 (3)C14—C15—C16119.6 (4)
O1—C1—C2118.0 (3)C14—C15—H15120.2
O2—C1—Co161.77 (16)C16—C15—H15120.2
O1—C1—Co160.33 (16)C17—C16—C15118.2 (4)
C2—C1—Co1175.8 (3)C17—C16—H16120.9
C3—C2—C6119.5 (3)C15—C16—H16120.9
C3—C2—C1118.6 (3)N3—C17—C16123.0 (3)
C6—C2—C1121.7 (3)N3—C17—H17118.5
N1—C3—C2123.6 (3)C16—C17—H17118.5
N1—C3—H3118.2
O3i—Co1—O1—C1170.5 (2)O2—C1—C2—C633.5 (5)
N2—Co1—O1—C112.0 (4)O1—C1—C2—C6149.5 (3)
N3—Co1—O1—C180.7 (2)C4—N1—C3—C21.9 (5)
N1ii—Co1—O1—C192.2 (2)Co1iv—N1—C3—C2161.7 (3)
O2—Co1—O1—C10.7 (2)C6—C2—C3—N10.1 (5)
O3i—Co1—O2—C122.9 (4)C1—C2—C3—N1174.8 (3)
N2—Co1—O2—C1173.9 (2)C3—N1—C4—C52.6 (5)
N3—Co1—O2—C196.8 (2)Co1iv—N1—C4—C5161.8 (3)
N1ii—Co1—O2—C187.9 (2)N1—C4—C5—C61.6 (5)
O1—Co1—O2—C10.7 (2)C4—C5—C6—C20.3 (5)
O3i—Co1—N2—C894.4 (3)C4—C5—C6—C7176.3 (3)
N3—Co1—N2—C8179.7 (3)C3—C2—C6—C51.0 (5)
N1ii—Co1—N2—C85.7 (3)C1—C2—C6—C5175.8 (3)
O1—Co1—N2—C8107.5 (3)C3—C2—C6—C7176.8 (3)
O2—Co1—N2—C896.4 (3)C1—C2—C6—C78.4 (5)
C1—Co1—N2—C8100.2 (3)Co1iii—O3—C7—O481.2 (5)
O3i—Co1—N2—C1291.3 (2)Co1iii—O3—C7—C697.6 (4)
N3—Co1—N2—C125.3 (2)C5—C6—C7—O4119.0 (3)
N1ii—Co1—N2—C12168.7 (2)C2—C6—C7—O456.7 (5)
O1—Co1—N2—C1266.8 (4)C5—C6—C7—O359.9 (4)
O2—Co1—N2—C1277.9 (2)C2—C6—C7—O3124.4 (3)
C1—Co1—N2—C1274.2 (3)C12—N2—C8—C90.2 (5)
O3i—Co1—N3—C1773.7 (3)Co1—N2—C8—C9174.0 (3)
N2—Co1—N3—C17178.4 (3)N2—C8—C9—C100.1 (6)
O1—Co1—N3—C1725.5 (3)C8—C9—C10—C110.5 (6)
O2—Co1—N3—C1785.2 (3)C9—C10—C11—C120.6 (5)
C1—Co1—N3—C1755.5 (3)C8—N2—C12—C110.2 (5)
O3i—Co1—N3—C13109.0 (2)Co1—N2—C12—C11174.5 (2)
N2—Co1—N3—C134.2 (2)C8—N2—C12—C13179.8 (3)
O1—Co1—N3—C13151.9 (2)Co1—N2—C12—C135.6 (4)
O2—Co1—N3—C1392.2 (2)C10—C11—C12—N20.2 (5)
C1—Co1—N3—C13121.9 (2)C10—C11—C12—C13179.8 (3)
Co1—O2—C1—O11.3 (4)C17—N3—C13—C140.3 (5)
Co1—O2—C1—C2175.5 (3)Co1—N3—C13—C14177.9 (3)
Co1—O1—C1—O21.3 (4)C17—N3—C13—C12179.8 (3)
Co1—O1—C1—C2175.5 (3)Co1—N3—C13—C122.7 (3)
O3i—Co1—C1—O2169.13 (19)N2—C12—C13—N31.8 (4)
N2—Co1—C1—O27.5 (3)C11—C12—C13—N3178.2 (3)
N3—Co1—C1—O281.3 (2)N2—C12—C13—C14177.6 (3)
N1ii—Co1—C1—O291.9 (2)C11—C12—C13—C142.3 (5)
O1—Co1—C1—O2178.7 (4)N3—C13—C14—C150.5 (5)
O3i—Co1—C1—O112.2 (3)C12—C13—C14—C15179.9 (3)
N2—Co1—C1—O1173.8 (2)C13—C14—C15—C160.3 (5)
N3—Co1—C1—O199.9 (2)C14—C15—C16—C170.1 (6)
N1ii—Co1—C1—O186.8 (2)C13—N3—C17—C160.1 (5)
O2—Co1—C1—O1178.7 (4)Co1—N3—C17—C16177.2 (3)
O2—C1—C2—C3141.3 (4)C15—C16—C17—N30.3 (6)
O1—C1—C2—C335.7 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1/2; (iii) x1, y, z; (iv) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4v0.952.203.118 (4)163
C4—H4···O2iv0.952.432.990 (5)117
C4—H4···O4iv0.952.382.940 (4)117
C5—H5···O1iii0.952.423.337 (4)161
C10—H10···O1vi0.952.593.224 (5)124
C14—H14···O4vii0.952.553.445 (4)156
C17—H17···O4v0.952.513.394 (4)155
Symmetry codes: (iii) x1, y, z; (iv) x, y, z+1/2; (v) x+1, y, z+1/2; (vi) x, y+1, z; (vii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C7H3NO4)(C10H8N2)]
Mr380.22
Crystal system, space groupMonoclinic, Pc
Temperature (K)113
a, b, c (Å)7.6088 (15), 9.3094 (19), 12.270 (4)
β (°) 122.38 (2)
V3)734.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.10 × 0.08 × 0.04
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
CrystalClear (Rigaku/MSC, 2005)
Tmin, Tmax0.872, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
5529, 2503, 2213
Rint0.048
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.076, 1.00
No. of reflections2503
No. of parameters226
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.39
Absolute structureFlack (1983), with 744 Friedel pairs
Absolute structure parameter0.011 (17)

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalClear, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.203.118 (4)163.0
C4—H4···O2ii0.952.432.990 (5)117.2
C4—H4···O4ii0.952.382.940 (4)117.0
C5—H5···O1iii0.952.423.337 (4)161.2
C10—H10···O1iv0.952.593.224 (5)124.0
C14—H14···O4v0.952.553.445 (4)156.2
C17—H17···O4i0.952.513.394 (4)155.4
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds