Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, (C6H21N4)[SbS4], consists of discrete tetra­hedral [SbS4]3− anions and discrete tris­(2-ethyl­ammonium)amine cations. There are two crystallographically independent cations and anions in the asymmetric unit, all of them located in general positions. The cations and anions are connected by N—H...S hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702394X/zl2025sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702394X/zl2025Isup2.hkl
Contains datablock I

CCDC reference: 650566

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.015 Å
  • R factor = 0.025
  • wR factor = 0.065
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT112_ALERT_2_A ADDSYM Detects Additional (Pseudo) Symm. Elem... m
Author Response: ... I am sure that there is only pseudosymmetry. I tried a refinement in the centrosymmetric space group but this didn't work. There is strong disorder.

Alert level B PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT115_ALERT_5_B ADDSYM Detects Noncrystallographic Inversion ... 80 PerFi
Alert level C PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.08 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C12 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 15 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C1 - C2 ... 1.43 Ang.
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 27.01 From the CIF: _reflns_number_total 3571 Count of symmetry unique reflns 3309 Completeness (_total/calc) 107.92% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 262 Fraction of Friedel pairs measured 0.079 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Sb1 (3) 5.84 PLAT794_ALERT_5_G Check Predicted Bond Valency for Sb2 (3) 6.04 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
1 ALERT level A = In general: serious problem 38 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 40 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

During the last decade numerous thioantimonate(III) compounds were synthesized under solvothermal conditions. An intriguing observation is that in the overwhelming cases Sb(III)Sx (x = 3 - 6) are observed and the number of compounds containing Sb(V)S4 is comparably low. Some examples for thioantimonate(V) compounds are (C3H10N)[NiSbS4(C6H18N4)] (Stähler & Bensch, 2002), K3SbS4 (Graf & Schäfer, 1976), (NH4)3SbS4 (Graf et al., 1969), Na3SbS4 × 9 H2O (Mereiter et al., 1979), KAg2SbS4 (Schimek et al., 1996), Rb3SbS4 (Bensch & Dürichen, 1996), Cr(en)3SbS4 (Schur et al., 1998), [Ni(en)3]2SbS4NO3 (en = ethylenediamine) (Schur & Bensch, 2000), [Mn(C6H14N2)3]2[Mn(C6H14N2)2(SbS4)2] × 6 H2O and [Mn(tren)(trenH)]SbS4 (tren = tris(2-ethyl)amine)(Schaefer et al., 2003), [Ni(en)3(enH)]SbS4 (Jia et al., 2004), [Sm(en)4]SbS4 × 0.5 en (Jia, Zhu et al., 2005), [Ln(en)3(H2O)x3 - xSbS4)] (Ln = La, x = 0; Ln = Nd, x = 1) and [Ln(en)4]SbS4 × 0.5en (Ln = Eu, Dy, Yb) (Jia, Zhao et al., 2005. There is also one example where Sb(III) and Sb(V) species coexist in a common anion, i.e., in [Ni(dien)2]2Sb4S9 (R. Stähler et al., 2002). During our ongoing work in the field of solvothermal syntheses of new thioantimonates the title compound was prepared. In the crystal structure of (C6H21N4)SbS4, discrete tetrathioantimonate anions and tris(2-ethylammonium)amine cations coexist. There are two crystallographically independent cations and anions in the asymmetric unit, all of them located in general positions (Fig. 1). The tetrathioantimonate anions show slightly distorted tetrahedral geometry (Table 1), but the values are in the range reported for the above mentioned compounds containing this anion. The tetrathioantimonate anions and the organic cations are arranged in layers, which are parallel to the a b plane (Fig. 2). These layers are interconnected by intermolecular N—H···S hydrogen bonding (Table 2). The Sb(1)S4 anion has two such S···H contacts to the first and four contacts to the second crystallographically independent cation, whereas for the Sb(2)S4 anion it is the other way around.

Related literature top

For structures of related compounds, see: Stähler & Bensch (2002); Graf & Schäfer (1976); Graf et al. (1969); Mereiter et al. (1979); Schimek et al. (1996); Bensch & Dürichen (1996); Schur et al. (1998); Schur & Bensch (2000); Schaefer et al. (2003); Jia et al. (2004); Jia, Zhao et al. (2005); Jia, Zhu et al. (2005); Stähler et al. (2002); Alyea et al. (1995).

Experimental top

A mixture of 0.5 mmol MnSb2S4, 0.5 mmol (NH4)2MoS4, 3 mmol S and 5 ml concentrated tris(2-aminoethyl)amine were heated at 413 K for 7 d followed by cooling to room temperature. The product was identified by X-ray powder diffraction and contained two different phases in approximately equivalent amount: red crystals of [Mn(tren)(trenH)]SbS4 (tren = tris(2-ethyl)amine)(Schaefer et al., 2003), and yellow crystals of the title compound.

Refinement top

All hydrogen atoms were positioned with idealized geometry (amine H atoms allowed to rotate but not to tip) and were refined with fixed isotropic displacement parameters (Uiso(H) = 1.2 Ueq(C)) or 1.5 Ueq(N)) using a riding model with d(C—H) = 0.97 Å and d(N—H) = 0.89 Å. In this structure a pseudo mirror plane and a pseudo center of symmetry are found, but refinement of the structure in the centrosymmetric space group Pnma was not successful and leads to pronounced disorder. The absolue structure was determined on the basis of 544 Friedel pairs.

Structure description top

During the last decade numerous thioantimonate(III) compounds were synthesized under solvothermal conditions. An intriguing observation is that in the overwhelming cases Sb(III)Sx (x = 3 - 6) are observed and the number of compounds containing Sb(V)S4 is comparably low. Some examples for thioantimonate(V) compounds are (C3H10N)[NiSbS4(C6H18N4)] (Stähler & Bensch, 2002), K3SbS4 (Graf & Schäfer, 1976), (NH4)3SbS4 (Graf et al., 1969), Na3SbS4 × 9 H2O (Mereiter et al., 1979), KAg2SbS4 (Schimek et al., 1996), Rb3SbS4 (Bensch & Dürichen, 1996), Cr(en)3SbS4 (Schur et al., 1998), [Ni(en)3]2SbS4NO3 (en = ethylenediamine) (Schur & Bensch, 2000), [Mn(C6H14N2)3]2[Mn(C6H14N2)2(SbS4)2] × 6 H2O and [Mn(tren)(trenH)]SbS4 (tren = tris(2-ethyl)amine)(Schaefer et al., 2003), [Ni(en)3(enH)]SbS4 (Jia et al., 2004), [Sm(en)4]SbS4 × 0.5 en (Jia, Zhu et al., 2005), [Ln(en)3(H2O)x3 - xSbS4)] (Ln = La, x = 0; Ln = Nd, x = 1) and [Ln(en)4]SbS4 × 0.5en (Ln = Eu, Dy, Yb) (Jia, Zhao et al., 2005. There is also one example where Sb(III) and Sb(V) species coexist in a common anion, i.e., in [Ni(dien)2]2Sb4S9 (R. Stähler et al., 2002). During our ongoing work in the field of solvothermal syntheses of new thioantimonates the title compound was prepared. In the crystal structure of (C6H21N4)SbS4, discrete tetrathioantimonate anions and tris(2-ethylammonium)amine cations coexist. There are two crystallographically independent cations and anions in the asymmetric unit, all of them located in general positions (Fig. 1). The tetrathioantimonate anions show slightly distorted tetrahedral geometry (Table 1), but the values are in the range reported for the above mentioned compounds containing this anion. The tetrathioantimonate anions and the organic cations are arranged in layers, which are parallel to the a b plane (Fig. 2). These layers are interconnected by intermolecular N—H···S hydrogen bonding (Table 2). The Sb(1)S4 anion has two such S···H contacts to the first and four contacts to the second crystallographically independent cation, whereas for the Sb(2)S4 anion it is the other way around.

For structures of related compounds, see: Stähler & Bensch (2002); Graf & Schäfer (1976); Graf et al. (1969); Mereiter et al. (1979); Schimek et al. (1996); Bensch & Dürichen (1996); Schur et al. (1998); Schur & Bensch (2000); Schaefer et al. (2003); Jia et al. (2004); Jia, Zhao et al. (2005); Jia, Zhu et al. (2005); Stähler et al. (2002); Alyea et al. (1995).

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998) and Diamond (Brandenburg, 1999); software used to prepare material for publication: CIFTAB in SHELXL97.

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the c axis (hydrogen bonding is not shown for clarity).
2,2',2''-Nitrilotris(ethylammonium) tetrathioantimonate top
Crystal data top
(C6H21N4)[SbS4]F(000) = 1600
Mr = 399.26Dx = 1.828 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 132 reflections
a = 19.7872 (13) Åθ = 13–20°
b = 10.8571 (10) ŵ = 2.46 mm1
c = 13.5055 (8) ÅT = 293 K
V = 2901.4 (4) Å3Block, orange
Z = 80.2 × 0.1 × 0.1 mm
Data collection top
Stoe AEDII
diffractometer
2898 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.0°, θmin = 1.9°
Phi scansh = 2514
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
k = 131
Tmin = 0.738, Tmax = 0.772l = 171
6750 measured reflections4 standard reflections every 2 h min
3571 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0261P)2 + 3.7053P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3571 reflectionsΔρmax = 0.88 e Å3
277 parametersΔρmin = 0.55 e Å3
1 restraintAbsolute structure: Flack (1983), 544 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (5)
Crystal data top
(C6H21N4)[SbS4]V = 2901.4 (4) Å3
Mr = 399.26Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 19.7872 (13) ŵ = 2.46 mm1
b = 10.8571 (10) ÅT = 293 K
c = 13.5055 (8) Å0.2 × 0.1 × 0.1 mm
Data collection top
Stoe AEDII
diffractometer
2898 reflections with I > 2σ(I)
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
Rint = 0.023
Tmin = 0.738, Tmax = 0.7724 standard reflections every 2 h min
6750 measured reflections intensity decay: none
3571 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.88 e Å3
S = 1.03Δρmin = 0.55 e Å3
3571 reflectionsAbsolute structure: Flack (1983), 544 Friedel pairs
277 parametersAbsolute structure parameter: 0.04 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.72266 (4)0.49351 (4)0.64960 (3)0.0204 (2)
S10.75959 (10)0.6794 (2)0.7180 (2)0.0305 (5)
S20.7352 (2)0.50371 (16)0.4781 (4)0.0289 (9)
S30.78342 (12)0.3293 (3)0.7154 (3)0.0388 (6)
S40.60811 (12)0.4725 (2)0.6887 (3)0.0318 (5)
Sb20.52627 (4)0.00637 (4)0.83030 (3)0.0196 (2)
S50.48991 (11)0.1799 (2)0.7655 (3)0.0338 (5)
S60.5162 (2)0.00107 (17)1.0015 (4)0.0319 (10)
S70.46215 (11)0.1664 (2)0.7672 (2)0.0366 (6)
S80.64036 (11)0.0315 (2)0.7919 (3)0.0338 (5)
N10.2974 (6)0.0028 (5)1.0178 (10)0.023 (3)
C10.2972 (4)0.1250 (6)0.9832 (6)0.0345 (17)
H1A0.28980.12590.91220.041*
H1B0.25990.16841.01400.041*
C20.3586 (5)0.1882 (9)1.0049 (9)0.034 (3)
H2A0.35480.27320.98330.040*
H2B0.39540.15030.96860.040*
N20.3745 (4)0.1851 (7)1.1154 (6)0.0354 (18)
H1N0.34630.23501.14750.053*
H2N0.41690.20991.12520.053*
H3N0.36970.10861.13790.053*
C30.3304 (4)0.0849 (7)0.9525 (7)0.0362 (18)
H3A0.36900.04250.92420.043*
H3B0.29970.10380.89870.043*
C40.3538 (5)0.1994 (9)0.9943 (10)0.035 (3)
H4A0.38030.24220.94460.042*
H4B0.31480.25021.00910.042*
N30.3965 (4)0.1871 (7)1.0885 (7)0.039 (2)
H4N0.43380.14441.07510.059*
H5N0.40780.26171.11020.059*
H6N0.37270.14821.13480.059*
C50.2287 (4)0.0471 (7)1.0443 (6)0.0316 (16)
H5A0.19790.02780.99050.038*
H5B0.22990.13591.05150.038*
C60.2022 (8)0.0076 (8)1.1366 (16)0.045 (4)
H6A0.23290.01161.19040.054*
H6B0.20100.09641.12940.054*
N40.1343 (4)0.0365 (7)1.1625 (8)0.0404 (17)
H7N0.10910.04111.10800.061*
H8N0.11530.01561.20510.061*
H9N0.13730.11081.19010.061*
N110.5448 (7)0.5007 (4)0.9564 (11)0.024 (3)
C110.4766 (4)0.4589 (7)0.9377 (6)0.0307 (15)
H11A0.44660.49050.98850.037*
H11B0.47500.36960.93990.037*
C120.4534 (6)0.5041 (5)0.8357 (12)0.021 (2)
H12A0.45780.59300.83220.025*
H12B0.48180.46830.78470.025*
N120.3826 (4)0.4685 (7)0.8190 (8)0.0431 (18)
H11N0.38110.39360.79240.065*
H12N0.36320.52220.77800.065*
H13N0.36050.46830.87640.065*
C130.5806 (4)0.4188 (7)1.0288 (6)0.0324 (17)
H13A0.55050.39941.08330.039*
H13B0.61950.46171.05550.039*
C140.6045 (5)0.2953 (9)0.9772 (11)0.037 (3)
H14A0.62900.24531.02480.044*
H14B0.56530.24900.95560.044*
N130.6473 (3)0.3202 (7)0.8936 (6)0.0348 (18)
H14N0.62400.36140.84800.052*
H15N0.66190.24950.86810.052*
H16N0.68250.36530.91300.052*
C150.5440 (4)0.6289 (6)0.9983 (6)0.0311 (16)
H15A0.53660.62471.06920.037*
H15B0.50690.67470.96920.037*
C160.6113 (4)0.6975 (10)0.9776 (10)0.032 (3)
H16A0.60690.78400.99420.039*
H16B0.64740.66261.01720.039*
N140.6263 (4)0.6837 (8)0.8743 (7)0.051 (2)
H17N0.61680.60710.85530.077*
H18N0.66990.69910.86390.077*
H19N0.60140.73650.83940.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0172 (4)0.0241 (4)0.0197 (5)0.00031 (15)0.0006 (4)0.0019 (3)
S10.0332 (10)0.0250 (9)0.0333 (11)0.0025 (9)0.0050 (12)0.0036 (9)
S20.0218 (15)0.042 (2)0.023 (2)0.0020 (7)0.0040 (17)0.0018 (7)
S30.0500 (13)0.0341 (11)0.0321 (12)0.0173 (10)0.0011 (14)0.0031 (10)
S40.0169 (10)0.0494 (9)0.0290 (12)0.0009 (10)0.0043 (8)0.0011 (14)
Sb20.0160 (4)0.0236 (4)0.0192 (5)0.00037 (14)0.0011 (4)0.0003 (3)
S50.0403 (12)0.0253 (9)0.0357 (12)0.0075 (10)0.0061 (13)0.0007 (10)
S60.0282 (17)0.050 (2)0.017 (2)0.0088 (8)0.0049 (17)0.0021 (7)
S70.0477 (12)0.0282 (10)0.0340 (12)0.0110 (10)0.0064 (15)0.0007 (9)
S80.0183 (10)0.0532 (10)0.0298 (12)0.0053 (11)0.0017 (9)0.0123 (14)
N10.008 (4)0.041 (6)0.020 (6)0.000 (2)0.004 (4)0.000 (2)
C10.038 (4)0.038 (4)0.028 (4)0.008 (4)0.009 (4)0.014 (3)
C20.045 (5)0.019 (4)0.036 (6)0.004 (4)0.021 (5)0.011 (4)
N20.039 (4)0.028 (3)0.039 (5)0.001 (3)0.006 (3)0.001 (3)
C30.027 (4)0.048 (5)0.033 (5)0.003 (3)0.003 (4)0.008 (4)
C40.041 (5)0.029 (5)0.034 (6)0.001 (4)0.002 (5)0.008 (4)
N30.043 (4)0.024 (3)0.051 (5)0.008 (3)0.007 (4)0.001 (3)
C50.023 (4)0.042 (4)0.030 (4)0.012 (4)0.000 (4)0.004 (4)
C60.020 (6)0.069 (9)0.047 (10)0.004 (4)0.001 (7)0.006 (5)
N40.029 (4)0.063 (4)0.029 (4)0.005 (4)0.000 (3)0.004 (5)
N110.028 (5)0.017 (5)0.029 (6)0.0012 (19)0.012 (5)0.001 (2)
C110.020 (4)0.045 (4)0.028 (4)0.000 (4)0.001 (3)0.000 (4)
C120.018 (5)0.025 (4)0.019 (5)0.005 (2)0.007 (5)0.006 (3)
N120.020 (3)0.083 (4)0.027 (4)0.009 (4)0.006 (3)0.003 (5)
C130.036 (4)0.039 (4)0.022 (4)0.003 (3)0.004 (4)0.000 (3)
C140.037 (5)0.023 (5)0.051 (7)0.001 (4)0.003 (5)0.006 (4)
N130.037 (4)0.033 (3)0.035 (4)0.000 (3)0.010 (3)0.007 (3)
C150.024 (4)0.038 (4)0.031 (4)0.011 (3)0.007 (3)0.006 (3)
C160.018 (4)0.037 (5)0.042 (7)0.000 (4)0.005 (4)0.001 (5)
N140.050 (5)0.036 (4)0.068 (6)0.000 (4)0.024 (4)0.001 (4)
Geometric parameters (Å, º) top
Sb1—S32.326 (3)C6—H6B0.9700
Sb1—S22.333 (5)N4—H7N0.8900
Sb1—S12.337 (3)N4—H8N0.8900
Sb1—S42.338 (3)N4—H9N0.8900
Sb2—S72.314 (3)N11—C111.445 (14)
Sb2—S52.319 (3)N11—C131.499 (13)
Sb2—S62.323 (5)N11—C151.503 (9)
Sb2—S82.332 (3)C11—C121.532 (17)
N1—C31.414 (13)C11—H11A0.9700
N1—C11.463 (9)C11—H11B0.9700
N1—C51.486 (13)C12—N121.472 (13)
C1—C21.427 (13)C12—H12A0.9700
C1—H1A0.9700C12—H12B0.9700
C1—H1B0.9700N12—H11N0.8900
C2—N21.525 (14)N12—H12N0.8900
C2—H2A0.9700N12—H13N0.8900
C2—H2B0.9700C13—C141.583 (12)
N2—H1N0.8900C13—H13A0.9700
N2—H2N0.8900C13—H13B0.9700
N2—H3N0.8900C14—N131.437 (15)
C3—C41.441 (13)C14—H14A0.9700
C3—H3A0.9700C14—H14B0.9700
C3—H3B0.9700N13—H14N0.8900
C4—N31.534 (15)N13—H15N0.8900
C4—H4A0.9700N13—H16N0.8900
C4—H4B0.9700C15—C161.551 (12)
N3—H4N0.8900C15—H15A0.9700
N3—H5N0.8900C15—H15B0.9700
N3—H6N0.8900C16—N141.434 (16)
C5—C61.48 (2)C16—H16A0.9700
C5—H5A0.9700C16—H16B0.9700
C5—H5B0.9700N14—H17N0.8900
C6—N41.469 (16)N14—H18N0.8900
C6—H6A0.9700N14—H19N0.8900
S3—Sb1—S2111.14 (11)C6—N4—H7N109.5
S3—Sb1—S1110.43 (13)C6—N4—H8N109.5
S2—Sb1—S1108.56 (10)H7N—N4—H8N109.5
S3—Sb1—S4109.88 (11)C6—N4—H9N109.5
S2—Sb1—S4109.39 (14)H7N—N4—H9N109.5
S1—Sb1—S4107.34 (10)H8N—N4—H9N109.5
S7—Sb2—S5110.24 (12)C11—N11—C13111.6 (7)
S7—Sb2—S6110.23 (12)C11—N11—C15110.3 (9)
S5—Sb2—S6108.60 (11)C13—N11—C15107.9 (9)
S7—Sb2—S8111.17 (11)N11—C11—C12109.6 (9)
S5—Sb2—S8108.58 (10)N11—C11—H11A109.8
S6—Sb2—S8107.95 (14)C12—C11—H11A109.8
C3—N1—C1113.5 (10)N11—C11—H11B109.8
C3—N1—C5111.7 (7)C12—C11—H11B109.8
C1—N1—C5112.4 (8)H11A—C11—H11B108.2
C2—C1—N1112.9 (8)N12—C12—C11109.8 (10)
C2—C1—H1A109.0N12—C12—H12A109.7
N1—C1—H1A109.0C11—C12—H12A109.7
C2—C1—H1B109.0N12—C12—H12B109.7
N1—C1—H1B109.0C11—C12—H12B109.7
H1A—C1—H1B107.8H12A—C12—H12B108.2
C1—C2—N2111.5 (8)C12—N12—H11N109.5
C1—C2—H2A109.3C12—N12—H12N109.5
N2—C2—H2A109.3H11N—N12—H12N109.5
C1—C2—H2B109.3C12—N12—H13N109.5
N2—C2—H2B109.3H11N—N12—H13N109.5
H2A—C2—H2B108.0H12N—N12—H13N109.5
C2—N2—H1N109.5N11—C13—C14110.9 (8)
C2—N2—H2N109.5N11—C13—H13A109.5
H1N—N2—H2N109.5C14—C13—H13A109.5
C2—N2—H3N109.5N11—C13—H13B109.5
H1N—N2—H3N109.5C14—C13—H13B109.5
H2N—N2—H3N109.5H13A—C13—H13B108.1
N1—C3—C4116.6 (9)N13—C14—C13111.2 (7)
N1—C3—H3A108.1N13—C14—H14A109.4
C4—C3—H3A108.1C13—C14—H14A109.4
N1—C3—H3B108.1N13—C14—H14B109.4
C4—C3—H3B108.1C13—C14—H14B109.4
H3A—C3—H3B107.3H14A—C14—H14B108.0
C3—C4—N3115.2 (8)C14—N13—H14N109.5
C3—C4—H4A108.5C14—N13—H15N109.5
N3—C4—H4A108.5H14N—N13—H15N109.5
C3—C4—H4B108.5C14—N13—H16N109.5
N3—C4—H4B108.5H14N—N13—H16N109.5
H4A—C4—H4B107.5H15N—N13—H16N109.5
C4—N3—H4N109.5N11—C15—C16111.6 (8)
C4—N3—H5N109.5N11—C15—H15A109.3
H4N—N3—H5N109.5C16—C15—H15A109.3
C4—N3—H6N109.5N11—C15—H15B109.3
H4N—N3—H6N109.5C16—C15—H15B109.3
H5N—N3—H6N109.5H15A—C15—H15B108.0
C6—C5—N1113.4 (8)N14—C16—C15107.6 (9)
C6—C5—H5A108.9N14—C16—H16A110.2
N1—C5—H5A108.9C15—C16—H16A110.2
C6—C5—H5B108.9N14—C16—H16B110.2
N1—C5—H5B108.9C15—C16—H16B110.2
H5A—C5—H5B107.7H16A—C16—H16B108.5
N4—C6—C5113.2 (11)C16—N14—H17N109.5
N4—C6—H6A108.9C16—N14—H18N109.5
C5—C6—H6A108.9H17N—N14—H18N109.5
N4—C6—H6B108.9C16—N14—H19N109.5
C5—C6—H6B108.9H17N—N14—H19N109.5
H6A—C6—H6B107.7H18N—N14—H19N109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···S1i0.892.483.336 (7)161
N3—H4N···S60.892.463.327 (9)164
N3—H5N···S4ii0.892.543.383 (8)158
N3—H6N···S8ii0.892.483.307 (9)154
N4—H7N···S6iii0.892.383.217 (10)157
N4—H8N···S7iv0.892.393.240 (9)159
N12—H12N···S3v0.892.413.259 (9)160
N12—H13N···S2i0.892.363.184 (10)154
N13—H14N···S40.892.493.316 (8)155
N13—H15N···S80.892.623.425 (8)152
N13—H16N···S2vi0.892.383.267 (8)172
N14—H19N···S5vii0.892.593.410 (9)155
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y, z+1/2; (iii) x1/2, y, z; (iv) x+1/2, y, z+1/2; (v) x1/2, y+1, z; (vi) x+3/2, y, z+1/2; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H21N4)[SbS4]
Mr399.26
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)19.7872 (13), 10.8571 (10), 13.5055 (8)
V3)2901.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.46
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerStoe AEDII
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1998)
Tmin, Tmax0.738, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
6750, 3571, 2898
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.03
No. of reflections3571
No. of parameters277
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.55
Absolute structureFlack (1983), 544 Friedel pairs
Absolute structure parameter0.04 (5)

Computer programs: DIF4 (Stoe & Cie, 1992), DIF4, REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 1998) and Diamond (Brandenburg, 1999), CIFTAB in SHELXL97.

Selected geometric parameters (Å, º) top
Sb1—S32.326 (3)Sb2—S72.314 (3)
Sb1—S22.333 (5)Sb2—S52.319 (3)
Sb1—S12.337 (3)Sb2—S62.323 (5)
Sb1—S42.338 (3)Sb2—S82.332 (3)
S3—Sb1—S2111.14 (11)S7—Sb2—S5110.24 (12)
S3—Sb1—S1110.43 (13)S7—Sb2—S6110.23 (12)
S2—Sb1—S1108.56 (10)S5—Sb2—S6108.60 (11)
S3—Sb1—S4109.88 (11)S7—Sb2—S8111.17 (11)
S2—Sb1—S4109.39 (14)S5—Sb2—S8108.58 (10)
S1—Sb1—S4107.34 (10)S6—Sb2—S8107.95 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···S1i0.892.483.336 (7)160.7
N3—H4N···S60.892.463.327 (9)163.8
N3—H5N···S4ii0.892.543.383 (8)157.8
N3—H6N···S8ii0.892.483.307 (9)153.9
N4—H7N···S6iii0.892.383.217 (10)157.2
N4—H8N···S7iv0.892.393.240 (9)158.7
N12—H12N···S3v0.892.413.259 (9)159.7
N12—H13N···S2i0.892.363.184 (10)154.2
N13—H14N···S40.892.493.316 (8)155.2
N13—H15N···S80.892.623.425 (8)151.6
N13—H16N···S2vi0.892.383.267 (8)171.5
N14—H19N···S5vii0.892.593.410 (9)154.5
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y, z+1/2; (iii) x1/2, y, z; (iv) x+1/2, y, z+1/2; (v) x1/2, y+1, z; (vi) x+3/2, y, z+1/2; (vii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds