organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-(2-Chloro-1-hy­dr­oxy-2,6,6-tri­methyl­cyclo­hex­yl)but-3-en-2-one

aNanjing College of Chemical Technology, No. 625 Geguan Road, Luhe, Nanjing 210048, People's Republic of China
*Correspondence e-mail: dols80@163.com

(Received 6 November 2012; accepted 26 November 2012; online 30 November 2012)

In the title mol­ecule, C13H21ClO2, there is an intra­molecular C—H⋯Cl hydrogen bond. The conformation about the C=C bond is E and the six-membered ring has a chair conformation. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers, which are consolidated by C—H⋯O hydrogen bonds. The dimers are linked via C—H.·O hydrogen bonds, forming chains along [100].

Related literature

For the use of (E)-4-(2-chloro-1-hy­droxy-2,6,6-trimethyl­cyclo­hex­yl)but-3-en-2-one, see: Sakai et al. (1992[Sakai, K., Takahashi, K. & Nukano, T. (1992). Tetrahedron, 64, 8229-8238.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H21ClO2

  • Mr = 244.75

  • Monoclinic, P 21 /n

  • a = 6.266 (1) Å

  • b = 8.586 (2) Å

  • c = 24.868 (5) Å

  • β = 92.24 (3)°

  • V = 1336.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.923, Tmax = 0.973

  • 2688 measured reflections

  • 2450 independent reflections

  • 1611 reflections with I > 2σ(I)

  • Rint = 0.068

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.179

  • S = 1.00

  • 2450 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 2.12 2.858 (3) 149
C7—H7A⋯O2i 0.96 2.58 3.473 (5) 155
C8—H8C⋯Cl 0.96 2.59 3.257 (3) 127
C13—H13C⋯O1ii 0.96 2.59 3.536 (4) 169
Symmetry codes: (i) -x+2, -y, -z; (ii) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

(E)-4-(2-Chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one is an important intermediate used to synthesize abscisic acid (ABA), which has important activities as a plant hormone (Sakai, et al., 1992). We report here the crystal structure of the title compound (Fig. 1).

In the title molecule, bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal packing (Fig. 2), mmolecules are linked to form three-dimensional framework by intra- and intermolecular C—H···Cl, C—H···O and O—H···O hydrogen bonds, which may be effective for the stabilization of the crystals (see, Table 1).

Related literature top

For the use of (E)-4-(2-chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one, see: Sakai et al. (1992). For bond-length data, see: Allen et al. (1987).

Experimental top

(E)-4-(2-Chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one was prepared by the reaction of (E)-4-(2,2,6-trimethyl-7- oxabicyclo[4.1.0]heptan-1-yl)but-3-en-2-one (20.8 g, 0.100 mmol) and 1M hydrochloric acid (30 ml) in ethanol (150 ml) at 273 K for 3 h, and separated by column chromatography on silica gel (hexane / ethyl acetate = 8/2, V/V) with a yield of 50%. Single crystals were obtained by dissolving the title compound (0.50 g, 2.04 mmol) in ethyl acetate (30 ml) and evaporating the solvent slowly at 288–293 K for about 1 d.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.5 for H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···Cl, C—H···O and O—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmter codes: (i) 2 - x,-y,-z; (ii) 2 - x,-y,-z; (iii) -1 + x,y,z.]
(E)-4-(2-Chloro-1-hydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-one top
Crystal data top
C13H21ClO2F(000) = 528
Mr = 244.75Dx = 1.216 Mg m3
Monoclinic, P21/nMelting point = 380–383 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.266 (1) ÅCell parameters from 25 reflections
b = 8.586 (2) Åθ = 10–13°
c = 24.868 (5) ŵ = 0.27 mm1
β = 92.24 (3)°T = 298 K
V = 1336.9 (5) Å3Cube, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1611 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.923, Tmax = 0.973l = 2929
2688 measured reflections3 standard reflections every 200 reflections
2450 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C13H21ClO2V = 1336.9 (5) Å3
Mr = 244.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.266 (1) ŵ = 0.27 mm1
b = 8.586 (2) ÅT = 298 K
c = 24.868 (5) Å0.30 × 0.20 × 0.10 mm
β = 92.24 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1611 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.068
Tmin = 0.923, Tmax = 0.9733 standard reflections every 200 reflections
2688 measured reflections intensity decay: 1%
2450 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681 restraint
wR(F2) = 0.179H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
2450 reflectionsΔρmin = 0.29 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.73792 (16)0.51609 (11)0.14841 (4)0.0672 (4)
O11.1529 (3)0.2036 (2)0.09894 (8)0.0447 (6)
H1A1.15300.11170.08990.067*
C10.8845 (5)0.1320 (3)0.16368 (12)0.0425 (7)
O20.6807 (4)0.0827 (3)0.05952 (10)0.0669 (8)
C21.0445 (5)0.1541 (4)0.21162 (13)0.0505 (8)
H2A1.00020.09040.24140.061*
H2B1.18390.11770.20150.061*
C31.0635 (6)0.3233 (4)0.23029 (15)0.0622 (10)
H3A0.92710.35830.24300.075*
H3B1.16810.33060.26000.075*
C41.1304 (6)0.4266 (4)0.18449 (15)0.0549 (9)
H4A1.13660.53350.19720.066*
H4B1.27330.39720.17480.066*
C50.9854 (5)0.4199 (3)0.13459 (13)0.0433 (8)
C60.9465 (5)0.2448 (3)0.11647 (11)0.0365 (7)
C70.8980 (6)0.0372 (4)0.14485 (15)0.0601 (10)
H7A1.03810.05730.13210.090*
H7B0.79350.05500.11620.090*
H7C0.87100.10560.17440.090*
C80.6432 (4)0.1588 (3)0.18449 (11)0.0300 (6)
H8A0.61660.08680.21300.045*
H8B0.54150.14180.15520.045*
H8C0.62980.26350.19750.045*
C91.0807 (6)0.5136 (4)0.08881 (15)0.0615 (10)
H9A1.21420.46800.07950.092*
H9B1.10390.61920.10030.092*
H9C0.98360.51220.05800.092*
C100.7826 (5)0.2374 (3)0.07141 (12)0.0397 (7)
H10A0.64700.27520.07810.048*
C110.8145 (5)0.1811 (4)0.02232 (12)0.0447 (8)
H11A0.95150.14800.01480.054*
C120.6479 (5)0.1680 (3)0.02048 (12)0.0447 (8)
C130.4476 (5)0.2548 (4)0.01817 (13)0.0527 (9)
H13A0.35830.23090.04930.079*
H13B0.47750.36450.01740.079*
H13C0.37550.22600.01370.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0756 (7)0.0548 (6)0.0719 (7)0.0143 (5)0.0108 (5)0.0036 (4)
O10.0380 (11)0.0435 (12)0.0534 (13)0.0036 (9)0.0116 (10)0.0076 (10)
C10.0447 (17)0.0388 (16)0.0450 (17)0.0001 (14)0.0132 (14)0.0023 (14)
O20.0759 (18)0.0694 (17)0.0551 (14)0.0135 (14)0.0005 (13)0.0249 (13)
C20.0510 (19)0.0507 (19)0.0496 (19)0.0063 (16)0.0001 (16)0.0062 (16)
C30.071 (2)0.064 (2)0.051 (2)0.000 (2)0.0090 (18)0.0096 (18)
C40.051 (2)0.0417 (18)0.071 (2)0.0013 (15)0.0016 (18)0.0108 (17)
C50.0494 (19)0.0305 (15)0.0503 (18)0.0027 (14)0.0056 (15)0.0040 (13)
C60.0393 (16)0.0359 (15)0.0350 (15)0.0037 (12)0.0098 (13)0.0003 (12)
C70.078 (3)0.0330 (17)0.070 (2)0.0073 (17)0.006 (2)0.0025 (16)
C80.0208 (12)0.0345 (14)0.0346 (14)0.0033 (11)0.0010 (11)0.0130 (11)
C90.070 (2)0.0427 (19)0.074 (2)0.0124 (17)0.023 (2)0.0067 (17)
C100.0392 (16)0.0382 (16)0.0423 (16)0.0047 (13)0.0072 (14)0.0021 (13)
C110.0503 (18)0.0415 (17)0.0429 (17)0.0026 (14)0.0077 (14)0.0041 (14)
C120.062 (2)0.0335 (16)0.0393 (16)0.0003 (14)0.0105 (15)0.0040 (13)
C130.061 (2)0.052 (2)0.0450 (18)0.0059 (17)0.0027 (16)0.0053 (16)
Geometric parameters (Å, º) top
Cl—C51.802 (3)C6—C101.491 (4)
O1—C61.425 (3)C7—H7A0.9600
O1—H1A0.8200C7—H7B0.9600
C1—C71.530 (4)C7—H7C0.9600
C1—C21.539 (4)C8—H8A0.9600
C1—C61.582 (4)C8—H8B0.9600
C1—C81.633 (4)C8—H8C0.9600
O2—C121.240 (4)C9—H9A0.9600
C2—C31.528 (5)C9—H9B0.9600
C2—H2A0.9700C9—H9C0.9600
C2—H2B0.9700C10—C111.336 (4)
C3—C41.516 (5)C10—H10A0.9300
C3—H3A0.9700C11—C121.466 (4)
C3—H3B0.9700C11—H11A0.9300
C4—C51.510 (5)C12—C131.463 (4)
C4—H4A0.9700C13—H13A0.9600
C4—H4B0.9700C13—H13B0.9600
C5—C91.534 (4)C13—H13C0.9600
C5—C61.586 (4)
C6—O1—H1A109.5C10—C6—C5110.3 (2)
C7—C1—C2108.2 (3)C1—C6—C5114.1 (2)
C7—C1—C6109.6 (3)C1—C7—H7A109.5
C2—C1—C6109.1 (2)C1—C7—H7B109.5
C7—C1—C8107.1 (2)H7A—C7—H7B109.5
C2—C1—C8108.7 (2)C1—C7—H7C109.5
C6—C1—C8114.0 (2)H7A—C7—H7C109.5
C3—C2—C1113.1 (3)H7B—C7—H7C109.5
C3—C2—H2A109.0C1—C8—H8A109.5
C1—C2—H2A109.0C1—C8—H8B109.5
C3—C2—H2B109.0H8A—C8—H8B109.5
C1—C2—H2B109.0C1—C8—H8C109.5
H2A—C2—H2B107.8H8A—C8—H8C109.5
C4—C3—C2110.4 (3)H8B—C8—H8C109.5
C4—C3—H3A109.6C5—C9—H9A109.5
C2—C3—H3A109.6C5—C9—H9B109.5
C4—C3—H3B109.6H9A—C9—H9B109.5
C2—C3—H3B109.6C5—C9—H9C109.5
H3A—C3—H3B108.1H9A—C9—H9C109.5
C5—C4—C3114.8 (3)H9B—C9—H9C109.5
C5—C4—H4A108.6C11—C10—C6125.4 (3)
C3—C4—H4A108.6C11—C10—H10A117.3
C5—C4—H4B108.6C6—C10—H10A117.3
C3—C4—H4B108.6C10—C11—C12124.3 (3)
H4A—C4—H4B107.5C10—C11—H11A117.8
C4—C5—C9110.5 (3)C12—C11—H11A117.8
C4—C5—C6110.5 (3)O2—C12—C13120.0 (3)
C9—C5—C6110.2 (2)O2—C12—C11118.6 (3)
C4—C5—Cl108.7 (2)C13—C12—C11121.4 (3)
C9—C5—Cl105.3 (2)C12—C13—H13A109.5
C6—C5—Cl111.4 (2)C12—C13—H13B109.5
O1—C6—C10111.5 (2)H13A—C13—H13B109.5
O1—C6—C1109.1 (2)C12—C13—H13C109.5
C10—C6—C1110.5 (2)H13A—C13—H13C109.5
O1—C6—C5101.0 (2)H13B—C13—H13C109.5
C7—C1—C2—C3173.8 (3)C8—C1—C6—C572.1 (3)
C6—C1—C2—C354.6 (4)C4—C5—C6—O169.0 (3)
C8—C1—C2—C370.3 (3)C9—C5—C6—O153.6 (3)
C1—C2—C3—C458.1 (4)Cl—C5—C6—O1170.10 (19)
C2—C3—C4—C556.5 (4)C4—C5—C6—C10173.0 (2)
C3—C4—C5—C9173.5 (3)C9—C5—C6—C1064.5 (3)
C3—C4—C5—C651.2 (4)Cl—C5—C6—C1052.1 (3)
C3—C4—C5—Cl71.4 (3)C4—C5—C6—C148.0 (3)
C7—C1—C6—O155.7 (3)C9—C5—C6—C1170.5 (3)
C2—C1—C6—O162.6 (3)Cl—C5—C6—C173.0 (3)
C8—C1—C6—O1175.7 (2)O1—C6—C10—C118.0 (4)
C7—C1—C6—C1067.2 (3)C1—C6—C10—C11113.5 (3)
C2—C1—C6—C10174.5 (2)C5—C6—C10—C11119.4 (3)
C8—C1—C6—C1052.9 (3)C6—C10—C11—C12176.8 (3)
C7—C1—C6—C5167.9 (3)C10—C11—C12—O2163.5 (3)
C2—C1—C6—C549.6 (3)C10—C11—C12—C1317.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.822.122.858 (3)149
C7—H7A···O2i0.962.583.473 (5)155
C8—H8C···Cl0.962.593.257 (3)127
C13—H13C···O1ii0.962.593.536 (4)169
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H21ClO2
Mr244.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.266 (1), 8.586 (2), 24.868 (5)
β (°) 92.24 (3)
V3)1336.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.923, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
2688, 2450, 1611
Rint0.068
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.179, 1.00
No. of reflections2450
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.29

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.82002.12002.858 (3)149.00
C7—H7A···O2i0.96002.58003.473 (5)155.00
C8—H8C···Cl0.96002.59003.257 (3)127.00
C13—H13C···O1ii0.96002.59003.536 (4)169.00
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSakai, K., Takahashi, K. & Nukano, T. (1992). Tetrahedron, 64, 8229–8238.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds