organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Chloro-2-nitro­phen­yl)-2,2-di­methyl­propanamide

aSchool of Pharmaceutical Sciences, Nanjing University of Technology, Puzhu South Road No. 30 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road No. 30 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kaiguo@njut.edu.cn

(Received 6 June 2012; accepted 19 June 2012; online 25 August 2012)

In the crystal structure of the title compound, C11H13ClN2O3, mol­ecules are linked through C—H⋯O hydrogen bonds.

Related literature

For background to the biologically active mol­ecule ezetimibe [systematic name: (3R,4S)-1-(4-fluoro­phen­yl)-3-[(3S)-3-(4-fluoro­phen­yl)-3-hy­droxy­prop­yl]-4-(4-hy­droxy­phen­yl)azetidin-2-one, see: Rosenblum et al. (1998[Rosenblum, S. B., Huynh, T., Afonso, A., Davis, H. R., Yumibe, N., Clader, J. W. & Burnett, D. A. (1998). J. Med. Chem. 41, 973-980.]). For the preparation of the title compound, a derivative of an inter­mediate in the synthesis of ezetimibe, see: Wang et al. (2009)[Wang, Y., Zhang, H., Huang, W., Kong, J., Zhou, J. & Zhang, B. (2009). Eur. J. Med. Chem. 44, 1638-1643.]. For a related structure, see: Zhu et al. (2007[Zhu, N., Tran, P., Bell, N. & Stevens, C. L. K. (2007). J. Chem. Crystallogr. 37, 670-683.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClN2O3

  • Mr = 255.68

  • Orthorhombic, P n m a

  • a = 10.401 (2) Å

  • b = 7.0280 (14) Å

  • c = 17.106 (3) Å

  • V = 1250.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.915, Tmax = 0.970

  • 2432 measured reflections

  • 1244 independent reflections

  • 643 reflections with I > 2σ(I)

  • Rint = 0.069

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.179

  • S = 1.00

  • 1244 reflections

  • 94 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O3i 0.96 2.35 3.294 (8) 167
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ezetimibe is a biologically active molecule and reasearch has shown it to have the useful property of inhibiting the absorption of cholesterol from the intestine (Rosenblum et al., 1998) As part of our studies into the synthesis of Ezetimibe, the title compound N-(5-chloro-2-nitrophenyl)-2,2-dimethylpropanamide, (I), which is one of the derivates of a intermediate, is synthesized (Wang et al., 2009). In this paper we report the crystal structure of the title compound.

In the crystal structure,C—H···O hydrogen bonds interactions (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. It's just formed by the accumulation of Molecules.

Related literature top

For background to the biologically active molecule ezetimibe [systematic name: (3R,4S)-1-(4-fluorophenyl)-3-[(3S)-3-(4-fluorophenyl)-3-hydroxypropyl]-4-(4-hydroxyphenyl)azetidin-2-one, see: Rosenblum et al. (1998). For the preparation of the title compound, a derivative of an intermediate in the synthesis of ezetimibe, see: Wang et al. (2009). For a related structure, see: Zhu et al. (2007).

Experimental top

5-chloro-2-nitroaniline (C6H5ClN2O2, 20.64 g, 0.12 mol) in CH2Cl2(40 ml) was added 4-dimethylaminopyridine (C7H10N2, 1.2 g, 0.01 mol) and Et3N (42.3 ml, 0.31 mol) and cooled the reaction to 273 K. A solution of pivaloyl chloride (C5H9ClO, 14.4 g, 0.12 mol) in CH2Cl2 (150 ml) was added dropwise over 1 h and the mixture was heated to reflux. After 12 h, H2O and H2SO4 (2 N, 75 ml) were added, separated the layers andwashed the organic layer sequentially with NaOH (10%), NaCl (satd) and water. Dried the organic layer over MgSO4 and concentrated to obtain solid product as pure yellow solid. (Wang et al., 2009). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97 Å, for aryl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2. A view of the unit cell packing of the title compound.
N-(5-Chloro-2-nitrophenyl)-2,2-dimethylpropanamide top
Crystal data top
C11H12ClN2O3F(000) = 532
Mr = 255.68Dx = 1.358 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 25 reflections
a = 10.401 (2) Åθ = 9–12°
b = 7.0280 (14) ŵ = 0.30 mm1
c = 17.106 (3) ÅT = 293 K
V = 1250.4 (4) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
643 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 25.4°, θmin = 2.3°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 80
Tmin = 0.915, Tmax = 0.970l = 2020
2432 measured reflections3 standard reflections every 200 reflections
1244 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.084P)2]
where P = (Fo2 + 2Fc2)/3
1244 reflections(Δ/σ)max < 0.001
94 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H12ClN2O3V = 1250.4 (4) Å3
Mr = 255.68Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 10.401 (2) ŵ = 0.30 mm1
b = 7.0280 (14) ÅT = 293 K
c = 17.106 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
643 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.069
Tmin = 0.915, Tmax = 0.9703 standard reflections every 200 reflections
2432 measured reflections intensity decay: 1%
1244 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
1244 reflectionsΔρmin = 0.22 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl0.24447 (9)0.25000.50682 (10)0.0967 (6)
N10.7748 (5)0.25000.3855 (3)0.0880 (14)
C10.4982 (4)0.25000.5237 (3)0.0623 (11)
H1A0.47940.25000.57690.075*
O10.7853 (5)0.25000.3151 (3)0.143 (2)
N20.7290 (3)0.25000.5525 (2)0.0706 (11)
H2A0.80460.25000.53210.085*
O20.8711 (4)0.25000.4258 (3)0.1202 (15)
C20.4005 (4)0.25000.4726 (3)0.0664 (12)
O30.6267 (3)0.25000.6688 (2)0.1179 (16)
C30.4218 (5)0.25000.3921 (3)0.0824 (15)
H3A0.35410.25000.35650.099*
C40.5469 (7)0.25000.3681 (3)0.0964 (18)
H4A0.56400.25000.31470.116*
C50.6479 (4)0.25000.4186 (3)0.0732 (13)
C60.6275 (4)0.25000.5004 (3)0.0585 (11)
C70.7243 (4)0.25000.6321 (3)0.0720 (14)
C80.8531 (4)0.25000.6754 (3)0.0802 (15)
C90.9244 (4)0.4286 (7)0.6607 (3)0.156
H9A0.94380.43850.60600.233*
H9B1.00290.42800.69020.233*
H9C0.87260.53510.67630.233*
C100.8297 (7)0.25000.7644 (4)0.148 (3)
H10A0.90980.25000.79220.222*
H10B0.78140.36150.77800.222*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0576 (8)0.0846 (10)0.1478 (14)0.0000.0208 (7)0.000
N10.091 (3)0.067 (3)0.106 (4)0.0000.027 (3)0.000
C10.066 (3)0.043 (2)0.078 (3)0.0000.013 (3)0.000
O10.168 (4)0.172 (5)0.089 (3)0.0000.042 (3)0.000
N20.062 (2)0.075 (3)0.074 (3)0.0000.001 (2)0.000
O20.087 (3)0.146 (4)0.128 (4)0.0000.040 (3)0.000
C20.053 (2)0.045 (2)0.101 (3)0.0000.015 (2)0.000
O30.060 (2)0.215 (5)0.078 (2)0.0000.0037 (18)0.000
C30.088 (4)0.058 (3)0.101 (4)0.0000.038 (3)0.000
C40.138 (5)0.072 (4)0.079 (4)0.0000.017 (4)0.000
C50.068 (3)0.059 (3)0.093 (4)0.0000.015 (3)0.000
C60.061 (2)0.041 (2)0.074 (3)0.0000.000 (2)0.000
C70.048 (2)0.076 (4)0.092 (4)0.0000.011 (3)0.000
C80.058 (3)0.071 (3)0.111 (4)0.0000.012 (3)0.000
C90.1560.1560.1560.0000.0000.000
C100.132 (6)0.175 (8)0.136 (6)0.0000.015 (5)0.000
Geometric parameters (Å, º) top
Cl—C21.725 (4)C3—H3A0.9300
N1—O11.211 (6)C4—C51.360 (7)
N1—O21.215 (6)C4—H4A0.9300
N1—C51.436 (6)C5—C61.415 (6)
C1—C21.340 (6)C7—C81.530 (6)
C1—C61.403 (6)C8—C91.479 (5)
C1—H1A0.9300C8—C9i1.479 (5)
N2—C71.363 (6)C8—C101.540 (8)
N2—C61.381 (5)C9—H9A0.9600
N2—H2A0.8600C9—H9B0.9600
C2—C31.396 (7)C9—H9C0.9600
O3—C71.194 (5)C10—H10A0.9600
C3—C41.365 (7)C10—H10B0.9600
O1—N1—O2119.3 (5)N2—C6—C1123.3 (4)
O1—N1—C5118.4 (6)N2—C6—C5121.6 (4)
O2—N1—C5122.3 (5)C1—C6—C5115.1 (4)
C2—C1—C6122.7 (4)O3—C7—N2123.8 (4)
C2—C1—H1A118.6O3—C7—C8119.3 (5)
C6—C1—H1A118.6N2—C7—C8116.9 (4)
C7—N2—C6128.1 (4)C9—C8—C9i116.1 (5)
C7—N2—H2A115.9C9—C8—C7110.8 (3)
C6—N2—H2A115.9C9i—C8—C7110.8 (3)
C1—C2—C3121.6 (4)C9—C8—C10104.3 (4)
C1—C2—Cl119.5 (4)C9i—C8—C10104.3 (4)
C3—C2—Cl118.9 (4)C7—C8—C10109.9 (5)
C4—C3—C2116.6 (5)C8—C9—H9A109.5
C4—C3—H3A121.7C8—C9—H9B109.5
C2—C3—H3A121.7H9A—C9—H9B109.5
C5—C4—C3123.0 (5)C8—C9—H9C109.5
C5—C4—H4A118.5H9A—C9—H9C109.5
C3—C4—H4A118.5H9B—C9—H9C109.5
C4—C5—C6120.9 (4)C8—C10—H10A110.7
C4—C5—N1117.3 (5)C8—C10—H10B108.8
C6—C5—N1121.8 (5)H10A—C10—H10B109.5
C6—C1—C2—C30.000 (1)C2—C1—C6—C50.000 (1)
C6—C1—C2—Cl180.0C4—C5—C6—N2180.0
C1—C2—C3—C40.000 (1)N1—C5—C6—N20.000 (1)
Cl—C2—C3—C4180.0C4—C5—C6—C10.0
C2—C3—C4—C50.000 (1)N1—C5—C6—C1180.0
C3—C4—C5—C60.000 (1)C6—N2—C7—O30.000 (2)
C3—C4—C5—N1180.000 (1)C6—N2—C7—C8180.000 (1)
O1—N1—C5—C40.000 (1)O3—C7—C8—C9114.8 (4)
O2—N1—C5—C4180.000 (1)N2—C7—C8—C965.2 (4)
O1—N1—C5—C6180.0O3—C7—C8—C9i114.8 (4)
O2—N1—C5—C60.000 (1)N2—C7—C8—C9i65.2 (4)
C7—N2—C6—C10.000 (1)O3—C7—C8—C100.000 (2)
C7—N2—C6—C5180.000 (1)N2—C7—C8—C10180.000 (2)
C2—C1—C6—N2180.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3ii0.962.353.294 (8)167
Symmetry code: (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H12ClN2O3
Mr255.68
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)10.401 (2), 7.0280 (14), 17.106 (3)
V3)1250.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.915, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
2432, 1244, 643
Rint0.069
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.179, 1.00
No. of reflections1244
No. of parameters94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.962.353.294 (8)167
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

This research work was supported financially by the College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology and the 973 project (2011CB710803 and 2012CB721104) of the Key Basic Research Program of China.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRosenblum, S. B., Huynh, T., Afonso, A., Davis, H. R., Yumibe, N., Clader, J. W. & Burnett, D. A. (1998). J. Med. Chem. 41, 973–980.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Zhang, H., Huang, W., Kong, J., Zhou, J. & Zhang, B. (2009). Eur. J. Med. Chem. 44, 1638–1643.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhu, N., Tran, P., Bell, N. & Stevens, C. L. K. (2007). J. Chem. Crystallogr. 37, 670–683.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds