metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­aquacopper(II)]-μ2-furan-2,5-di­carboxyl­ato-κ4O1,O2:O2,O2′]

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 2 March 2012; accepted 7 March 2012; online 17 March 2012)

In the title compound, [Cu(C6H2O5)(H2O)3]n, an infinite chain is formed along [001] by linking of the Cu(OH2)3O4 cluster with one carboxyl­ate group of the furan-2,5-dicarboxyl­ate ligand. Adjacent chains are linked by Owater—H⋯O hydrogen-bonding inter­actions. The Cu(OH2)3O4 cluster displays a penta­gonal bipyrimadal geometry with two weak coordinations [Cu—Ofuran = 2.790 (2) Å) and Cu—Ocarboxyl­ate = 2.684 (2) Å] and two water mol­ecules located in axial positions.

Related literature

For background to metalorganic framework materials, see: Chui et al. (1999[Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.]); Corma et al. (2010[Corma, A., Garcia, H., Xamena, F. X. L. I. (2010). Chem. Rev. 110, 4606-4655.]); Ferey (2008[Ferey, G. (2008). Chem. Soc. Rev. 37, 191-214.]); Li et al. (1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.]); Murray et al. (2009[Murray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294-1314.]); Tranchemontagne et al. (2009[Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257-1283.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H2O5)(H2O)3]

  • Mr = 271.66

  • Monoclinic, P 21 /c

  • a = 7.0559 (14) Å

  • b = 15.040 (3) Å

  • c = 8.1578 (16) Å

  • β = 93.92 (3)°

  • V = 863.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 296 K

  • 0.15 × 0.14 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.701, Tmax = 0.749

  • 8400 measured reflections

  • 1985 independent reflections

  • 1656 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.070

  • S = 1.09

  • 1985 reflections

  • 154 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O5i 0.81 (2) 2.04 (2) 2.843 (3) 173 (3)
O1W—H1B⋯O4ii 0.79 (2) 1.95 (2) 2.729 (3) 170 (3)
O2W—H2A⋯O5iii 0.82 (2) 1.91 (2) 2.690 (3) 161 (3)
O2W—H2B⋯O4iv 0.80 (2) 2.55 (3) 3.118 (3) 129 (3)
O3W—H3A⋯O4 0.81 (2) 1.90 (2) 2.704 (3) 171 (3)
O3W—H3B⋯O1v 0.80 (2) 1.92 (2) 2.715 (2) 172 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+1; (v) x, y, z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002)[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During past decades, the MOF materials have being attracted huge attentions due to the applications including gas absorption and catalyst reactions(Murray, et al., 2009; Corma, et al., 2010). The more efforts have been focused on the MOF based on the phenyl ring with carboxyl groups (Chui, et al., 1999; Li, et al., 1999; Ferey, 2008; Tranchemontagne, et al., 2009). Compared with phenyl ring with carboxyl groups, the 5-membered rings with carboxyl groups as the ligand are rarely studied. Recently, we utilize furan-2,5-dicarboxyl acid as the ligand to constructed the MOFs. In this work, chainlike compound, [Cu.(C6O5H2).3H2O]n (I), is synthesized.

The asymmetric unit of (I) comprises of one Cu(II) cation, one furan-2,5-dicarboxylate anion and three H2O (Fig.1). Cu cation is coordinated by three carboxyl O atoms, one oxygen of furan ring, and three water molecules of which two locate at the poles, exhibiting pentagonal bipyrimad geometry. It is necessarily noted that oxygen of furan ring (dO—Cu=2.790 (2) Å) and η2-oxygen of carboxyl (dO—Cu=2.684 (2) Å) are very weakly ligated to Cu cation. If excluding this two O atoms, Cu displays triganol bipyramid geometry and the chain property may not be changed. Only one carboxyl of furan-2,5-dicarboxylate involves in the formation of Cu polyhedron. The carboxyl shows µ2:η1,η2 mode.

Cu cations are linked by one carboxyl of furan-2,5-dicarboxylate to give rise to the infinite chain (Fig.2). The H-bond of OW—H···O holds together adjacent chains (Fig.3).

Related literature top

For background to metalorganic framework materials, see: Chui et al. (1999); Corma et al. (2010); Ferey (2008); Li et al. (1999); Murray et al. (2009); Tranchemontagne et al. (2009).

Experimental top

(I) was synthesized under solvothermal condition. In a typically route, furan-2,5-dicarboxyl acid (0.312 g, 2.0 mmol) and Cu(NO3)2.3H2O (0.48 g, 2.0 mmol) were dissolved in the mixture of EtOH (2.9 ml, 50 mmol) and DMF (3.9 ml, 50 mmol) under stirring. Then, the clear solution with molar ratio of 1 (furan-2,5-dicarboxyl acid): 1 (Cu(NO3)2.3H2O): 25 (EtOH): 25 (DMF) was tranferred into 23 ml autoclave and heated at 393 K for 24hrs. After naturally cooling to room temperature, blue block product was collected by filtration as a single phase.

Refinement top

Water H atoms were located in a difference Fourier map and were refined with O—H = 0.82 (2) Å, H···H = 1.37 (2) Å and Uiso(H) = 1.2Ueq(O). The carbon H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

During past decades, the MOF materials have being attracted huge attentions due to the applications including gas absorption and catalyst reactions(Murray, et al., 2009; Corma, et al., 2010). The more efforts have been focused on the MOF based on the phenyl ring with carboxyl groups (Chui, et al., 1999; Li, et al., 1999; Ferey, 2008; Tranchemontagne, et al., 2009). Compared with phenyl ring with carboxyl groups, the 5-membered rings with carboxyl groups as the ligand are rarely studied. Recently, we utilize furan-2,5-dicarboxyl acid as the ligand to constructed the MOFs. In this work, chainlike compound, [Cu.(C6O5H2).3H2O]n (I), is synthesized.

The asymmetric unit of (I) comprises of one Cu(II) cation, one furan-2,5-dicarboxylate anion and three H2O (Fig.1). Cu cation is coordinated by three carboxyl O atoms, one oxygen of furan ring, and three water molecules of which two locate at the poles, exhibiting pentagonal bipyrimad geometry. It is necessarily noted that oxygen of furan ring (dO—Cu=2.790 (2) Å) and η2-oxygen of carboxyl (dO—Cu=2.684 (2) Å) are very weakly ligated to Cu cation. If excluding this two O atoms, Cu displays triganol bipyramid geometry and the chain property may not be changed. Only one carboxyl of furan-2,5-dicarboxylate involves in the formation of Cu polyhedron. The carboxyl shows µ2:η1,η2 mode.

Cu cations are linked by one carboxyl of furan-2,5-dicarboxylate to give rise to the infinite chain (Fig.2). The H-bond of OW—H···O holds together adjacent chains (Fig.3).

For background to metalorganic framework materials, see: Chui et al. (1999); Corma et al. (2010); Ferey (2008); Li et al. (1999); Murray et al. (2009); Tranchemontagne et al. (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The unit cell of (I), showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) x, 1.5 - y, -0.5 + z.]
[Figure 2] Fig. 2. The stick plot of (I), displaying the infinite chain along (001) direction formed by linking the Cu with carboxyl of furan-2,5-dicarboxylate.
[Figure 3] Fig. 3. The ball-stick packing diagram of (I). The H-bond of OW—H···O holds together adjacent chains.
catena-Poly[[triaquacopper(II)]-µ2-furan-2,5-dicarboxylato- κ4O1,O2:O2,O2'] top
Crystal data top
[Cu(C6H2O5)(H2O)3]F(000) = 548
Mr = 271.66Dx = 2.089 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 7.0559 (14) Åθ = 3.2–27.5°
b = 15.040 (3) ŵ = 2.55 mm1
c = 8.1578 (16) ÅT = 296 K
β = 93.92 (3)°Block, light blue
V = 863.7 (3) Å30.15 × 0.14 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1985 independent reflections
Radiation source: fine-focus sealed tube1656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1819
Tmin = 0.701, Tmax = 0.749l = 1010
8400 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.660P]
where P = (Fo2 + 2Fc2)/3
1985 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.43 e Å3
10 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(C6H2O5)(H2O)3]V = 863.7 (3) Å3
Mr = 271.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0559 (14) ŵ = 2.55 mm1
b = 15.040 (3) ÅT = 296 K
c = 8.1578 (16) Å0.15 × 0.14 × 0.12 mm
β = 93.92 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1985 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1656 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.749Rint = 0.039
8400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03110 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.43 e Å3
1985 reflectionsΔρmin = 0.44 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25359 (5)0.68635 (2)0.66688 (4)0.02149 (11)
O10.2757 (3)0.66588 (12)1.1767 (2)0.0271 (5)
O20.2608 (3)0.69971 (11)0.9141 (2)0.0260 (4)
O30.2629 (3)0.52292 (11)0.82901 (19)0.0198 (4)
O40.3038 (3)0.42902 (12)0.5442 (2)0.0370 (5)
O50.2282 (3)0.30371 (11)0.6657 (2)0.0263 (4)
C10.2663 (4)0.64357 (16)1.0277 (3)0.0183 (5)
C20.2593 (4)0.54734 (15)0.9908 (3)0.0188 (5)
C30.2454 (5)0.47559 (17)1.0867 (3)0.0288 (6)
H30.24090.47501.20030.035*
C40.2389 (5)0.40085 (17)0.9808 (3)0.0285 (6)
H40.22830.34161.01160.034*
C50.2511 (4)0.43186 (15)0.8272 (3)0.0192 (5)
C60.2608 (4)0.38628 (16)0.6674 (3)0.0198 (5)
O1W0.5258 (3)0.67555 (14)0.6763 (2)0.0320 (5)
H1A0.588 (4)0.7150 (17)0.721 (4)0.038*
H1B0.573 (4)0.6500 (19)0.605 (3)0.038*
O2W0.0197 (3)0.69352 (15)0.6594 (3)0.0356 (5)
H2A0.060 (5)0.7333 (18)0.716 (3)0.043*
H2B0.074 (5)0.690 (2)0.570 (2)0.043*
O3W0.2223 (3)0.60185 (12)0.4812 (2)0.0261 (4)
H3A0.258 (4)0.5519 (10)0.503 (3)0.031*
H3B0.245 (4)0.6171 (18)0.391 (2)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02457 (18)0.02215 (17)0.01807 (16)0.00066 (14)0.00374 (11)0.00597 (13)
O10.0528 (14)0.0170 (9)0.0118 (8)0.0027 (8)0.0048 (8)0.0024 (7)
O20.0502 (13)0.0154 (8)0.0128 (8)0.0014 (8)0.0053 (8)0.0000 (7)
O30.0368 (11)0.0108 (8)0.0120 (7)0.0012 (7)0.0037 (7)0.0012 (7)
O40.0747 (17)0.0181 (9)0.0202 (9)0.0038 (10)0.0169 (10)0.0004 (8)
O50.0432 (13)0.0127 (9)0.0237 (9)0.0066 (8)0.0073 (8)0.0050 (7)
C10.0236 (14)0.0162 (11)0.0156 (11)0.0012 (10)0.0041 (9)0.0006 (10)
C20.0276 (14)0.0152 (11)0.0138 (10)0.0013 (10)0.0019 (9)0.0023 (10)
C30.053 (2)0.0201 (12)0.0129 (12)0.0026 (13)0.0030 (11)0.0011 (11)
C40.0534 (19)0.0132 (11)0.0187 (12)0.0006 (12)0.0014 (12)0.0001 (11)
C50.0272 (13)0.0109 (10)0.0196 (11)0.0008 (10)0.0018 (9)0.0026 (10)
C60.0236 (13)0.0173 (12)0.0184 (11)0.0023 (10)0.0014 (9)0.0021 (10)
O1W0.0244 (11)0.0360 (12)0.0357 (11)0.0011 (9)0.0028 (9)0.0173 (9)
O2W0.0238 (11)0.0479 (13)0.0353 (11)0.0004 (10)0.0025 (8)0.0235 (11)
O3W0.0484 (13)0.0161 (8)0.0144 (8)0.0038 (9)0.0057 (8)0.0012 (7)
Geometric parameters (Å, º) top
Cu1—O1W1.924 (2)C2—C31.340 (4)
Cu1—O2W1.928 (2)C3—C41.416 (4)
Cu1—O3W1.9782 (18)C3—H30.9300
Cu1—O22.0243 (17)C4—C51.345 (3)
Cu1—O1i2.2289 (18)C4—H40.9300
O1—C11.258 (3)C5—C61.479 (3)
O1—Cu1ii2.2289 (18)C6—O41.248 (3)
O2—C11.252 (3)O1W—H1A0.809 (17)
O3—C21.372 (3)O1W—H1B0.791 (17)
O3—C51.372 (3)O2W—H2A0.816 (17)
O4—C61.248 (3)O2W—H2B0.802 (17)
O5—C61.263 (3)O3W—H3A0.807 (15)
C1—C21.478 (3)O3W—H3B0.799 (16)
O1W—Cu1—O2W178.29 (10)C4—C3—H3126.8
O1W—Cu1—O3W92.01 (9)C5—C4—C3106.9 (2)
O2W—Cu1—O3W87.28 (9)C5—C4—H4126.5
O1W—Cu1—O290.67 (9)C3—C4—H4126.5
O2W—Cu1—O289.03 (9)C4—C5—O3110.1 (2)
O3W—Cu1—O2145.16 (7)C4—C5—C6132.1 (2)
O1W—Cu1—O1i90.89 (8)O3—C5—C6117.8 (2)
O2W—Cu1—O1i90.73 (9)O4—C6—O5123.5 (2)
O3W—Cu1—O1i132.21 (7)O4—C6—O5123.5 (2)
O2—Cu1—O1i82.44 (6)O4—C6—C5120.0 (2)
C1—O1—Cu1ii103.45 (15)O4—C6—C5120.0 (2)
C1—O2—Cu1131.89 (15)O5—C6—C5116.5 (2)
C2—O3—C5105.81 (17)Cu1—O1W—H1A118 (2)
O2—C1—O1122.1 (2)Cu1—O1W—H1B119 (2)
O2—C1—C2120.7 (2)H1A—O1W—H1B116 (3)
O1—C1—C2117.2 (2)Cu1—O2W—H2A114 (2)
C3—C2—O3110.7 (2)Cu1—O2W—H2B116 (3)
C3—C2—C1132.2 (2)H2A—O2W—H2B113 (3)
O3—C2—C1117.1 (2)Cu1—O3W—H3A114.5 (15)
C2—C3—C4106.5 (2)Cu1—O3W—H3B120 (2)
C2—C3—H3126.8H3A—O3W—H3B113 (2)
O1W—Cu1—O2—C184.2 (2)C1—C2—C3—C4178.1 (3)
O2W—Cu1—O2—C194.1 (2)C2—C3—C4—C50.6 (4)
O3W—Cu1—O2—C110.3 (3)C3—C4—C5—O30.7 (3)
O1i—Cu1—O2—C1175.0 (3)C3—C4—C5—C6176.7 (3)
Cu1—O2—C1—O1177.90 (19)C2—O3—C5—C40.5 (3)
Cu1—O2—C1—C23.0 (4)C2—O3—C5—C6177.2 (2)
Cu1ii—O1—C1—O24.6 (3)O4—O4—C6—O50.0 (3)
Cu1ii—O1—C1—C2174.55 (19)O4—O4—C6—C50.0 (3)
C5—O3—C2—C30.2 (3)C4—C5—C6—O4167.8 (3)
C5—O3—C2—C1178.8 (2)O3—C5—C6—O49.3 (4)
O2—C1—C2—C3172.9 (3)C4—C5—C6—O4167.8 (3)
O1—C1—C2—C36.3 (5)O3—C5—C6—O49.3 (4)
O2—C1—C2—O35.4 (4)C4—C5—C6—O510.6 (5)
O1—C1—C2—O3175.4 (2)O3—C5—C6—O5172.3 (2)
O3—C2—C3—C40.2 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5iii0.81 (2)2.04 (2)2.843 (3)173 (3)
O1W—H1B···O4iv0.79 (2)1.95 (2)2.729 (3)170 (3)
O2W—H2A···O5v0.82 (2)1.91 (2)2.690 (3)161 (3)
O2W—H2B···O4vi0.80 (2)2.55 (3)3.118 (3)129 (3)
O3W—H3A···O40.81 (2)1.90 (2)2.704 (3)171 (3)
O3W—H3B···O1vii0.80 (2)1.92 (2)2.715 (2)172 (3)
Symmetry codes: (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x, y+1/2, z+3/2; (vi) x, y+1, z+1; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cu(C6H2O5)(H2O)3]
Mr271.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.0559 (14), 15.040 (3), 8.1578 (16)
β (°) 93.92 (3)
V3)863.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.15 × 0.14 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.701, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
8400, 1985, 1656
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 1.09
No. of reflections1985
No. of parameters154
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.44

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5i0.809 (17)2.039 (18)2.843 (3)173 (3)
O1W—H1B···O4ii0.791 (17)1.947 (17)2.729 (3)170 (3)
O2W—H2A···O5iii0.816 (17)1.91 (2)2.690 (3)161 (3)
O2W—H2B···O4iv0.802 (17)2.55 (3)3.118 (3)129 (3)
O3W—H3A···O40.807 (15)1.903 (15)2.704 (3)171 (3)
O3W—H3B···O1v0.799 (16)1.921 (16)2.715 (2)172 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+3/2; (iv) x, y+1, z+1; (v) x, y, z1.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCorma, A., Garcia, H., Xamena, F. X. L. I. (2010). Chem. Rev. 110, 4606–4655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerey, G. (2008). Chem. Soc. Rev. 37, 191–214.  Web of Science PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationMurray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294–1314.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257–1283.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds