organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Dimeth­­oxy­phen­yl)benzamide

aInstitute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: lhlei2004@sina.com

(Received 11 April 2011; accepted 22 May 2011; online 11 June 2011)

The title compound, C15H15NO3, was prepared by stirring benzoyl chloride with 3,5-dimeth­oxy­aniline in dioxane at ambient temperature. The dimeth­oxy­phen­yl–amide segment of the mol­ecule is almost planar, with a C—N—C=O torsion angle of −4.1 (4)°. The two benzene rings are inclined at an angle of 76.66 (13)°. In the crystal, inter­molecular N—H⋯O inter­actions generate centrosymmetric dimers..

Related literature

For related structures, see: Faler & Joullie (2006[Faler, C. A. & Joullie, M. M. (2006). Tetrahedron Lett. 47, 7229-7231.]); Hadjeri et al. (2002[Hadjeri, M., Mariotte, A. M. & Boumendjel, A. (2002). J. Chem. Res. (S), pp. 463-464.]); Beney et al. (2000[Beney, C., Hadjeri, M., Mariotte, A. M. & Boumendjel, A. (2000). Tetrahedron Lett. 41, 7037-7039.]). For bond lengths and angles in related structures, see: Saeed et al. (2010[Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o214.]); Wang et al. (2010[Wang, J., He, Z. X., Chen, X. P., Song, W. Z., Lu, P. & Wang, Y. G. (2010). Tetrahedron, 66, 1208-1214.]); Anderson et al. (2005[Anderson, C. E., Donde, Y., Douglas, C. J. & Overman, L. E. (2005). J. Org. Chem. 70, 648-657.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO3

  • Mr = 257.28

  • Monoclinic, P 21 /c

  • a = 8.0390 (16) Å

  • b = 20.003 (4) Å

  • c = 9.2710 (19) Å

  • β = 111.39 (3)°

  • V = 1388.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968)[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.] Tmin = 0.975, Tmax = 0.991

  • 2737 measured reflections

  • 2550 independent reflections

  • 1564 reflections with I > 2σ(I)

  • Rint = 0.033

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.165

  • S = 1.00

  • 2550 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O3i 0.86 2.14 2.831 (3) 137
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In this paper we report the structural information for the title compound, C15H15NO3, obtained in our search for a strong anti-tumor reagent, for which the methoxyphenyl amide segment of the molecule is planar with a C8—N1—C9—O3 torsion angle of -4.1 (4)°. The two benzene rings are inclined at an angle of 76.66 (13)°. In the crystal structure, intermolecular O3···N interactions of 2.831 (3) Å, generate centrosymmetric dimmers, Fig 2. The packing is shown in Fig. 3. The bond lengths and angles of the title compound are in normal ranges when comparing with similar structures reported previously (Saeed et al. 2010; Wang et al. 2010; Anderson et al. 2005).

Related literature top

For related structures, see: Faler & Joullie (2006); Hadjeri et al. (2002); Beney et al. (2000). For bond lengths and angles in related structures, see: Saeed et al. (2010); Wang et al. (2010); Anderson et al. (2005).

Experimental top

To a solution of 3, 5-dimethoxyaniline (1 mmol) in dry dioxane (2 ml) was added Et3N (1 mmol). The solution was stirred at ambient temperature for 10 min and treated by dropwise addition of benzoyl chloride (1 mmol). The reaction mixture was stirred at room temperature for 1 h then hydrolyzed by adding H2O and extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous Na2SO4 and evaporated. The residue was purified by column chromatography eluted with petroleum ether: acetic ether (5:1) to N-(3, 5-dimethoxyphenyl) Benzamide as a light yellow powder and Yield 90%. Crystallization of the residue from methanol afforded the title compound (87%) as colourless crystals: ESI-MS TOF. calcd. for [M+Na]+: 280.09441; found: 280.09443.

Refinement top

The H atom on N1 was located in a difference Fourier map and refined isotropically. All other H-atoms were placed in calculated positions and refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic and 0.96 Å, Uiso = 1.5Ueq (C) for the CH3 H atoms. The crystal was relatively weakly diffracting reducing the overall fraction of measured reflections.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound at 50% probability level.
[Figure 2] Fig. 2. N···O contacts in title compound (yellow line) linking the molecules into centrosymmetric dimers.
[Figure 3] Fig. 3. Crystal packing of title compound viewed down the b axis, with hydrogen bonds drawn as yellow lines and representative C–H interactions shown as light blue lines.
N-(3,5-Dimethoxyphenyl)benzamide top
Crystal data top
C15H15NO3F(000) = 544
Mr = 257.28Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.0390 (16) Åθ = 9–13°
b = 20.003 (4) ŵ = 0.09 mm1
c = 9.2710 (19) ÅT = 293 K
β = 111.39 (3)°Block, colourless
V = 1388.1 (5) Å30.30 × 0.30 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1564 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 024
Tmin = 0.975, Tmax = 0.991l = 1110
2737 measured reflections3 standard reflections every 200 reflections
2550 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.093P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2550 reflectionsΔρmax = 0.17 e Å3
173 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (5)
Crystal data top
C15H15NO3V = 1388.1 (5) Å3
Mr = 257.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0390 (16) ŵ = 0.09 mm1
b = 20.003 (4) ÅT = 293 K
c = 9.2710 (19) Å0.30 × 0.30 × 0.10 mm
β = 111.39 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1564 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.975, Tmax = 0.9913 standard reflections every 200 reflections
2737 measured reflections intensity decay: 1%
2550 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
2550 reflectionsΔρmin = 0.19 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2>σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.3527 (3)0.25056 (10)0.78089 (19)0.0513 (5)
H0A0.35550.25810.87310.062*
O10.4214 (3)0.01660 (9)0.8098 (2)0.0754 (6)
C10.8603 (5)0.20349 (18)0.5865 (5)0.1074 (13)
H1A0.95410.19590.54760.161*
H1B0.90540.22970.67950.161*
H1C0.76410.22710.51020.161*
O20.7975 (3)0.14175 (11)0.6190 (3)0.0872 (7)
C20.5014 (5)0.04432 (14)0.7878 (4)0.0954 (11)
H2A0.44550.08130.81810.143*
H2B0.62660.04380.84980.143*
H2C0.48590.04880.68050.143*
O30.2596 (3)0.28887 (9)0.53489 (18)0.0732 (6)
C30.3954 (3)0.13183 (12)0.7943 (2)0.0505 (6)
H3A0.30590.12830.83510.061*
C40.4817 (3)0.07509 (12)0.7710 (3)0.0532 (6)
C50.6135 (3)0.07981 (13)0.7111 (3)0.0576 (7)
H5A0.66950.04150.69440.069*
C60.6628 (3)0.14226 (14)0.6757 (3)0.0578 (7)
C70.5794 (3)0.19976 (12)0.6982 (2)0.0533 (6)
H7A0.61340.24160.67510.064*
C80.4436 (3)0.19328 (12)0.7564 (2)0.0475 (6)
C90.2622 (3)0.29379 (11)0.6675 (2)0.0472 (6)
C100.1626 (3)0.34835 (11)0.7090 (2)0.0456 (6)
C110.0282 (4)0.38045 (14)0.5912 (3)0.0674 (8)
H11A0.00030.36670.48920.081*
C120.0632 (4)0.43259 (16)0.6242 (4)0.0859 (10)
H12A0.15560.45310.54460.103*
C130.0196 (4)0.45452 (16)0.7731 (3)0.0824 (9)
H13A0.07890.49090.79430.099*
C140.1106 (4)0.42291 (15)0.8899 (3)0.0762 (9)
H14A0.13820.43710.99150.091*
C150.2022 (3)0.37003 (12)0.8593 (3)0.0561 (7)
H15A0.29130.34880.94030.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0740 (13)0.0518 (11)0.0370 (9)0.0088 (10)0.0309 (9)0.0003 (8)
O10.0848 (14)0.0517 (11)0.1028 (15)0.0087 (10)0.0497 (12)0.0051 (10)
C10.093 (2)0.108 (3)0.152 (3)0.001 (2)0.083 (2)0.020 (2)
O20.0725 (13)0.0954 (16)0.1176 (18)0.0032 (11)0.0631 (13)0.0041 (13)
C20.106 (2)0.0526 (18)0.139 (3)0.0147 (18)0.059 (2)0.0014 (18)
O30.1181 (16)0.0728 (13)0.0434 (10)0.0226 (11)0.0468 (10)0.0080 (8)
C30.0572 (14)0.0549 (14)0.0460 (13)0.0036 (12)0.0265 (11)0.0021 (11)
C40.0544 (15)0.0516 (15)0.0547 (14)0.0013 (12)0.0212 (12)0.0005 (11)
C50.0507 (14)0.0616 (16)0.0602 (15)0.0077 (12)0.0200 (12)0.0068 (12)
C60.0459 (14)0.0732 (19)0.0578 (15)0.0014 (13)0.0230 (12)0.0059 (13)
C70.0548 (15)0.0582 (15)0.0505 (13)0.0068 (12)0.0233 (12)0.0044 (11)
C80.0543 (14)0.0542 (14)0.0359 (11)0.0045 (11)0.0186 (10)0.0026 (10)
C90.0627 (15)0.0464 (13)0.0406 (12)0.0052 (11)0.0287 (11)0.0011 (10)
C100.0527 (13)0.0470 (13)0.0419 (12)0.0042 (11)0.0231 (11)0.0015 (10)
C110.0783 (19)0.0716 (17)0.0452 (14)0.0092 (15)0.0138 (13)0.0006 (12)
C120.080 (2)0.089 (2)0.073 (2)0.0328 (18)0.0089 (16)0.0047 (17)
C130.081 (2)0.082 (2)0.080 (2)0.0323 (18)0.0247 (17)0.0104 (16)
C140.083 (2)0.090 (2)0.0554 (16)0.0262 (18)0.0246 (15)0.0113 (15)
C150.0623 (16)0.0633 (15)0.0430 (13)0.0122 (13)0.0195 (12)0.0017 (11)
Geometric parameters (Å, º) top
N—C91.350 (3)C5—C61.386 (4)
N—C81.421 (3)C5—H5A0.9300
N—H0A0.8600C6—C71.385 (3)
O1—C41.364 (3)C7—C81.389 (3)
O1—C21.427 (3)C7—H7A0.9300
C1—O21.408 (4)C9—C101.485 (3)
C1—H1A0.9600C10—C151.381 (3)
C1—H1B0.9600C10—C111.382 (4)
C1—H1C0.9600C11—C121.374 (4)
O2—C61.365 (3)C11—H11A0.9300
C2—H2A0.9600C12—C131.367 (4)
C2—H2B0.9600C12—H12A0.9300
C2—H2C0.9600C13—C141.357 (4)
O3—C91.226 (2)C13—H13A0.9300
C3—C81.372 (3)C14—C151.376 (3)
C3—C41.387 (3)C14—H14A0.9300
C3—H3A0.9300C15—H15A0.9300
C4—C51.367 (3)
C9—N—C8123.69 (17)C7—C6—C5121.1 (2)
C9—N—H0A118.2C6—C7—C8118.3 (2)
C8—N—H0A118.2C6—C7—H7A120.9
C4—O1—C2118.2 (2)C8—C7—H7A120.9
O2—C1—H1A109.5C3—C8—C7121.2 (2)
O2—C1—H1B109.5C3—C8—N118.17 (19)
H1A—C1—H1B109.5C7—C8—N120.6 (2)
O2—C1—H1C109.5O3—C9—N122.4 (2)
H1A—C1—H1C109.5O3—C9—C10120.3 (2)
H1B—C1—H1C109.5N—C9—C10117.24 (18)
C6—O2—C1118.2 (2)C15—C10—C11118.5 (2)
O1—C2—H2A109.5C15—C10—C9123.0 (2)
O1—C2—H2B109.5C11—C10—C9118.5 (2)
H2A—C2—H2B109.5C12—C11—C10120.3 (2)
O1—C2—H2C109.5C12—C11—H11A119.9
H2A—C2—H2C109.5C10—C11—H11A119.9
H2B—C2—H2C109.5C13—C12—C11120.5 (3)
C8—C3—C4119.3 (2)C13—C12—H12A119.7
C8—C3—H3A120.3C11—C12—H12A119.7
C4—C3—H3A120.3C14—C13—C12119.7 (3)
O1—C4—C5124.7 (2)C14—C13—H13A120.2
O1—C4—C3114.5 (2)C12—C13—H13A120.2
C5—C4—C3120.8 (2)C13—C14—C15120.6 (2)
C4—C5—C6119.3 (2)C13—C14—H14A119.7
C4—C5—H5A120.3C15—C14—H14A119.7
C6—C5—H5A120.3C14—C15—C10120.3 (2)
O2—C6—C7124.0 (2)C14—C15—H15A119.8
O2—C6—C5114.8 (2)C10—C15—H15A119.8
C2—O1—C4—C50.4 (4)C9—N—C8—C3122.0 (2)
C2—O1—C4—C3179.3 (2)C9—N—C8—C759.1 (3)
C8—C3—C4—O1178.9 (2)C8—N—C9—O34.1 (4)
C8—C3—C4—C50.1 (3)C8—N—C9—C10175.41 (19)
O1—C4—C5—C6179.8 (2)O3—C9—C10—C15158.9 (2)
C3—C4—C5—C60.9 (4)N—C9—C10—C1521.6 (3)
C1—O2—C6—C72.3 (4)O3—C9—C10—C1118.8 (3)
C1—O2—C6—C5177.3 (3)N—C9—C10—C11160.8 (2)
C4—C5—C6—O2179.0 (2)C15—C10—C11—C120.2 (4)
C4—C5—C6—C70.7 (4)C9—C10—C11—C12177.9 (3)
O2—C6—C7—C8179.9 (2)C10—C11—C12—C131.7 (5)
C5—C6—C7—C80.5 (3)C11—C12—C13—C142.5 (5)
C4—C3—C8—C71.3 (3)C12—C13—C14—C151.6 (5)
C4—C3—C8—N179.8 (2)C13—C14—C15—C100.1 (4)
C6—C7—C8—C31.5 (3)C11—C10—C15—C140.7 (4)
C6—C7—C8—N179.6 (2)C9—C10—C15—C14177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O3i0.862.142.831 (3)137
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO3
Mr257.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.0390 (16), 20.003 (4), 9.2710 (19)
β (°) 111.39 (3)
V3)1388.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2737, 2550, 1564
Rint0.033
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.165, 1.00
No. of reflections2550
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O3i0.862.142.831 (3)137
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank Hua-Qin Wang of Center of Modern Analysis Nanjing University for valuable suggestions.

References

First citationAnderson, C. E., Donde, Y., Douglas, C. J. & Overman, L. E. (2005). J. Org. Chem. 70, 648–657.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeney, C., Hadjeri, M., Mariotte, A. M. & Boumendjel, A. (2000). Tetrahedron Lett. 41, 7037–7039.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFaler, C. A. & Joullie, M. M. (2006). Tetrahedron Lett. 47, 7229–7231.  CrossRef CAS Google Scholar
First citationHadjeri, M., Mariotte, A. M. & Boumendjel, A. (2002). J. Chem. Res. (S), pp. 463–464.  CrossRef Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSaeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., He, Z. X., Chen, X. P., Song, W. Z., Lu, P. & Wang, Y. G. (2010). Tetrahedron, 66, 1208–1214.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds