Download citation
Download citation
link to html
Comprehensive chemical characterization for two isomers of camphorsulfonic acid (CSA), occasionally used in the manufacture of active pharmaceutical ingredients (APIs), was performed by nuclear magnetic resonance (NMR) spec­troscopy, high-resolution mass spectroscopy in negative electrospray ionization mode and gas chromatography/mass spectrometry (GC/MS) in electron ionization mode. Electronic circular dichroism (ECD) spectra together with quantum chemical calculations using time-dependent density functional theory (TD-DFT) were used to assign the stereochemistry for CSA for the first time and these assignments were then confirmed by single-crystal X-ray dif­­frac­tion. As crystals were grown under the same conditions of high supersaturation using a mixed solvent without water removal, the crystal structures of the two enanti­omers contained one ordered mol­ecule of water in the asymmetric unit. The crystals of the (+)-enanti­omer have a 1S,4R con­figuration and the H atom of the sulfonic acid group combines with the water mol­ecule to form a hydro­nium ion, namely, hydro­nium (1S,4R)-(7,7-dimethyl-2-oxobi­cyclo­[2.2.1]heptan-1-yl)methane­sul­fon­ate, H3O+·C10H15O4S. The crystals of the (−)-enanti­omer have a 1R,4S configuration. The determination of the optical purity of CSA using NMR spectroscopy with a chiral solvating agent, (1R,2R)-1,2-di­phenyl­ethane-1,2-di­amine, and GC/MS with a chiral column has been well explored. The results showed that the examined samples of these two isomers of CSA proved to be enanti­omerically pure. In particular, for (1R)-(−)-10-camphorsulfonic acid, this is, to our knowledge, the first description on its spectral characterization in a scientific context.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622008592/yp3225sup1.cif
Contains datablocks 20220428_1, 20220502_2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622008592/yp322520220428_1sup2.hkl
Contains datablock 20220428_1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622008592/yp322520220502_2sup3.hkl
Contains datablock 20220502_2

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622008592/yp3225sup4.pdf
Additional figures and tables

CCDC references: 2192483; 2192484

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Hydronium (1S,4R)-(7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methanesulfonate (20220428_1) top
Crystal data top
H3O+·C10H15O4SDx = 1.416 Mg m3
Mr = 250.30Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 11038 reflections
a = 6.72815 (4) Åθ = 2.8–73.8°
b = 11.24661 (6) ŵ = 2.52 mm1
c = 15.51195 (8) ÅT = 100 K
V = 1173.77 (1) Å3Block, clear colourless
Z = 40.5 × 0.35 × 0.3 mm
F(000) = 536
Data collection top
Rigaku XtaLAB0 PRO MM007HF (rotating anode)
diffractometer equipped with a PILATUS200K CCD plate detector
2349 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 74.0°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 88
Tmin = 0.628, Tmax = 1.000k = 1313
11811 measured reflectionsl = 1919
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.028P)2 + 0.3955P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.001
wR(F2) = 0.057Δρmax = 0.25 e Å3
S = 1.14Δρmin = 0.30 e Å3
2349 reflectionsExtinction correction: SHELXL2019 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
159 parametersExtinction coefficient: 0.0195 (9)
3 restraintsAbsolute structure: Flack x determined using 956 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.011 (6)
Hydrogen site location: mixed
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The single crystals of the (1S)-(+)- and (1R)-(-)-CSA enantiomers, colourless block, 0.5*0.35*0.3 and 0.35*0.2*0.05 mm3 respectively, were mounted on a Rigaku XtaLAB0 PRO MM007HF (rotating anode) diffractometer equipped with a PILATUS200K CCD plate detector, and data were collected using Cu Kα radiation (λ = 1.54184 Å) at 100 K with the ω-scans method. Data collection, reduction, and absorption correction (multi-scan) were performed by the CrysAlis PRO program (1.171.39.28b, Rigaku Oxford Diffraction, 2015). Using OLEX2 GUI, the structure was solved with the ShelXT program and refined by the SHELXL program with full-matrix least-squares calculations based on F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S010.73068 (6)0.55683 (3)0.45697 (3)0.00982 (13)
O11.1574 (2)0.38541 (13)0.39267 (9)0.0183 (3)
O20.89723 (19)0.52350 (12)0.51232 (8)0.0138 (3)
O30.7234 (2)0.68416 (11)0.43850 (8)0.0161 (3)
O40.54364 (19)0.51152 (12)0.49180 (9)0.0142 (3)
C10.8074 (3)0.35855 (15)0.35138 (11)0.0102 (3)
C21.0244 (3)0.32339 (16)0.36582 (11)0.0124 (4)
C31.0442 (3)0.19582 (17)0.33283 (13)0.0165 (4)
H3A1.0720400.1408940.3795170.020*
H3B1.1478600.1893310.2896090.020*
C40.8375 (3)0.17337 (16)0.29367 (12)0.0148 (4)
H40.8342210.1111680.2494550.018*
C50.6960 (3)0.15229 (16)0.36964 (13)0.0180 (4)
H5A0.7494840.0937950.4093060.022*
H5B0.5664230.1260720.3498690.022*
C60.6838 (3)0.27721 (16)0.41234 (12)0.0141 (4)
H6A0.7405370.2759110.4698240.017*
H6B0.5471770.3042270.4159270.017*
C70.7760 (3)0.29880 (15)0.26101 (11)0.0129 (4)
C80.9131 (3)0.34879 (18)0.19078 (12)0.0185 (4)
H8A1.0466810.3528070.2122980.028*
H8B0.8692810.4270380.1749300.028*
H8C0.9090200.2978230.1411700.028*
C90.5615 (3)0.30553 (19)0.22873 (14)0.0205 (4)
H9A0.5347160.3842430.2077930.031*
H9B0.4722890.2873340.2752000.031*
H9C0.5427800.2492260.1829220.031*
C100.7668 (3)0.49132 (14)0.35389 (10)0.0116 (3)
H10A0.6493140.5068330.3194520.014*
H10B0.8772450.5315500.3262280.014*
O51.22234 (19)0.62434 (11)0.47241 (9)0.0150 (3)
H5C1.119 (2)0.5855 (19)0.4853 (16)0.018*
H5D1.329 (3)0.586 (3)0.478 (2)0.047 (9)*
H5E1.222 (5)0.6880 (15)0.5008 (16)0.041 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S010.0086 (2)0.0096 (2)0.0113 (2)0.00077 (15)0.00064 (15)0.00114 (14)
O10.0112 (6)0.0197 (7)0.0239 (7)0.0005 (5)0.0021 (5)0.0060 (6)
O20.0109 (6)0.0168 (6)0.0138 (6)0.0009 (5)0.0020 (5)0.0001 (5)
O30.0208 (7)0.0089 (6)0.0186 (6)0.0018 (5)0.0010 (5)0.0012 (5)
O40.0097 (6)0.0161 (6)0.0168 (6)0.0008 (5)0.0015 (5)0.0019 (5)
C10.0105 (8)0.0096 (7)0.0103 (8)0.0002 (6)0.0008 (6)0.0007 (6)
C20.0123 (9)0.0139 (8)0.0109 (8)0.0008 (7)0.0006 (7)0.0003 (7)
C30.0161 (10)0.0128 (9)0.0205 (9)0.0030 (8)0.0007 (7)0.0029 (7)
C40.0173 (9)0.0102 (9)0.0170 (8)0.0012 (7)0.0017 (7)0.0034 (7)
C50.0200 (9)0.0117 (8)0.0224 (9)0.0033 (7)0.0043 (8)0.0006 (7)
C60.0142 (9)0.0121 (8)0.0161 (8)0.0015 (7)0.0045 (7)0.0007 (7)
C70.0151 (9)0.0117 (8)0.0120 (8)0.0012 (7)0.0005 (7)0.0021 (6)
C80.0260 (10)0.0177 (9)0.0119 (8)0.0036 (8)0.0039 (8)0.0027 (7)
C90.0206 (10)0.0206 (10)0.0204 (9)0.0014 (8)0.0063 (8)0.0035 (8)
C100.0145 (9)0.0108 (8)0.0097 (7)0.0016 (7)0.0003 (7)0.0006 (6)
O50.0114 (6)0.0116 (6)0.0220 (7)0.0001 (5)0.0004 (6)0.0025 (5)
Geometric parameters (Å, º) top
S01—O21.4606 (13)C5—H5B0.9700
S01—O31.4612 (12)C5—C61.555 (2)
S01—O41.4613 (13)C6—H6A0.9700
S01—C101.7773 (17)C6—H6B0.9700
O1—C21.209 (2)C7—C81.534 (3)
C1—C21.529 (2)C7—C91.530 (3)
C1—C61.556 (2)C8—H8A0.9600
C1—C71.569 (2)C8—H8B0.9600
C1—C101.519 (2)C8—H8C0.9600
C2—C31.529 (3)C9—H9A0.9600
C3—H3A0.9700C9—H9B0.9600
C3—H3B0.9700C9—H9C0.9600
C3—C41.539 (3)C10—H10A0.9700
C4—H40.9800C10—H10B0.9700
C4—C51.533 (3)O5—H5C0.844 (7)
C4—C71.555 (2)O5—H5D0.841 (7)
C5—H5A0.9700O5—H5E0.841 (7)
O2—S01—O3113.12 (8)C1—C6—H6A110.9
O2—S01—O4110.72 (8)C1—C6—H6B110.9
O2—S01—C10108.51 (8)C5—C6—C1104.13 (14)
O3—S01—C10103.56 (7)C5—C6—H6A110.9
O4—S01—O3112.66 (8)C5—C6—H6B110.9
O4—S01—C10107.81 (8)H6A—C6—H6B108.9
C2—C1—C6105.61 (14)C4—C7—C193.53 (13)
C2—C1—C798.57 (14)C8—C7—C1113.35 (15)
C6—C1—C7102.65 (14)C8—C7—C4113.82 (16)
C10—C1—C2114.99 (15)C9—C7—C1113.50 (15)
C10—C1—C6117.78 (14)C9—C7—C4113.75 (16)
C10—C1—C7114.83 (14)C9—C7—C8108.46 (16)
O1—C2—C1127.46 (17)C7—C8—H8A109.5
O1—C2—C3126.32 (17)C7—C8—H8B109.5
C1—C2—C3106.07 (15)C7—C8—H8C109.5
C2—C3—H3A111.4H8A—C8—H8B109.5
C2—C3—H3B111.4H8A—C8—H8C109.5
C2—C3—C4101.96 (15)H8B—C8—H8C109.5
H3A—C3—H3B109.2C7—C9—H9A109.5
C4—C3—H3A111.4C7—C9—H9B109.5
C4—C3—H3B111.4C7—C9—H9C109.5
C3—C4—H4114.4H9A—C9—H9B109.5
C3—C4—C7102.73 (15)H9A—C9—H9C109.5
C5—C4—C3106.46 (16)H9B—C9—H9C109.5
C5—C4—H4114.4S01—C10—H10A108.0
C5—C4—C7103.03 (15)S01—C10—H10B108.0
C7—C4—H4114.4C1—C10—S01117.09 (12)
C4—C5—H5A111.2C1—C10—H10A108.0
C4—C5—H5B111.2C1—C10—H10B108.0
C4—C5—C6102.72 (14)H10A—C10—H10B107.3
H5A—C5—H5B109.1H5C—O5—H5D114 (3)
C6—C5—H5A111.2H5C—O5—H5E108 (3)
C6—C5—H5B111.2H5D—O5—H5E112 (3)
O1—C2—C3—C4170.45 (18)C5—C4—C7—C962.10 (18)
O2—S01—C10—C151.98 (16)C6—C1—C2—O1118.24 (19)
O3—S01—C10—C1172.43 (14)C6—C1—C2—C366.02 (17)
O4—S01—C10—C167.99 (16)C6—C1—C7—C451.79 (16)
C1—C2—C3—C45.36 (18)C6—C1—C7—C8169.65 (16)
C2—C1—C6—C572.10 (17)C6—C1—C7—C966.04 (18)
C2—C1—C7—C456.44 (15)C6—C1—C10—S0141.7 (2)
C2—C1—C7—C861.42 (18)C7—C1—C2—O1135.98 (19)
C2—C1—C7—C9174.26 (16)C7—C1—C2—C339.77 (16)
C2—C1—C10—S0183.86 (17)C7—C1—C6—C530.68 (18)
C2—C3—C4—C576.13 (18)C7—C1—C10—S01162.77 (13)
C2—C3—C4—C731.79 (16)C7—C4—C5—C638.44 (18)
C3—C4—C5—C669.27 (18)C10—C1—C2—O113.4 (3)
C3—C4—C7—C154.99 (16)C10—C1—C2—C3162.36 (14)
C3—C4—C7—C862.48 (18)C10—C1—C6—C5157.89 (16)
C3—C4—C7—C9172.61 (15)C10—C1—C7—C4179.15 (15)
C4—C5—C6—C14.32 (19)C10—C1—C7—C861.3 (2)
C5—C4—C7—C155.52 (16)C10—C1—C7—C963.0 (2)
C5—C4—C7—C8172.99 (16)
Hydronium (1R,4S)-(7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methanesulfonate (20220502_2) top
Crystal data top
H3O+·C10H15O4SDx = 1.418 Mg m3
Mr = 250.30Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 12507 reflections
a = 6.72595 (5) Åθ = 2.8–73.7°
b = 11.23408 (8) ŵ = 2.52 mm1
c = 15.51954 (11) ÅT = 100 K
V = 1172.65 (1) Å3Plate, clear colourless
Z = 40.35 × 0.2 × 0.05 mm
F(000) = 536
Data collection top
Rigaku XtaLAB0 PRO MM007HF (rotating anode)
diffractometer equipped with a PILATUS200K CCD plate detector
2348 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 73.9°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 88
Tmin = 0.464, Tmax = 1.000k = 1313
14186 measured reflectionsl = 1918
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0276P)2 + 0.3833P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max < 0.001
wR(F2) = 0.059Δρmax = 0.26 e Å3
S = 1.14Δρmin = 0.27 e Å3
2348 reflectionsExtinction correction: SHELXL2019 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
155 parametersExtinction coefficient: 0.0049 (5)
0 restraintsAbsolute structure: Flack x determined using 954 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.011 (6)
Hydrogen site location: mixed
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The single crystals of the (1S)-(+)- and (1R)-(-)-CSA enantiomers, colourless block, 0.5*0.35*0.3 and 0.35*0.2*0.05 mm3 respectively, were mounted on a Rigaku XtaLAB0 PRO MM007HF (rotating anode) diffractometer equipped with a PILATUS200K CCD plate detector, and data were collected using Cu Kα radiation (λ = 1.54184 Å) at 100 K with the ω-scans method. Data collection, reduction, and absorption correction (multi-scan) were performed by the CrysAlis PRO program (1.171.39.28b, Rigaku Oxford Diffraction, 2015). Using OLEX2 GUI, the structure was solved with the ShelXT program and refined by the SHELXL program with full-matrix least-squares calculations based on F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0010.73026 (6)0.44327 (4)0.45694 (3)0.01226 (13)
O10.8968 (2)0.47675 (13)0.51223 (9)0.0162 (3)
O51.2218 (2)0.37552 (12)0.47227 (9)0.0172 (3)
H5C1.3247400.4181740.4796880.026*
H5D1.1255310.4205400.4863310.026*
O41.1571 (2)0.61471 (13)0.39265 (10)0.0209 (3)
O30.54319 (19)0.48870 (12)0.49178 (9)0.0166 (3)
O20.7229 (2)0.31577 (11)0.43857 (8)0.0186 (3)
C21.0243 (3)0.67676 (17)0.36579 (12)0.0148 (4)
C10.8073 (3)0.64163 (16)0.35133 (12)0.0125 (4)
C90.9131 (3)0.65116 (19)0.19098 (13)0.0211 (4)
H9A1.0469000.6479390.2123930.032*
H9B0.9082360.7016070.1410970.032*
H9C0.8701320.5724740.1756420.032*
C40.8372 (3)0.82699 (17)0.29350 (13)0.0173 (4)
H40.8340010.8892430.2492910.021*
C70.7758 (3)0.70141 (16)0.26097 (11)0.0153 (4)
C100.7665 (3)0.50878 (15)0.35395 (11)0.0140 (4)
H10A0.8768490.4684200.3263050.017*
H10B0.6488880.4932820.3195390.017*
C50.6958 (3)0.84804 (17)0.36943 (14)0.0206 (4)
H5A0.5661450.8741770.3496900.025*
H5B0.7492890.9066840.4090230.025*
C60.6839 (3)0.72320 (17)0.41217 (13)0.0164 (4)
H6A0.5472430.6961430.4158720.020*
H6B0.7408190.7246260.4695920.020*
C80.5615 (3)0.6946 (2)0.22872 (14)0.0231 (4)
H8A0.5346970.6157280.2079750.035*
H8B0.5429240.7507790.1827950.035*
H8C0.4722800.7130730.2751050.035*
C31.0442 (3)0.80432 (18)0.33270 (13)0.0189 (4)
H3A1.1478480.8106600.2894800.023*
H3B1.0721630.8593680.3793010.023*
H5E1.225 (5)0.309 (3)0.5014 (18)0.037 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0010.0101 (2)0.0126 (2)0.0141 (2)0.00077 (15)0.00059 (16)0.00111 (15)
O10.0117 (6)0.0201 (7)0.0168 (6)0.0010 (5)0.0022 (5)0.0004 (5)
O50.0131 (6)0.0141 (6)0.0244 (7)0.0002 (5)0.0007 (6)0.0022 (5)
O40.0131 (7)0.0228 (7)0.0269 (8)0.0004 (6)0.0018 (6)0.0057 (6)
O30.0112 (6)0.0190 (7)0.0197 (7)0.0007 (5)0.0022 (5)0.0017 (6)
O20.0222 (7)0.0124 (6)0.0212 (6)0.0016 (6)0.0011 (6)0.0018 (5)
C20.0144 (9)0.0165 (9)0.0134 (8)0.0001 (7)0.0006 (7)0.0001 (8)
C10.0113 (8)0.0130 (8)0.0130 (8)0.0002 (7)0.0007 (7)0.0007 (7)
C90.0283 (11)0.0206 (10)0.0144 (9)0.0037 (9)0.0035 (8)0.0024 (8)
C40.0186 (10)0.0134 (9)0.0200 (9)0.0022 (7)0.0020 (7)0.0033 (7)
C70.0164 (9)0.0143 (8)0.0152 (8)0.0019 (7)0.0004 (7)0.0018 (7)
C100.0160 (9)0.0138 (8)0.0123 (8)0.0015 (8)0.0003 (7)0.0007 (6)
C50.0217 (10)0.0149 (9)0.0252 (10)0.0029 (8)0.0043 (8)0.0007 (8)
C60.0168 (10)0.0141 (9)0.0183 (9)0.0012 (7)0.0045 (8)0.0009 (7)
C80.0224 (11)0.0240 (11)0.0230 (10)0.0013 (9)0.0070 (8)0.0032 (9)
C30.0173 (10)0.0156 (9)0.0237 (10)0.0027 (8)0.0007 (8)0.0029 (8)
Geometric parameters (Å, º) top
S001—O11.4604 (14)C4—H40.9800
S001—O31.4615 (14)C4—C71.554 (3)
S001—O21.4613 (13)C4—C51.533 (3)
S001—C101.7764 (18)C4—C31.540 (3)
O5—H5C0.8499C7—C81.527 (3)
O5—H5D0.8500C10—H10A0.9700
O5—H5E0.87 (3)C10—H10B0.9700
O4—C21.207 (2)C5—H5A0.9700
C2—C11.528 (3)C5—H5B0.9700
C2—C31.528 (3)C5—C61.553 (3)
C1—C71.569 (2)C6—H6A0.9700
C1—C101.518 (2)C6—H6B0.9700
C1—C61.555 (3)C8—H8A0.9600
C9—H9A0.9600C8—H8B0.9600
C9—H9B0.9600C8—H8C0.9600
C9—H9C0.9600C3—H3A0.9700
C9—C71.533 (3)C3—H3B0.9700
O1—S001—O3110.67 (8)C8—C7—C1113.51 (16)
O1—S001—O2113.15 (8)C8—C7—C9108.53 (17)
O1—S001—C10108.47 (9)C8—C7—C4113.75 (17)
O3—S001—C10107.84 (9)S001—C10—H10A108.0
O2—S001—O3112.65 (8)S001—C10—H10B108.0
O2—S001—C10103.61 (8)C1—C10—S001117.14 (12)
H5C—O5—H5D104.5C1—C10—H10A108.0
H5C—O5—H5E112.9C1—C10—H10B108.0
H5D—O5—H5E113.3H10A—C10—H10B107.3
O4—C2—C1127.47 (18)C4—C5—H5A111.2
O4—C2—C3126.33 (18)C4—C5—H5B111.2
C3—C2—C1106.05 (15)C4—C5—C6102.76 (15)
C2—C1—C798.61 (15)H5A—C5—H5B109.1
C2—C1—C6105.55 (15)C6—C5—H5A111.2
C10—C1—C2115.00 (16)C6—C5—H5B111.2
C10—C1—C7114.85 (15)C1—C6—H6A110.9
C10—C1—C6117.80 (15)C1—C6—H6B110.9
C6—C1—C7102.61 (14)C5—C6—C1104.19 (15)
H9A—C9—H9B109.5C5—C6—H6A110.9
H9A—C9—H9C109.5C5—C6—H6B110.9
H9B—C9—H9C109.5H6A—C6—H6B108.9
C7—C9—H9A109.5C7—C8—H8A109.5
C7—C9—H9B109.5C7—C8—H8B109.5
C7—C9—H9C109.5C7—C8—H8C109.5
C7—C4—H4114.5H8A—C8—H8B109.5
C5—C4—H4114.5H8A—C8—H8C109.5
C5—C4—C7102.99 (15)H8B—C8—H8C109.5
C5—C4—C3106.42 (16)C2—C3—C4102.03 (15)
C3—C4—H4114.5C2—C3—H3A111.4
C3—C4—C7102.62 (15)C2—C3—H3B111.4
C9—C7—C1113.21 (15)C4—C3—H3A111.4
C9—C7—C4113.83 (16)C4—C3—H3B111.4
C4—C7—C193.57 (13)H3A—C3—H3B109.2
O1—S001—C10—C151.90 (17)C10—C1—C7—C4179.23 (15)
O4—C2—C1—C7136.0 (2)C10—C1—C7—C862.9 (2)
O4—C2—C1—C1013.3 (3)C10—C1—C6—C5157.79 (16)
O4—C2—C1—C6118.3 (2)C5—C4—C7—C155.47 (17)
O4—C2—C3—C4170.45 (19)C5—C4—C7—C9172.80 (16)
O3—S001—C10—C168.00 (16)C5—C4—C7—C862.18 (19)
O2—S001—C10—C1172.39 (14)C5—C4—C3—C276.00 (19)
C2—C1—C7—C961.39 (19)C6—C1—C7—C9169.56 (16)
C2—C1—C7—C456.46 (15)C6—C1—C7—C451.71 (16)
C2—C1—C7—C8174.31 (17)C6—C1—C7—C866.14 (19)
C2—C1—C10—S00183.80 (18)C6—C1—C10—S00141.7 (2)
C2—C1—C6—C572.21 (18)C3—C2—C1—C739.69 (17)
C1—C2—C3—C45.29 (19)C3—C2—C1—C10162.34 (15)
C4—C5—C6—C14.4 (2)C3—C2—C1—C666.05 (18)
C7—C1—C10—S001162.74 (13)C3—C4—C7—C154.95 (16)
C7—C1—C6—C530.59 (19)C3—C4—C7—C962.38 (19)
C7—C4—C5—C638.47 (19)C3—C4—C7—C8172.60 (16)
C7—C4—C3—C231.83 (17)C3—C4—C5—C669.10 (19)
C10—C1—C7—C961.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O3i0.851.682.5261 (18)174
O5—H5D···O10.851.712.5408 (19)165
O5—H5E···O2ii0.87 (3)1.68 (3)2.5559 (18)177 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1.
1H and 13C NMR chemical shifts and diagnostic correlations in the two-dimensional spectra of CSA top
AttributionC chemical shift δC ppmCarbon typeH chemical shift δH ppmProton numberPeak form*C–H HSQCC–H HMBCH–H COSY
C158.38CC8–H; C9–H; C10–H
C2216.00CC8–H;
C10–H;
C3–H;
C4–H;
C6–H
C342.62CH22.2802dC8–H;C4–H
1.850C9–H
C442.55CH1.9881tC3–H;C3–H
C5–H;
C526.79CH21.8922mC3–HC6–H
1.341
C624.64CH22.5532mC10–HC5–H
1.3712mC10–HC5–H
C747.68CC8–H;
C9–H
C819.89CH31.0363sC9–HC9–H
C920.28CH30.7653sC8–HC8–H
C1047.54CH23.0412dC6–H
2.601
OH12.5151s
Note: (*) s = single, d = doublet, t = triplet and m = multiplet.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds