Download citation
Download citation
link to html
The terpenoid (−)-Istanbulin A is a natural product isolated from Senecio filaginoides DC, one of the 270 species of Senecio (Asteraceae) which occurs in Argentina. The structure and absolute configuration of this com­pound [9a-hy­droxy-3,4a,5-trimethyl-4a,6,7,8a,9,9a-hexa­hydro-4H,5H-naphtho­[2,3-b]-furan-2,8-dione or (4S,5R,8R,10S)-1-oxo-8β-hy­droxy-10βH-eremophil-7(11)-en-12,8β-olide, C15H20O4] were determined by single-crystal X-ray diffraction studies. It proved to be a sesquiterpene lactone showing an eremophilanolide skeleton whose chirality is described as 4S,5R,8R,10S. Structural results were also in agreement with the one- and two-dimensional (1D and 2D) NMR and HR–ESI–MS data, and other com­plementary spectroscopic information. In addition, (−)-Istanbulin A is a polymorph of the previously reported form of (−)-Istan­bulin A, form I; thus, the title com­pound is denoted form II or polymorph II. Structural data and a literature search allowed the chirality of Istanbulin A to be revisited. The anti­microbial and anti­fungal activities of (−)-Istanbulin A, form II, were evaluated in order to establish a reference for future com­parisons and applications related to specific crystal forms of Istanbulins.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620011493/yp3206sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620011493/yp3206Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620011493/yp3206Isup3.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620011493/yp3206sup4.pdf
Additional geometric and spectroscopic information, together with extra figures and spectra

CCDC reference: 1899764

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(4aS,5R,8aR,9aS)-9a-Hydroxy-3,4a,5-trimethyl-2,4,4a,5,6,7,8,8a,9,9a-decahydronaphtho[2,3-b]furan-2,8-dione top
Crystal data top
C15H20O4Dx = 1.235 Mg m3
Mr = 264.31Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 3879 reflections
a = 7.3660 (4) Åθ = 4.5–72.8°
b = 12.8932 (6) ŵ = 0.73 mm1
c = 14.9661 (7) ÅT = 298 K
V = 1421.35 (11) Å3Needle, colourless
Z = 40.5 × 0.2 × 0.1 mm
F(000) = 568
Data collection top
Rigaku OD Xcalibur Eos Gemini
diffractometer
2871 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 16.1158 pixels mm-1θmax = 74.4°, θmin = 4.5°
ω scansh = 98
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1615
Tmin = 0.729, Tmax = 1.000l = 1818
14329 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.065P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2871 reflectionsΔρmax = 0.14 e Å3
179 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack x determined using 709 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6911 (4)0.4941 (2)0.6809 (2)0.0762 (9)
O20.0672 (6)0.2921 (3)0.4683 (2)0.0892 (11)
O30.0801 (4)0.4206 (2)0.53747 (16)0.0609 (7)
O40.0533 (4)0.5349 (2)0.65638 (19)0.0572 (7)
H40.067 (8)0.523 (4)0.657 (3)0.093 (17)*
C10.5925 (5)0.4803 (3)0.7454 (3)0.0562 (9)
C20.6567 (6)0.4879 (3)0.8394 (3)0.0689 (12)
H2A0.61600.55320.86460.083*
H2B0.78830.48790.84000.083*
C30.5881 (6)0.3991 (3)0.8979 (3)0.0652 (11)
H3A0.65460.33650.88330.078*
H3B0.61200.41550.96010.078*
C40.3857 (5)0.3792 (3)0.8860 (2)0.0559 (9)
H4A0.32250.44290.90360.067*
C50.3387 (5)0.3593 (3)0.7870 (2)0.0477 (8)
C60.1317 (5)0.3437 (3)0.7760 (2)0.0524 (9)
H6A0.09770.27680.80040.063*
H6B0.06800.39680.80940.063*
C70.0761 (5)0.3488 (3)0.6807 (2)0.0480 (8)
C80.1355 (5)0.4427 (3)0.6286 (2)0.0494 (8)
C90.3376 (5)0.4562 (3)0.6347 (3)0.0543 (9)
H9A0.37320.52050.60580.065*
H9B0.39810.39940.60440.065*
C100.3935 (5)0.4585 (3)0.7327 (2)0.0495 (8)
H100.32820.51670.75990.059*
C110.0059 (5)0.2823 (3)0.6267 (3)0.0536 (9)
C120.0066 (6)0.3273 (3)0.5368 (3)0.0623 (10)
C130.0868 (7)0.1778 (3)0.6428 (3)0.0720 (12)
H13A0.02370.12700.60760.108*
H13B0.21270.17870.62620.108*
H13C0.07600.16050.70500.108*
C140.4369 (7)0.2640 (3)0.7501 (3)0.0623 (10)
H14A0.40670.20440.78550.093*
H14B0.56570.27530.75210.093*
H14C0.40000.25240.68940.093*
C150.3228 (8)0.2937 (4)0.9496 (3)0.0795 (14)
H15A0.19360.28560.94490.119*
H15B0.35390.31221.00980.119*
H15C0.38130.22970.93410.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0512 (16)0.082 (2)0.095 (2)0.0066 (15)0.0129 (16)0.0022 (17)
O20.127 (3)0.085 (2)0.0556 (17)0.015 (2)0.0252 (19)0.0076 (16)
O30.0758 (19)0.0650 (16)0.0420 (13)0.0089 (14)0.0039 (13)0.0084 (11)
O40.0489 (15)0.0543 (14)0.0683 (17)0.0010 (12)0.0001 (13)0.0023 (12)
C10.043 (2)0.0462 (17)0.079 (3)0.0012 (16)0.003 (2)0.0051 (17)
C20.049 (2)0.067 (2)0.091 (3)0.0044 (19)0.013 (2)0.012 (2)
C30.064 (3)0.063 (2)0.069 (3)0.004 (2)0.014 (2)0.0065 (19)
C40.057 (2)0.060 (2)0.050 (2)0.0016 (17)0.0053 (17)0.0044 (16)
C50.049 (2)0.0466 (17)0.0472 (18)0.0009 (15)0.0015 (15)0.0016 (14)
C60.054 (2)0.061 (2)0.0421 (17)0.0076 (16)0.0011 (16)0.0016 (16)
C70.0443 (18)0.0542 (18)0.0455 (18)0.0048 (16)0.0016 (15)0.0028 (14)
C80.053 (2)0.0516 (18)0.0439 (17)0.0027 (15)0.0028 (15)0.0018 (15)
C90.051 (2)0.056 (2)0.056 (2)0.0005 (17)0.0093 (16)0.0072 (17)
C100.044 (2)0.0479 (17)0.0562 (19)0.0021 (14)0.0048 (16)0.0030 (15)
C110.056 (2)0.052 (2)0.052 (2)0.0047 (16)0.0034 (17)0.0025 (16)
C120.077 (3)0.059 (2)0.051 (2)0.002 (2)0.009 (2)0.0027 (17)
C130.080 (3)0.057 (2)0.080 (3)0.015 (2)0.013 (3)0.0046 (19)
C140.076 (3)0.051 (2)0.060 (2)0.0055 (19)0.000 (2)0.0045 (17)
C150.090 (4)0.095 (3)0.054 (2)0.011 (3)0.007 (2)0.009 (2)
Geometric parameters (Å, º) top
O1—C11.221 (5)C6—H6B0.9700
O2—C121.207 (5)C6—C71.485 (5)
O3—C81.452 (4)C7—C81.505 (5)
O3—C121.362 (5)C7—C111.324 (5)
O4—H40.90 (6)C8—C91.502 (5)
O4—C81.397 (4)C9—H9A0.9700
C1—C21.488 (6)C9—H9B0.9700
C1—C101.505 (5)C9—C101.524 (5)
C2—H2A0.9700C10—H100.9800
C2—H2B0.9700C11—C121.465 (5)
C2—C31.527 (6)C11—C131.493 (5)
C3—H3A0.9700C13—H13A0.9600
C3—H3B0.9700C13—H13B0.9600
C3—C41.523 (6)C13—H13C0.9600
C4—H4A0.9800C14—H14A0.9600
C4—C51.542 (5)C14—H14B0.9600
C4—C151.529 (6)C14—H14C0.9600
C5—C61.547 (5)C15—H15A0.9600
C5—C101.568 (5)C15—H15B0.9600
C5—C141.530 (5)C15—H15C0.9600
C6—H6A0.9700
C12—O3—C8108.2 (3)O4—C8—O3108.9 (3)
C8—O4—H4107 (3)O4—C8—C7113.8 (3)
O1—C1—C2123.3 (4)O4—C8—C9108.3 (3)
O1—C1—C10120.5 (4)C9—C8—C7110.5 (3)
C2—C1—C10116.2 (3)C8—C9—H9A109.8
C1—C2—H2A109.0C8—C9—H9B109.8
C1—C2—H2B109.0C8—C9—C10109.2 (3)
C1—C2—C3112.9 (3)H9A—C9—H9B108.3
H2A—C2—H2B107.8C10—C9—H9A109.8
C3—C2—H2A109.0C10—C9—H9B109.8
C3—C2—H2B109.0C1—C10—C5109.8 (3)
C2—C3—H3A109.1C1—C10—C9112.8 (3)
C2—C3—H3B109.1C1—C10—H10106.4
H3A—C3—H3B107.8C5—C10—H10106.4
C4—C3—C2112.5 (4)C9—C10—C5114.5 (3)
C4—C3—H3A109.1C9—C10—H10106.4
C4—C3—H3B109.1C7—C11—C12107.8 (3)
C3—C4—H4A107.0C7—C11—C13131.9 (4)
C3—C4—C5111.1 (3)C12—C11—C13120.3 (4)
C3—C4—C15110.2 (4)O2—C12—O3120.8 (4)
C5—C4—H4A107.0O2—C12—C11129.3 (4)
C15—C4—H4A107.0O3—C12—C11109.9 (3)
C15—C4—C5114.2 (3)C11—C13—H13A109.5
C4—C5—C6110.2 (3)C11—C13—H13B109.5
C4—C5—C10107.7 (3)C11—C13—H13C109.5
C6—C5—C10107.7 (3)H13A—C13—H13B109.5
C14—C5—C4112.0 (3)H13A—C13—H13C109.5
C14—C5—C6108.8 (3)H13B—C13—H13C109.5
C14—C5—C10110.2 (3)C5—C14—H14A109.5
C5—C6—H6A109.3C5—C14—H14B109.5
C5—C6—H6B109.3C5—C14—H14C109.5
H6A—C6—H6B108.0H14A—C14—H14B109.5
C7—C6—C5111.6 (3)H14A—C14—H14C109.5
C7—C6—H6A109.3H14B—C14—H14C109.5
C7—C6—H6B109.3C4—C15—H15A109.5
C6—C7—C8116.9 (3)C4—C15—H15B109.5
C11—C7—C6133.1 (3)C4—C15—H15C109.5
C11—C7—C8109.7 (3)H15A—C15—H15B109.5
O3—C8—C7104.3 (3)H15A—C15—H15C109.5
O3—C8—C9111.0 (3)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.90 (6)1.85 (6)2.744 (4)169 (5)
C2—H2A···O2ii0.972.553.493 (5)163
C10—H10···O40.982.562.925 (5)102
C13—H13C···O4iii0.962.633.534 (5)156
C14—H14C···O2iv0.962.443.344 (5)157
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1, z+1/2; (iii) x, y1/2, z+3/2; (iv) x+1/2, y+1/2, z+1.
Antimicrobial activity of compound 1 top
Bacterias/yeastChloramphenicol/Nystatin (g ml-1)MIC (µg ml-1)
S. aureus4
E. coli124250
E. coli224
P. aeruginosa24250
E. faecalis54100
C. albicans36250
C. albicans46250
C. parapsilosis4250
C. krusei3250
C. guilliermondii10
C. glabrata4
Notes: (–) no antimicrobial activity; (1) ATCC 25299; (2) ATCC 35218; (3) NIM 982879; (4) NIM 982891.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds