Download citation
Download citation
link to html
Because of its versatile coordination modes and strong coordination ability, the mercapto­acetic acid substituted 1,2,4-triazole 2-{[5-(pyridin-2-yl)-4H-1,2,4-tri­azol-3-yl]sulfan­yl}acetic acid (H2L) was synthesized and characterized. Treatment of H2L with cobalt and nickel acetate afforded the dinuclear com­plexes {μ-3-[(carboxyl­atometh­yl)sulfan­yl]-5-(pyridin-2-yl)-4H-1,2,4-triazol-4-ido-κ2N1,N5:N2,O}bis­[aqua­(methanol-κO)cobalt(II)] methanol disolvate, [Co2(C9H6N4O2S)2(CH3OH)2(H2O)2]·2CH3OH (1), and {μ-3-[(carboxyl­ato­meth­yl)sulfan­yl]-5-(pyri­din-2-yl)-4H-1,2,4-triazol-4-ido-κ2N1,N5:N2,O}bis­[di­aqua­nickel(II)] methanol disolvate dihydrate, [Ni2(C9H6N4O2S)2(H2O)4]·2CH3OH·2H2O (2), respectively. Complex 1 crystallized in the monoclinic space group P21/c, while 2 crystallized in the tetra­gonal space group I41/a. Single-crystal X-ray diffraction studies revealed that H2L is doubly deprotonated and acts as a tetra­dentate bridging ligand in com­plexes 1 and 2. For both of the obtained com­plexes, extensive hydrogen-bond inter­actions contribute to the formation of their three-dimensional supermolecular structures. Hirshfeld surface analysis was used to illustrate the inter­molecular inter­actions. Additionally, the urease inhibitory activities of 1, 2 and H2L were investigated against jack bean urease, where the two com­plexes revealed strong urease inhibition activities.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619015602/yp3199sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619015602/yp31991sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619015602/yp31992sup3.hkl
Contains datablock 2

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619015602/yp3199sup4.pdf
IR spectrum

CCDC references: 1966374; 1966373

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015). Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) for (1); SHELXS97 (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

{µ-3-[(Carboxylatomethyl)sulfanyl]-5-(pyridin-2-yl)-4H-1,2,4-triazol-4-ido-κ2N1,N5:N2,O}bis[aqua(methanol-κO)cobalt(II)] methanol disolvate (1) top
Crystal data top
[Co2(C9H6N4O2S)2(CH4O)2(H2O)2]·2CH4OF(000) = 772
Mr = 375.27Dx = 1.681 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5941 (5) ÅCell parameters from 3192 reflections
b = 14.9735 (5) Åθ = 3.5–27.9°
c = 10.7212 (5) ŵ = 1.33 mm1
β = 105.719 (5)°T = 293 K
V = 1482.58 (11) Å3Block, clear light red
Z = 40.13 × 0.1 × 0.06 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Eos detector
2813 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2198 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 16.0793 pixels mm-1θmax = 25.7°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1818
Tmin = 0.697, Tmax = 1.000l = 1313
9634 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.6443P]
where P = (Fo2 + 2Fc2)/3
2813 reflections(Δ/σ)max = 0.002
205 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.0600 (3)0.74701 (16)0.0046 (3)0.0537 (7)
H50.01100.71610.00290.081*
Co10.43485 (5)0.58198 (2)0.12944 (4)0.03065 (15)
C10.1824 (4)0.6061 (2)0.2688 (3)0.0424 (8)
H10.23150.65720.30570.051*
C20.0517 (4)0.5871 (2)0.2921 (3)0.0498 (9)
H20.01280.62530.34220.060*
C30.0206 (4)0.5109 (2)0.2404 (4)0.0507 (9)
H30.10930.49680.25490.061*
C40.0402 (4)0.4552 (2)0.1663 (3)0.0411 (8)
H40.00560.40250.13180.049*
C50.1700 (3)0.47971 (18)0.1449 (3)0.0313 (7)
C60.2399 (3)0.42889 (18)0.0612 (3)0.0296 (7)
C70.2879 (3)0.33642 (19)0.0663 (3)0.0337 (7)
C80.4398 (4)0.1962 (2)0.1377 (4)0.0473 (9)
H8A0.49160.21050.04900.057*
H8B0.42900.13180.14350.057*
C90.5307 (4)0.22571 (19)0.2260 (3)0.0353 (7)
C100.6575 (5)0.5355 (3)0.4020 (4)0.0698 (12)
H10A0.75650.52210.40600.105*
H10B0.63110.50570.47140.105*
H10C0.64660.59880.40990.105*
C110.0690 (5)0.8148 (3)0.0918 (5)0.0807 (14)
H11A0.15670.84790.09940.121*
H11B0.06960.79040.17470.121*
H11C0.01270.85380.06250.121*
H3A0.589 (6)0.453 (4)0.271 (5)0.121*
N10.2425 (3)0.55455 (16)0.1956 (2)0.0340 (6)
N20.3592 (3)0.45912 (15)0.0357 (2)0.0307 (6)
N30.3906 (3)0.39900 (15)0.0502 (2)0.0316 (6)
N40.1911 (3)0.35183 (16)0.0016 (2)0.0359 (6)
O10.5363 (3)0.30680 (13)0.2522 (2)0.0415 (6)
O20.5970 (3)0.16538 (13)0.2667 (2)0.0474 (6)
O30.5676 (3)0.50635 (15)0.2832 (2)0.0520 (7)
O40.3017 (3)0.65918 (15)0.0206 (2)0.0486 (6)
H4A0.23020.69270.01970.073*
H4B0.33050.65450.08860.073*
S10.26298 (10)0.24579 (6)0.17317 (10)0.0563 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0494 (17)0.0439 (14)0.0777 (18)0.0033 (11)0.0340 (15)0.0048 (13)
Co10.0413 (3)0.0196 (2)0.0368 (3)0.00182 (17)0.0205 (2)0.00387 (16)
C10.059 (2)0.0312 (16)0.045 (2)0.0015 (15)0.0283 (18)0.0091 (14)
C20.063 (3)0.045 (2)0.051 (2)0.0070 (18)0.033 (2)0.0092 (16)
C30.051 (2)0.054 (2)0.057 (2)0.0008 (18)0.0332 (19)0.0041 (18)
C40.044 (2)0.0358 (17)0.0499 (19)0.0040 (15)0.0236 (17)0.0062 (15)
C50.0378 (19)0.0261 (15)0.0346 (16)0.0011 (13)0.0174 (14)0.0009 (12)
C60.0322 (18)0.0246 (14)0.0353 (16)0.0001 (12)0.0149 (14)0.0009 (12)
C70.0339 (18)0.0262 (15)0.0460 (18)0.0019 (13)0.0195 (15)0.0080 (13)
C80.073 (3)0.0228 (15)0.062 (2)0.0019 (15)0.045 (2)0.0035 (15)
C90.052 (2)0.0238 (15)0.0368 (17)0.0052 (13)0.0228 (15)0.0057 (13)
C100.083 (3)0.059 (3)0.061 (3)0.018 (2)0.009 (2)0.012 (2)
C110.071 (3)0.076 (3)0.094 (4)0.019 (3)0.022 (3)0.006 (3)
N10.0466 (17)0.0252 (12)0.0359 (14)0.0016 (11)0.0209 (13)0.0013 (11)
N20.0373 (16)0.0227 (12)0.0366 (14)0.0004 (11)0.0177 (12)0.0051 (10)
N30.0369 (16)0.0232 (12)0.0390 (14)0.0017 (10)0.0178 (12)0.0088 (10)
N40.0412 (17)0.0273 (13)0.0454 (16)0.0024 (11)0.0225 (13)0.0053 (11)
O10.0694 (16)0.0201 (10)0.0449 (13)0.0054 (10)0.0324 (12)0.0042 (9)
O20.0729 (18)0.0242 (11)0.0614 (15)0.0004 (10)0.0460 (14)0.0041 (10)
O30.0767 (19)0.0247 (11)0.0475 (15)0.0024 (12)0.0046 (13)0.0006 (10)
O40.0547 (16)0.0550 (15)0.0461 (14)0.0216 (12)0.0308 (12)0.0130 (11)
S10.0523 (6)0.0462 (5)0.0800 (7)0.0165 (4)0.0345 (6)0.0363 (5)
Geometric parameters (Å, º) top
O5—H50.8200C7—N41.346 (4)
O5—C111.367 (5)C7—S11.750 (3)
Co1—N12.187 (3)C8—H8A0.9700
Co1—N22.127 (2)C8—H8B0.9700
Co1—N3i2.093 (2)C8—C91.517 (4)
Co1—O1i2.094 (2)C8—S11.796 (4)
Co1—O32.118 (2)C9—O11.251 (3)
Co1—O42.108 (2)C9—O21.249 (3)
C1—H10.9300C10—H10A0.9600
C1—C21.373 (5)C10—H10B0.9600
C1—N11.338 (4)C10—H10C0.9600
C2—H20.9300C10—O31.400 (4)
C2—C31.372 (5)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C3—C41.385 (4)C11—H11C0.9600
C4—H40.9300N2—N31.379 (3)
C4—C51.375 (4)N3—Co1i2.093 (2)
C5—C61.470 (4)O1—Co1i2.094 (2)
C5—N11.353 (4)O3—H3A0.84 (6)
C6—N21.326 (4)O4—H4A0.8522
C6—N41.340 (4)O4—H4B0.8499
C7—N31.336 (4)
C11—O5—H5109.5C9—C8—H8A108.6
N2—Co1—N177.33 (9)C9—C8—H8B108.6
N3i—Co1—N1174.48 (9)C9—C8—S1114.6 (2)
N3i—Co1—N297.73 (9)S1—C8—H8A108.6
N3i—Co1—O1i99.37 (9)S1—C8—H8B108.6
N3i—Co1—O390.55 (11)O1—C9—C8119.4 (3)
N3i—Co1—O490.11 (9)O2—C9—C8116.1 (3)
O1i—Co1—N185.71 (9)O2—C9—O1124.5 (3)
O1i—Co1—N2162.68 (9)H10A—C10—H10B109.5
O1i—Co1—O389.24 (9)H10A—C10—H10C109.5
O1i—Co1—O489.61 (9)H10B—C10—H10C109.5
O3—Co1—N191.71 (10)O3—C10—H10A109.5
O3—Co1—N287.80 (9)O3—C10—H10B109.5
O4—Co1—N187.72 (9)O3—C10—H10C109.5
O4—Co1—N293.16 (9)O5—C11—H11A109.5
O4—Co1—O3178.75 (9)O5—C11—H11B109.5
C2—C1—H1118.4O5—C11—H11C109.5
N1—C1—H1118.4H11A—C11—H11B109.5
N1—C1—C2123.2 (3)H11A—C11—H11C109.5
C1—C2—H2120.5H11B—C11—H11C109.5
C3—C2—C1119.1 (3)C1—N1—Co1128.2 (2)
C3—C2—H2120.5C1—N1—C5117.1 (3)
C2—C3—H3120.4C5—N1—Co1114.39 (19)
C2—C3—C4119.1 (3)C6—N2—Co1113.67 (18)
C4—C3—H3120.4C6—N2—N3105.8 (2)
C3—C4—H4120.8N3—N2—Co1140.52 (19)
C5—C4—C3118.4 (3)C7—N3—Co1i133.35 (19)
C5—C4—H4120.8C7—N3—N2104.9 (2)
C4—C5—C6123.2 (3)N2—N3—Co1i121.75 (18)
N1—C5—C4123.0 (3)C6—N4—C7101.7 (2)
N1—C5—C6113.8 (3)C9—O1—Co1i129.6 (2)
N2—C6—C5120.7 (2)Co1—O3—H3A120 (4)
N2—C6—N4113.9 (2)C10—O3—Co1129.3 (2)
N4—C6—C5125.4 (3)C10—O3—H3A109 (4)
N3—C7—N4113.8 (3)Co1—O4—H4A129.6
N3—C7—S1126.4 (2)Co1—O4—H4B109.8
N4—C7—S1119.7 (2)H4A—O4—H4B120.6
H8A—C8—H8B107.6C7—S1—C8103.21 (16)
Co1—N2—N3—Co1i0.4 (4)N3i—Co1—N1—C524.6 (11)
Co1—N2—N3—C7178.2 (2)N3i—Co1—N2—C6177.0 (2)
C1—C2—C3—C40.1 (6)N3i—Co1—N2—N30.3 (3)
C2—C1—N1—Co1172.1 (3)N3i—Co1—O3—C1086.8 (3)
C2—C1—N1—C51.1 (5)N3—C7—N4—C60.3 (4)
C2—C3—C4—C51.4 (5)N3—C7—S1—C851.0 (3)
C3—C4—C5—C6176.0 (3)N4—C6—N2—Co1179.5 (2)
C3—C4—C5—N11.6 (5)N4—C6—N2—N31.7 (3)
C4—C5—C6—N2174.7 (3)N4—C7—N3—Co1i177.7 (2)
C4—C5—C6—N43.4 (5)N4—C7—N3—N20.7 (4)
C4—C5—N1—Co1174.5 (2)N4—C7—S1—C8134.6 (3)
C4—C5—N1—C10.4 (5)O1i—Co1—N1—C18.0 (3)
C5—C6—N2—Co11.2 (4)O1i—Co1—N1—C5178.7 (2)
C5—C6—N2—N3176.6 (3)O1i—Co1—N2—C612.4 (4)
C5—C6—N4—C7177.0 (3)O1i—Co1—N2—N3170.9 (3)
C6—C5—N1—Co13.4 (3)O1i—Co1—O3—C1012.5 (3)
C6—C5—N1—C1177.5 (3)O2—C9—O1—Co1i133.9 (3)
C6—N2—N3—Co1i177.22 (19)O3—Co1—N1—C197.1 (3)
C6—N2—N3—C71.4 (3)O3—Co1—N1—C589.5 (2)
C8—C9—O1—Co1i45.3 (4)O3—Co1—N2—C692.7 (2)
C9—C8—S1—C795.7 (3)O3—Co1—N2—N390.6 (3)
N1—Co1—N2—C60.5 (2)O4—Co1—N1—C181.8 (3)
N1—Co1—N2—N3177.1 (3)O4—Co1—N1—C591.6 (2)
N1—Co1—O3—C1098.2 (3)O4—Co1—N2—C686.5 (2)
N1—C1—C2—C31.3 (6)O4—Co1—N2—N390.2 (3)
N1—C5—C6—N23.1 (4)O4—Co1—O3—C1035 (5)
N1—C5—C6—N4178.7 (3)S1—C7—N3—Co1i3.0 (5)
N2—Co1—N1—C1175.5 (3)S1—C7—N3—N2175.5 (2)
N2—Co1—N1—C52.2 (2)S1—C7—N4—C6174.8 (2)
N2—Co1—O3—C10175.5 (3)S1—C8—C9—O145.2 (4)
N2—C6—N4—C71.3 (3)S1—C8—C9—O2135.5 (3)
N3i—Co1—N1—C1148.8 (9)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N4ii0.821.992.813 (3)176
O3—H3A···O2iii0.84 (6)1.83 (6)2.657 (3)169 (5)
O4—H4A···O50.851.902.742 (3)167
O4—H4B···O2iv0.851.872.711 (3)170
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z1/2.
{µ-3-[(Carboxylatomethyl)sulfanyl]-5-(pyridin-2-yl)-4H-1,2,4-triazol-4-ido-κ2N1,N5:N2,O}bis[diaquanickel(II)] methanol disolvate dihydrate (2) top
Crystal data top
[Ni2(C9H6N4O2S)2(H2O)4]·2CH4O·2H2ODx = 1.592 Mg m3
Mr = 379.04Cu Kα radiation, λ = 1.54184 Å
Tetragonal, I41/aCell parameters from 2774 reflections
a = 25.9178 (6) Åθ = 5.0–71.1°
c = 9.4186 (3) ŵ = 3.33 mm1
V = 6326.8 (3) Å3T = 293 K
Z = 16Needle, clear light blue
F(000) = 31360.35 × 0.06 × 0.02 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Eos detector
2998 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source2584 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 16.0793 pixels mm-1θmax = 70.9°, θmin = 4.8°
ω scansh = 3120
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 3119
Tmin = 0.708, Tmax = 1.000l = 511
6205 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.034P)2 + 11.3278P]
where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max = 0.002
202 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62621 (10)0.54575 (10)0.3750 (3)0.0452 (6)
H10.64500.57140.32930.054*
C20.63899 (11)0.53296 (12)0.5129 (3)0.0554 (7)
H20.66600.54980.55870.067*
C30.61159 (12)0.49538 (12)0.5815 (3)0.0562 (8)
H30.61970.48630.67440.067*
C40.57149 (10)0.47095 (10)0.5103 (3)0.0448 (6)
H40.55200.44550.55460.054*
C50.56117 (9)0.48542 (9)0.3718 (2)0.0327 (5)
C60.51970 (8)0.46248 (8)0.2875 (2)0.0309 (5)
C70.45898 (10)0.41799 (10)0.2127 (3)0.0426 (6)
C80.41489 (11)0.34246 (10)0.0452 (3)0.0521 (8)
H8A0.44920.34820.00700.063*
H8B0.40950.30550.05280.063*
C90.37550 (9)0.36507 (8)0.0535 (3)0.0332 (5)
C100.5565 (2)0.68384 (18)0.4412 (5)0.122 (2)
H10A0.54150.70410.51600.184*
H10B0.55460.70260.35350.184*
H10C0.59190.67660.46330.184*
N10.58785 (7)0.52255 (7)0.3046 (2)0.0335 (4)
N20.51009 (7)0.47989 (7)0.15716 (19)0.0284 (4)
N30.46936 (7)0.45106 (7)0.1073 (2)0.0324 (4)
N40.48905 (8)0.42343 (8)0.3277 (2)0.0413 (5)
Ni10.561554 (13)0.536693 (13)0.09288 (4)0.02623 (12)
O10.37598 (6)0.41291 (6)0.07627 (18)0.0345 (4)
O20.34293 (8)0.33542 (7)0.1045 (3)0.0664 (7)
O30.61271 (7)0.48027 (7)0.0287 (2)0.0536 (5)
H3A0.60570.45430.02310.080*
H3B0.64460.48590.04230.080*
O50.71385 (8)0.52417 (8)0.0399 (2)0.0603 (5)
H5A0.73720.52800.10260.090*
H5B0.69520.55100.04940.090*
O40.51684 (6)0.59610 (6)0.17180 (18)0.0397 (4)
H4A0.52210.60010.26020.059*
H4B0.48500.58950.15940.059*
O60.52968 (10)0.63812 (9)0.4282 (2)0.0635 (6)
H60.52630.62490.50670.095*
S10.41022 (4)0.37137 (4)0.21818 (8)0.0851 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0396 (13)0.0461 (14)0.0500 (15)0.0127 (11)0.0153 (12)0.0019 (12)
C20.0498 (16)0.0610 (18)0.0555 (17)0.0166 (14)0.0255 (14)0.0003 (14)
C30.0628 (18)0.0608 (18)0.0449 (15)0.0084 (15)0.0269 (14)0.0072 (13)
C40.0498 (15)0.0415 (14)0.0430 (13)0.0062 (12)0.0147 (12)0.0074 (11)
C50.0315 (11)0.0301 (11)0.0365 (12)0.0013 (9)0.0086 (9)0.0008 (9)
C60.0309 (11)0.0295 (11)0.0324 (11)0.0036 (9)0.0043 (9)0.0003 (9)
C70.0455 (14)0.0477 (14)0.0345 (12)0.0225 (12)0.0083 (11)0.0063 (11)
C80.0553 (16)0.0328 (13)0.0683 (18)0.0147 (12)0.0342 (15)0.0124 (12)
C90.0323 (11)0.0280 (11)0.0391 (12)0.0059 (9)0.0077 (10)0.0014 (9)
C100.209 (6)0.084 (3)0.073 (3)0.056 (4)0.035 (3)0.011 (2)
N10.0297 (9)0.0351 (10)0.0357 (10)0.0038 (8)0.0093 (8)0.0009 (8)
N20.0261 (9)0.0292 (9)0.0299 (9)0.0061 (7)0.0049 (7)0.0015 (7)
N30.0302 (9)0.0355 (10)0.0316 (9)0.0120 (8)0.0057 (8)0.0009 (8)
N40.0462 (12)0.0433 (11)0.0344 (10)0.0170 (10)0.0099 (9)0.0058 (9)
Ni10.02296 (19)0.02468 (19)0.0311 (2)0.00232 (14)0.00332 (15)0.00239 (14)
O10.0269 (7)0.0258 (8)0.0507 (10)0.0037 (6)0.0054 (7)0.0020 (7)
O20.0732 (14)0.0314 (9)0.0946 (16)0.0170 (9)0.0568 (13)0.0124 (10)
O30.0312 (9)0.0390 (10)0.0906 (15)0.0013 (7)0.0007 (9)0.0284 (10)
O50.0527 (12)0.0571 (12)0.0710 (14)0.0073 (10)0.0096 (10)0.0174 (11)
O40.0311 (8)0.0423 (9)0.0456 (10)0.0054 (7)0.0064 (7)0.0137 (8)
O60.0906 (16)0.0632 (13)0.0367 (10)0.0081 (12)0.0119 (11)0.0004 (9)
S10.0997 (7)0.1112 (7)0.0445 (4)0.0825 (6)0.0237 (4)0.0248 (4)
Geometric parameters (Å, º) top
C1—H10.9300C9—O21.238 (3)
C1—C21.381 (4)C10—H10A0.9600
C1—N11.338 (3)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C2—C31.368 (4)C10—O61.379 (4)
C3—H30.9300N1—Ni12.1386 (19)
C3—C41.389 (4)N2—N31.376 (2)
C4—H40.9300N2—Ni12.0767 (17)
C4—C51.383 (3)N3—Ni1i2.0731 (18)
C5—C61.463 (3)Ni1—N3i2.0731 (18)
C5—N11.344 (3)Ni1—O1i2.0861 (15)
C6—N21.331 (3)Ni1—O32.0644 (17)
C6—N41.341 (3)Ni1—O42.0654 (16)
C7—N31.339 (3)O1—Ni1i2.0861 (15)
C7—N41.342 (3)O3—H3A0.8516
C7—S11.749 (2)O3—H3B0.8492
C8—H8A0.9700O5—H5A0.8520
C8—H8B0.9700O5—H5B0.8508
C8—C91.500 (3)O4—H4A0.8500
C8—S11.798 (3)O4—H4B0.8505
C9—O11.258 (3)O6—H60.8200
C2—C1—H1118.8C1—N1—C5118.1 (2)
N1—C1—H1118.8C1—N1—Ni1128.46 (17)
N1—C1—C2122.5 (3)C5—N1—Ni1113.47 (14)
C1—C2—H2120.3C6—N2—N3105.91 (17)
C3—C2—C1119.4 (2)C6—N2—Ni1112.89 (14)
C3—C2—H2120.3N3—N2—Ni1141.10 (14)
C2—C3—H3120.5C7—N3—N2104.41 (17)
C2—C3—C4119.0 (3)C7—N3—Ni1i134.00 (15)
C4—C3—H3120.5N2—N3—Ni1i121.59 (13)
C3—C4—H4120.8C6—N4—C7101.27 (19)
C5—C4—C3118.4 (2)N2—Ni1—N179.13 (7)
C5—C4—H4120.8N2—Ni1—O1i164.62 (7)
C4—C5—C6123.0 (2)N3i—Ni1—N1175.77 (7)
N1—C5—C4122.6 (2)N3i—Ni1—N297.21 (7)
N1—C5—C6114.4 (2)N3i—Ni1—O1i97.81 (7)
N2—C6—C5120.0 (2)O1i—Ni1—N185.98 (7)
N2—C6—N4113.91 (19)O3—Ni1—N186.97 (8)
N4—C6—C5126.1 (2)O3—Ni1—N289.76 (7)
N3—C7—N4114.5 (2)O3—Ni1—N3i95.17 (8)
N3—C7—S1127.55 (18)O3—Ni1—O1i85.60 (7)
N4—C7—S1117.92 (18)O3—Ni1—O4173.61 (7)
H8A—C8—H8B108.1O4—Ni1—N188.34 (7)
C9—C8—H8A109.5O4—Ni1—N293.62 (7)
C9—C8—H8B109.5O4—Ni1—N3i89.80 (7)
C9—C8—S1110.7 (2)O4—Ni1—O1i89.75 (6)
S1—C8—H8A109.5C9—O1—Ni1i129.61 (15)
S1—C8—H8B109.5Ni1—O3—H3A126.3
O1—C9—C8118.9 (2)Ni1—O3—H3B117.3
O2—C9—C8117.5 (2)H3A—O3—H3B115.5
O2—C9—O1123.5 (2)H5A—O5—H5B103.6
H10A—C10—H10B109.5Ni1—O4—H4A110.8
H10A—C10—H10C109.5Ni1—O4—H4B110.3
H10B—C10—H10C109.5H4A—O4—H4B108.2
O6—C10—H10A109.5C10—O6—H6109.5
O6—C10—H10B109.5C7—S1—C8102.27 (13)
O6—C10—H10C109.5
C1—C2—C3—C40.0 (5)C6—N2—Ni1—O1i12.2 (3)
C1—N1—Ni1—N2178.3 (2)C6—N2—Ni1—O384.49 (16)
C1—N1—Ni1—N3i148.2 (10)C6—N2—Ni1—O490.08 (16)
C1—N1—Ni1—O1i5.6 (2)C8—C9—O1—Ni1i36.0 (3)
C1—N1—Ni1—O391.4 (2)C9—C8—S1—C798.1 (2)
C1—N1—Ni1—O484.2 (2)N1—C1—C2—C30.3 (5)
C2—C1—N1—C50.1 (4)N1—C5—C6—N22.1 (3)
C2—C1—N1—Ni1179.5 (2)N1—C5—C6—N4177.0 (2)
C2—C3—C4—C50.6 (5)N2—C6—N4—C70.6 (3)
C3—C4—C5—C6179.6 (2)N3—C7—N4—C60.3 (3)
C3—C4—C5—N11.0 (4)N3—C7—S1—C845.0 (3)
C4—C5—C6—N2176.7 (2)N3—N2—Ni1—N1178.0 (2)
C4—C5—C6—N44.3 (4)N3—N2—Ni1—N3i4.1 (3)
C4—C5—N1—C10.8 (4)N3—N2—Ni1—O1i163.3 (2)
C4—C5—N1—Ni1179.0 (2)N3—N2—Ni1—O391.0 (2)
C5—C6—N2—N3179.6 (2)N3—N2—Ni1—O494.4 (2)
C5—C6—N2—Ni13.3 (3)N4—C6—N2—N31.2 (3)
C5—C6—N4—C7179.7 (2)N4—C6—N2—Ni1175.88 (16)
C5—N1—Ni1—N21.43 (16)N4—C7—N3—N21.0 (3)
C5—N1—Ni1—N3i31.5 (11)N4—C7—N3—Ni1i179.86 (18)
C5—N1—Ni1—O1i174.69 (16)N4—C7—S1—C8137.5 (2)
C5—N1—Ni1—O388.90 (16)Ni1—N2—N3—C7174.5 (2)
C5—N1—Ni1—O495.44 (16)Ni1—N2—N3—Ni1i4.8 (3)
C6—C5—N1—C1179.5 (2)O2—C9—O1—Ni1i146.6 (2)
C6—C5—N1—Ni10.2 (2)S1—C7—N3—N2178.5 (2)
C6—N2—N3—C71.2 (2)S1—C7—N3—Ni1i2.3 (4)
C6—N2—N3—Ni1i179.46 (15)S1—C7—N4—C6178.08 (19)
C6—N2—Ni1—N12.47 (15)S1—C8—C9—O158.6 (3)
C6—N2—Ni1—N3i179.67 (15)S1—C8—C9—O2118.9 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.851.762.606 (3)171
O3—H3B···O50.852.052.860 (3)159
O5—H5A···O5iii0.852.022.8434 (16)163
O5—H5B···O1i0.852.082.863 (3)152
O4—H4A···O60.851.872.670 (3)155
O4—H4B···O2iv0.851.832.663 (2)165
O6—H6···N4v0.822.042.840 (3)165
Symmetry codes: (i) x+1, y+1, z; (ii) y+1/4, x+3/4, z1/4; (iii) y+1/4, x+5/4, z+1/4; (iv) y+3/4, x+1/4, z+1/4; (v) x+1, y+1, z+1.
Inhibition of jack bean urease by H2L, 1 and 2. top
CompoundIC50M)CompoundIC50M)
13.5±0.9H2L14.7±1.4
21.3±0.7AHA7.8±1.6
Each data represents mean±SD (n = 3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds