Download citation
Download citation
link to html
High-nuclearity metal clusters have received considerable attention not only because of their diverse architectures and topologies, but also because of their potential applications as functional materials in many fields. To explore new types of clusters and their potential applications, a new nickel(II) cluster-based mixed-cation coordination polymer, namely poly[hexa­kis­[μ4-(2-carboxyl­atophen­yl)sulfanido]di-μ3-chlorido-tri-μ2-hydroxido-octa­nickel(II)sodium(I)], [Ni8NaCl2(OH)3(C7H4O2S)6]n, 1, was synthesized using nickel chloride hexa­hydrate and mercapto­benzoic acid (H2mba) as starting reactants under hydro­thermal conditions. The material was characterized by single-crystal X-ray diffraction (SCXRD), Fourier transform IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction and X-ray photoelectron spectroscopy analysis. SCXRD shows that 1 consists of a hexa­nuclear nickel(II) [Ni6] cluster, dinuclear NiII nodes and a mononuclear NaI node, resulting in the formation of a complex covalent three-dimensional network. In addition, a tightly packed NiO/C&S nanocomposite is fabricated by sinter­ing the coordination precursor at 400 °C. The uniform nanocomposite consists of NiO nanoparticles, incompletely carbonized carbon and incompletely vulcanized sulfur. When used as a supercapacitor electrode, the synthesized composite shows an extra-long cycling stability (>5000 cycles) during the charge/discharge process.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619007368/yp3179sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619007368/yp3179Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619007368/yp3179sup3.pdf
Supplementary material

CCDC reference: 1917362

Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: APEX3 (Bruker, 2014); data reduction: APEX3 (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Poly[hexakis[µ4-(2-carboxylatophenyl)sulfanido]di-µ3-chlorido-tri-µ2-hydroxido-octanickel(II)sodium(I)] top
Crystal data top
[Ni8NaCl2(OH)3(C7H4O2S)6]Dx = 1.835 Mg m3
Mr = 1527.56Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 7580 reflections
a = 13.2027 (7) Åθ = 2.9–28.2°
c = 18.3116 (12) ŵ = 3.05 mm1
V = 2764.3 (3) Å3T = 100 K
Z = 2Prism, black
F(000) = 15280.2 × 0.2 × 0.15 mm
Data collection top
Bruker APEXIII area-detector
diffractometer
1442 reflections with I > 2σ(I)
ω scansRint = 0.055
Absorption correction: multi-scan
(SADABS; Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.187, Tmax = 0.263h = 1515
19761 measured reflectionsk = 1415
1679 independent reflectionsl = 1821
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.213 w = 1/[σ2(Fo2) + (0.1205P)2 + 36.4479P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1679 reflectionsΔρmax = 2.97 e Å3
118 parametersΔρmin = 2.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.0000000.0000000.66416 (11)0.0402 (6)
Na10.0000000.0000000.5000000.0176 (14)
O10.0313 (5)0.1424 (5)0.5905 (3)0.0274 (12)
C10.1634 (7)0.5226 (7)0.4667 (5)0.0321 (19)
H10.1892940.5846150.4323920.039*
S10.04395 (18)0.47486 (16)0.67157 (10)0.0244 (5)
Ni20.02284 (14)0.34698 (12)0.7500000.0270 (5)
O20.0062 (6)0.2348 (5)0.6813 (3)0.0363 (15)
C20.1567 (8)0.4172 (9)0.4466 (5)0.040 (2)
H20.1802190.4079780.3992220.048*
O30.1104 (7)0.0167 (7)0.7500000.042 (2)
H3A0.0802370.0905890.7500000.063*
Ni30.18990 (13)0.57426 (12)0.7500000.0269 (5)
Cl30.3333330.6666670.82575 (19)0.0317 (8)
C30.1158 (7)0.3279 (8)0.4958 (4)0.0320 (19)
H30.1093010.2558360.4812630.038*
C40.0830 (6)0.3384 (7)0.5672 (4)0.0242 (16)
C70.0394 (7)0.2348 (6)0.6151 (4)0.0250 (17)
C60.1325 (7)0.5365 (7)0.5366 (4)0.0276 (17)
H60.1394750.6091970.5501590.033*
C50.0916 (6)0.4465 (7)0.5871 (4)0.0225 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0446 (8)0.0446 (8)0.0312 (12)0.0223 (4)0.0000.000
Na10.021 (2)0.021 (2)0.011 (3)0.0105 (10)0.0000.000
O10.029 (3)0.027 (3)0.029 (3)0.016 (2)0.009 (2)0.013 (2)
C10.029 (4)0.030 (4)0.026 (4)0.006 (3)0.002 (3)0.004 (3)
S10.0367 (11)0.0255 (10)0.0168 (10)0.0198 (9)0.0023 (8)0.0010 (7)
Ni20.0475 (10)0.0231 (8)0.0158 (7)0.0217 (7)0.0000.000
O20.073 (4)0.025 (3)0.016 (3)0.028 (3)0.001 (3)0.002 (2)
C20.040 (5)0.053 (6)0.022 (4)0.018 (4)0.003 (4)0.007 (4)
O30.025 (4)0.023 (4)0.080 (7)0.013 (4)0.0000.000
Ni30.0299 (8)0.0274 (8)0.0227 (8)0.0139 (6)0.0000.000
Cl30.0356 (12)0.0356 (12)0.0241 (17)0.0178 (6)0.0000.000
C30.030 (4)0.031 (4)0.029 (4)0.011 (4)0.004 (3)0.007 (3)
C40.023 (4)0.030 (4)0.018 (4)0.012 (3)0.008 (3)0.007 (3)
C70.028 (4)0.021 (4)0.027 (4)0.013 (3)0.011 (3)0.005 (3)
C60.029 (4)0.030 (4)0.025 (4)0.016 (3)0.007 (3)0.002 (3)
C50.026 (4)0.028 (4)0.016 (4)0.015 (3)0.006 (3)0.002 (3)
Geometric parameters (Å, º) top
Ni1—O1i2.179 (6)S1—Ni32.229 (2)
Ni1—O1ii2.179 (6)Ni2—O21.870 (5)
Ni1—O12.179 (6)Ni2—O2vi1.870 (5)
Ni1—O3ii2.229 (6)Ni2—Ni32.693 (2)
Ni1—O3i2.229 (6)O2—C71.288 (10)
Ni1—O32.229 (6)C2—C31.362 (13)
Ni1—Na13.006 (2)C2—H20.9500
Na1—O1iii2.382 (5)O3—H3A0.8498
Na1—O1iv2.382 (5)Ni3—Cl32.165 (2)
Na1—O1ii2.382 (5)Ni3—Cl3vi2.165 (2)
Na1—O1v2.382 (5)Ni3—Ni3vii2.880 (3)
Na1—O1i2.382 (5)Ni3—Ni3viii2.880 (3)
Na1—O12.382 (5)C3—C41.406 (11)
O1—C71.254 (9)C3—H30.9500
C1—C61.383 (12)C4—C51.422 (11)
C1—C21.398 (13)C4—C71.478 (11)
C1—H10.9500C6—C51.386 (11)
S1—C51.778 (8)C6—H60.9500
S1—Ni22.126 (2)
O1i—Ni1—O1ii85.7 (2)Ni2—S1—Ni376.34 (8)
O1i—Ni1—O185.7 (2)O2—Ni2—O2vi84.5 (3)
O1ii—Ni1—O185.7 (2)O2—Ni2—S1vi179.2 (2)
O1i—Ni1—O3ii172.3 (2)O2vi—Ni2—S1vi95.24 (17)
O1ii—Ni1—O3ii101.7 (2)O2—Ni2—S195.24 (17)
O1—Ni1—O3ii96.7 (2)O2vi—Ni2—S1179.2 (2)
O1i—Ni1—O3i101.7 (2)S1vi—Ni2—S184.98 (11)
O1ii—Ni1—O3i96.7 (2)O2—Ni2—Ni3126.1 (2)
O1—Ni1—O3i172.3 (2)O2vi—Ni2—Ni3126.1 (2)
O3ii—Ni1—O3i75.7 (2)S1vi—Ni2—Ni353.55 (6)
O1i—Ni1—O396.7 (2)S1—Ni2—Ni353.55 (6)
O1ii—Ni1—O3172.3 (2)C7—O2—Ni2136.7 (5)
O1—Ni1—O3101.7 (2)C3—C2—C1119.2 (8)
O3ii—Ni1—O375.7 (2)C3—C2—H2120.4
O3i—Ni1—O375.7 (2)C1—C2—H2120.4
O1i—Ni1—Na151.76 (14)Ni1—O3—Ni1vi89.7 (3)
O1ii—Ni1—Na151.76 (14)Ni1—O3—H3A99.1
O1—Ni1—Na151.76 (14)Ni1vi—O3—H3A99.1
O3ii—Ni1—Na1134.86 (15)Cl3—Ni3—Cl3vi79.68 (15)
O3i—Ni1—Na1134.86 (15)Cl3—Ni3—S1vi100.02 (9)
O3—Ni1—Na1134.86 (15)Cl3vi—Ni3—S1vi178.18 (9)
O1iii—Na1—O1iv76.9 (2)Cl3—Ni3—S1178.18 (9)
O1iii—Na1—O1ii103.1 (2)Cl3vi—Ni3—S1100.02 (9)
O1iv—Na1—O1ii180.0 (2)S1vi—Ni3—S180.22 (11)
O1iii—Na1—O1v76.9 (2)Cl3—Ni3—Ni2128.77 (7)
O1iv—Na1—O1v76.9 (2)Cl3vi—Ni3—Ni2128.77 (7)
O1ii—Na1—O1v103.1 (2)S1vi—Ni3—Ni250.11 (6)
O1iii—Na1—O1i103.1 (2)S1—Ni3—Ni250.11 (6)
O1iv—Na1—O1i103.1 (2)Cl3—Ni3—Ni3vii48.32 (5)
O1ii—Na1—O1i76.9 (2)Cl3vi—Ni3—Ni3vii48.32 (5)
O1v—Na1—O1i180.0S1vi—Ni3—Ni3vii132.64 (7)
O1iii—Na1—O1180.0S1—Ni3—Ni3vii132.64 (7)
O1iv—Na1—O1103.1 (2)Ni2—Ni3—Ni3vii174.64 (8)
O1ii—Na1—O176.9 (2)Cl3—Ni3—Ni3viii48.32 (5)
O1v—Na1—O1103.1 (2)Cl3vi—Ni3—Ni3viii48.32 (5)
O1i—Na1—O176.9 (2)S1vi—Ni3—Ni3viii130.25 (7)
O1iii—Na1—Ni1iii45.91 (14)S1—Ni3—Ni3viii130.25 (7)
O1iv—Na1—Ni1iii45.91 (14)Ni2—Ni3—Ni3viii114.64 (8)
O1ii—Na1—Ni1iii134.09 (14)Ni3vii—Ni3—Ni3viii59.999 (1)
O1v—Na1—Ni1iii45.91 (14)Ni3vii—Cl3—Ni3viii83.36 (11)
O1i—Na1—Ni1iii134.09 (14)Ni3vii—Cl3—Ni383.36 (11)
O1—Na1—Ni1iii134.09 (14)Ni3viii—Cl3—Ni383.36 (11)
O1iii—Na1—Ni1134.09 (14)C2—C3—C4122.6 (8)
O1iv—Na1—Ni1134.09 (14)C2—C3—H3118.7
O1ii—Na1—Ni145.91 (14)C4—C3—H3118.7
O1v—Na1—Ni1134.09 (14)C3—C4—C5117.6 (7)
O1i—Na1—Ni145.91 (14)C3—C4—C7117.3 (7)
O1—Na1—Ni145.91 (14)C5—C4—C7125.1 (7)
Ni1iii—Na1—Ni1180.0O1—C7—O2118.4 (7)
C7—O1—Ni1120.3 (5)O1—C7—C4119.4 (7)
C7—O1—Na1156.2 (5)O2—C7—C4122.2 (7)
Ni1—O1—Na182.32 (18)C1—C6—C5121.2 (8)
C6—C1—C2120.0 (8)C1—C6—H6119.4
C6—C1—H1120.0C5—C6—H6119.4
C2—C1—H1120.0C6—C5—C4119.4 (7)
C5—S1—Ni2109.9 (3)C6—C5—S1115.3 (6)
C5—S1—Ni3113.1 (3)C4—C5—S1125.2 (6)
O2vi—Ni2—O2—C7152.7 (7)C5—C4—C7—O1177.1 (7)
S1—Ni2—O2—C726.6 (8)C3—C4—C7—O2179.5 (8)
Ni3—Ni2—O2—C721.3 (9)C5—C4—C7—O21.1 (12)
C6—C1—C2—C32.1 (13)C2—C1—C6—C51.7 (12)
C1—C2—C3—C41.8 (14)C1—C6—C5—C41.0 (11)
C2—C3—C4—C51.1 (12)C1—C6—C5—S1174.8 (6)
C2—C3—C4—C7179.6 (8)C3—C4—C5—C60.7 (11)
Ni1—O1—C7—O213.5 (9)C7—C4—C5—C6179.1 (7)
Na1—O1—C7—O2146.1 (10)C3—C4—C5—S1174.7 (6)
Ni1—O1—C7—C4168.2 (5)C7—C4—C5—S13.7 (11)
Na1—O1—C7—C432.1 (17)Ni2—S1—C5—C6166.7 (5)
Ni2—O2—C7—O1165.9 (6)Ni3—S1—C5—C683.5 (6)
Ni2—O2—C7—C415.8 (13)Ni2—S1—C5—C417.8 (7)
C3—C4—C7—O11.3 (11)Ni3—S1—C5—C4100.9 (6)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) x, y, z+1; (iv) xy, x, z+1; (v) y, x+y, z+1; (vi) x, y, z+3/2; (vii) x+y, x+1, z; (viii) y+1, xy+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds