Download citation
Download citation
link to html
In recent years, coordination polymers constructed from multidentate carboxyl­ate and pyridyl ligands have attracted much attention because these ligands can adopt a rich variety of coordination modes and thus lead to the formation of crystalline products with intriguing structures and inter­esting properties. A new coordination polymer, namely poly[[μ2-1,6-bis­(pyridin-3-yl)-1,3,5-hexa­triene-κ2N:N′](μ3-naphthalene-1,4-di­carboxyl­ato-κ4O1,O1′:O4:O4′)zinc(II)], [Zn(C12H6O4)(C16H14N2)]n, has been prepared by the self-assembly of Zn(NO3)2·6H2O, naphthalene-1,4-di­carb­oxy­lic acid (1,4-H2ndc) and 1,6-bis­(pyridin-3-yl)-1,3,5-hexa­triene (3,3′-bphte) under hydro­thermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. Each ZnII ion is six-coordinated by four O atoms from three 1,4-ndc2− ligands and by two N atoms from two 3,3′-bphte ligands, forming a distorted octa­hedral ZnO4N2 coordination geometry. Pairs of ZnII ions are linked by 1,4-ndc2− ligands, leading to the formation of a two-dimensional square lattice (sql) layer extending in the ab plane. In the crystal, adjacent layers are further connected by 3,3′-bphte bridges, generating a three-dimensional architecture. From a topological view­point, if each dinuclear zinc unit is considered as a 6-connected node and the 1,4-ndc2− and 3,3′-bphte ligands are regarded as linkers, the structure can be simplified as a unique three-dimensional 6-connected framework with the point symbol 446108. The thermal stability and solid-state photoluminescence properties have also been investigated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618012068/yp3161sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618012068/yp3161Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618012068/yp3161sup3.pdf
Topological net, IR spectrum, PXRD pattern, TGA curve and photoemission spectra

CCDC reference: 1844022

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[µ2-1,6-bis(pyridin-3-yl)-1,3,5-hexatriene-κ2N:N'](µ3-naphthalene-1,4-dicarboxylato-κ4O1,O1':O4:O4')zinc(II)] top
Crystal data top
[Zn(C12H6O4)(C16H14N2)]F(000) = 1056
Mr = 513.85Dx = 1.471 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.160 (2) ÅCell parameters from 29654 reflections
b = 12.917 (3) Åθ = 2.8–27.6°
c = 18.551 (6) ŵ = 1.10 mm1
β = 119.79 (2)°T = 223 K
V = 2320.8 (11) Å3Block, yellow
Z = 40.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
3194 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.095
phi and ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.853, Tmax = 0.921k = 1616
29654 measured reflectionsl = 2124
5295 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0319P)2 + 3.769P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5295 reflectionsΔρmax = 0.57 e Å3
316 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.84302 (4)0.10700 (3)0.43534 (3)0.03160 (14)
N10.7505 (3)0.0199 (2)0.4940 (2)0.0362 (8)
N20.0581 (3)0.8114 (2)0.3760 (2)0.0401 (8)
O10.6519 (2)0.1081 (2)0.32057 (17)0.0405 (7)
O20.6770 (3)0.2335 (2)0.40687 (17)0.0477 (8)
O30.0166 (3)0.32691 (19)0.04400 (16)0.0407 (7)
O40.0964 (3)0.47216 (19)0.09999 (17)0.0417 (7)
C10.6735 (4)0.0640 (3)0.4563 (3)0.0379 (10)
H10.65730.07980.40270.046*
C20.6165 (4)0.1287 (3)0.4904 (3)0.0441 (11)
C30.6407 (6)0.1038 (4)0.5689 (3)0.0699 (16)
H30.60530.14550.59550.084*
C40.7179 (6)0.0164 (4)0.6080 (3)0.0780 (18)
H40.73440.00230.66120.094*
C50.7697 (5)0.0425 (4)0.5685 (3)0.0529 (12)
H50.82150.10170.59570.064*
C60.5356 (5)0.2181 (3)0.4423 (3)0.0535 (12)
H60.53020.22980.39070.064*
C70.4691 (5)0.2844 (3)0.4650 (3)0.0544 (12)
H70.47210.27230.51580.065*
C80.3930 (5)0.3731 (3)0.4175 (3)0.0557 (13)
H80.38930.38570.36660.067*
C90.3275 (5)0.4382 (3)0.4415 (3)0.0520 (12)
H90.33630.42700.49400.062*
C100.2441 (5)0.5246 (3)0.3939 (3)0.0525 (12)
H100.23160.53510.34050.063*
C110.1834 (5)0.5907 (3)0.4212 (3)0.0507 (12)
H110.20160.58080.47600.061*
C120.0916 (4)0.6768 (3)0.3754 (3)0.0448 (11)
C130.0521 (6)0.7012 (4)0.2947 (4)0.0794 (19)
H130.08770.66400.26600.095*
C140.0409 (7)0.7813 (5)0.2558 (4)0.094 (2)
H140.06870.79910.20050.113*
C150.0914 (6)0.8338 (4)0.2985 (3)0.0652 (15)
H150.15300.88880.27170.078*
C160.0327 (4)0.7338 (3)0.4127 (3)0.0382 (10)
H160.05790.71720.46780.046*
C170.4606 (3)0.2235 (3)0.2820 (2)0.0295 (8)
C180.4369 (4)0.3271 (3)0.2848 (2)0.0328 (9)
H180.50550.36820.32690.039*
C190.3123 (4)0.3727 (3)0.2263 (2)0.0295 (8)
H190.30080.44460.22810.035*
C200.2065 (3)0.3149 (2)0.1662 (2)0.0261 (8)
C210.2202 (3)0.2042 (3)0.1676 (2)0.0277 (8)
C220.3511 (3)0.1586 (2)0.2242 (2)0.0274 (8)
C230.3652 (4)0.0490 (3)0.2227 (3)0.0398 (10)
H230.45100.01850.25870.048*
C240.2580 (4)0.0125 (3)0.1706 (3)0.0452 (11)
H240.27050.08440.17020.054*
C250.1288 (4)0.0316 (3)0.1174 (3)0.0439 (11)
H250.05450.01130.08210.053*
C260.1096 (4)0.1359 (3)0.1161 (2)0.0364 (9)
H260.02160.16360.08060.044*
C270.6057 (4)0.1854 (3)0.3404 (2)0.0358 (9)
C280.0867 (3)0.3755 (3)0.0989 (2)0.0296 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0223 (2)0.0258 (2)0.0331 (2)0.00409 (18)0.00353 (17)0.00225 (19)
N10.0314 (17)0.0347 (17)0.0376 (19)0.0058 (14)0.0135 (15)0.0007 (14)
N20.0390 (19)0.0313 (17)0.047 (2)0.0086 (14)0.0188 (17)0.0030 (15)
O10.0247 (13)0.0353 (14)0.0499 (17)0.0059 (12)0.0098 (12)0.0041 (13)
O20.0330 (15)0.0463 (16)0.0394 (16)0.0008 (13)0.0006 (13)0.0024 (13)
O30.0300 (14)0.0326 (13)0.0362 (15)0.0083 (11)0.0011 (12)0.0031 (12)
O40.0280 (14)0.0261 (13)0.0519 (18)0.0038 (11)0.0054 (13)0.0052 (12)
C10.036 (2)0.038 (2)0.037 (2)0.0059 (17)0.0162 (19)0.0012 (17)
C20.046 (2)0.043 (2)0.048 (3)0.0129 (19)0.027 (2)0.0021 (19)
C30.089 (4)0.081 (4)0.058 (3)0.039 (3)0.050 (3)0.008 (3)
C40.102 (4)0.096 (4)0.056 (3)0.050 (4)0.054 (3)0.030 (3)
C50.059 (3)0.058 (3)0.048 (3)0.022 (2)0.031 (2)0.014 (2)
C60.064 (3)0.049 (3)0.056 (3)0.019 (2)0.037 (3)0.005 (2)
C70.055 (3)0.047 (3)0.063 (3)0.016 (2)0.032 (3)0.000 (2)
C80.054 (3)0.049 (3)0.067 (3)0.017 (2)0.032 (3)0.001 (2)
C90.054 (3)0.048 (2)0.057 (3)0.019 (2)0.029 (2)0.003 (2)
C100.053 (3)0.045 (2)0.065 (3)0.014 (2)0.033 (3)0.002 (2)
C110.052 (3)0.045 (2)0.057 (3)0.017 (2)0.028 (2)0.004 (2)
C120.047 (2)0.039 (2)0.056 (3)0.0135 (19)0.032 (2)0.008 (2)
C130.110 (5)0.081 (4)0.078 (4)0.051 (4)0.070 (4)0.024 (3)
C140.133 (6)0.106 (5)0.070 (4)0.073 (4)0.071 (4)0.043 (3)
C150.080 (4)0.066 (3)0.059 (3)0.042 (3)0.042 (3)0.026 (3)
C160.040 (2)0.034 (2)0.038 (2)0.0080 (17)0.0176 (19)0.0007 (17)
C170.0223 (17)0.0310 (18)0.0290 (19)0.0021 (14)0.0081 (16)0.0019 (15)
C180.0271 (19)0.0301 (18)0.032 (2)0.0026 (15)0.0076 (17)0.0015 (16)
C190.0288 (18)0.0256 (18)0.0281 (19)0.0022 (14)0.0097 (16)0.0003 (14)
C200.0230 (17)0.0235 (16)0.0282 (18)0.0031 (14)0.0101 (15)0.0018 (14)
C210.0242 (18)0.0282 (17)0.0265 (19)0.0019 (14)0.0093 (16)0.0012 (15)
C220.0250 (18)0.0234 (17)0.0278 (19)0.0025 (14)0.0086 (16)0.0030 (14)
C230.031 (2)0.0267 (19)0.049 (2)0.0045 (16)0.0096 (19)0.0045 (17)
C240.045 (2)0.0213 (18)0.057 (3)0.0021 (17)0.017 (2)0.0019 (18)
C250.038 (2)0.0307 (19)0.047 (2)0.0079 (17)0.009 (2)0.0047 (18)
C260.0281 (19)0.035 (2)0.036 (2)0.0014 (15)0.0090 (18)0.0012 (16)
C270.0247 (19)0.035 (2)0.039 (2)0.0006 (16)0.0093 (18)0.0109 (18)
C280.0211 (17)0.037 (2)0.0269 (19)0.0053 (15)0.0089 (15)0.0013 (16)
Geometric parameters (Å, º) top
Zn1—O3i2.027 (3)C9—C101.440 (6)
Zn1—O4ii2.088 (3)C9—H90.9400
Zn1—O12.138 (3)C10—C111.336 (6)
Zn1—N12.153 (3)C10—H100.9400
Zn1—N2iii2.178 (3)C11—C121.464 (5)
Zn1—O22.325 (3)C11—H110.9400
Zn1—C272.551 (4)C12—C131.369 (7)
N1—C51.322 (5)C12—C161.381 (6)
N1—C11.344 (5)C13—C141.388 (7)
N2—C151.326 (6)C13—H130.9400
N2—C161.345 (5)C14—C151.360 (7)
N2—Zn1iv2.178 (3)C14—H140.9400
O1—C271.259 (5)C15—H150.9400
O2—C271.251 (5)C16—H160.9400
O3—C281.262 (4)C17—C181.370 (5)
O3—Zn1v2.027 (2)C17—C221.429 (5)
O4—C281.253 (4)C17—C271.515 (5)
O4—Zn1vi2.088 (3)C18—C191.400 (5)
C1—C21.379 (6)C18—H180.9400
C1—H10.9400C19—C201.374 (5)
C2—C31.382 (6)C19—H190.9400
C2—C61.464 (6)C20—C211.436 (5)
C3—C41.386 (7)C20—C281.517 (4)
C3—H30.9400C21—C261.429 (5)
C4—C51.367 (7)C21—C221.435 (5)
C4—H40.9400C22—C231.426 (5)
C5—H50.9400C23—C241.359 (5)
C6—C71.331 (6)C23—H230.9400
C6—H60.9400C24—C251.401 (5)
C7—C81.437 (6)C24—H240.9400
C7—H70.9400C25—C261.363 (5)
C8—C91.328 (6)C25—H250.9400
C8—H80.9400C26—H260.9400
O3i—Zn1—O4ii116.90 (10)C11—C10—H10118.1
O3i—Zn1—O1152.05 (11)C9—C10—H10118.1
O4ii—Zn1—O190.66 (10)C10—C11—C12127.2 (5)
O3i—Zn1—N192.60 (12)C10—C11—H11116.4
O4ii—Zn1—N191.98 (12)C12—C11—H11116.4
O1—Zn1—N190.87 (11)C13—C12—C16116.7 (4)
O3i—Zn1—N2iii87.90 (12)C13—C12—C11124.2 (4)
O4ii—Zn1—N2iii85.43 (12)C16—C12—C11118.9 (4)
O1—Zn1—N2iii89.93 (12)C12—C13—C14119.5 (5)
N1—Zn1—N2iii177.30 (12)C12—C13—H13120.2
O3i—Zn1—O293.73 (10)C14—C13—H13120.2
O4ii—Zn1—O2149.36 (10)C15—C14—C13119.2 (5)
O1—Zn1—O258.73 (10)C15—C14—H14120.4
N1—Zn1—O287.34 (12)C13—C14—H14120.4
N2iii—Zn1—O295.27 (12)N2—C15—C14123.3 (4)
O3i—Zn1—C27122.95 (12)N2—C15—H15118.3
O4ii—Zn1—C27120.10 (12)C14—C15—H15118.3
O1—Zn1—C2729.51 (11)N2—C16—C12124.8 (4)
N1—Zn1—C2787.85 (12)N2—C16—H16117.6
N2iii—Zn1—C2794.11 (12)C12—C16—H16117.6
O2—Zn1—C2729.26 (11)C18—C17—C22119.5 (3)
C5—N1—C1116.9 (4)C18—C17—C27116.6 (3)
C5—N1—Zn1123.0 (3)C22—C17—C27123.9 (3)
C1—N1—Zn1120.1 (3)C17—C18—C19121.2 (3)
C15—N2—C16116.5 (4)C17—C18—H18119.4
C15—N2—Zn1iv120.2 (3)C19—C18—H18119.4
C16—N2—Zn1iv123.3 (3)C20—C19—C18121.5 (3)
C27—O1—Zn193.7 (2)C20—C19—H19119.3
C27—O2—Zn185.4 (2)C18—C19—H19119.3
C28—O3—Zn1v122.5 (2)C19—C20—C21119.1 (3)
C28—O4—Zn1vi149.8 (3)C19—C20—C28116.0 (3)
N1—C1—C2124.8 (4)C21—C20—C28124.8 (3)
N1—C1—H1117.6C26—C21—C22117.6 (3)
C2—C1—H1117.6C26—C21—C20123.6 (3)
C1—C2—C3116.7 (4)C22—C21—C20118.8 (3)
C1—C2—C6118.9 (4)C23—C22—C17122.4 (3)
C3—C2—C6124.4 (4)C23—C22—C21118.3 (3)
C2—C3—C4119.1 (4)C17—C22—C21119.3 (3)
C2—C3—H3120.5C24—C23—C22121.9 (3)
C4—C3—H3120.5C24—C23—H23119.1
C5—C4—C3119.4 (5)C22—C23—H23119.1
C5—C4—H4120.3C23—C24—C25119.8 (3)
C3—C4—H4120.3C23—C24—H24120.1
N1—C5—C4123.0 (4)C25—C24—H24120.1
N1—C5—H5118.5C26—C25—C24120.8 (4)
C4—C5—H5118.5C26—C25—H25119.6
C7—C6—C2125.9 (5)C24—C25—H25119.6
C7—C6—H6117.0C25—C26—C21121.5 (3)
C2—C6—H6117.0C25—C26—H26119.2
C6—C7—C8124.9 (5)C21—C26—H26119.2
C6—C7—H7117.6O2—C27—O1121.9 (3)
C8—C7—H7117.6O2—C27—C17118.3 (4)
C9—C8—C7123.8 (5)O1—C27—C17119.7 (3)
C9—C8—H8118.1O2—C27—Zn165.32 (19)
C7—C8—H8118.1O1—C27—Zn156.74 (18)
C8—C9—C10125.5 (5)C17—C27—Zn1175.5 (3)
C8—C9—H9117.2O4—C28—O3123.1 (3)
C10—C9—H9117.2O4—C28—C20117.9 (3)
C11—C10—C9123.9 (5)O3—C28—C20119.0 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x1, y1, z; (v) x1, y+1/2, z1/2; (vi) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds