Download citation
Download citation
link to html
The ADDSYM routine in the program PLATON [Spek (2015). Acta Cryst. C71, 9-18] has helped researchers to avoid structures of (metal-)organic compounds being reported in an unnecessarily low symmetry space group. However, determination of the correct space group may get more complicated in cases of pseudosymmetric inorganic compounds. One example is NaVO2F2, which was reported [Crosnier-Lopez et al. (1994). Eur. J. Solid State Inorg. Chem. 31, 957-965] in the acentric space group P21 based on properties but flagged by ADDSYM as (pseudo)centrosymmetric P21/m within default distance tolerances. Herein a systematic investigation reveals that NaVO2F2 exists in at least four polymorphs: P21, (I), P21/m, (II), P21/c, (III), and one or more low-temperature ones. The new centrosymmetric modification, (III), with the space group P21/c has a similar atomic packing geometry to phase (I), except for having a doubled c axis. The double-cell of phase (III) arises from atomic shifts from the glide plane c at (x, 1 \over 4, z). With increasing temperature, the number of observed reflections decreases. The odd l reflections gradually become weaker and, correspondingly, all atoms shift towards the glide plane, resulting in a gradual second-order transformation of (III) into high-temperature phase (II) (P21/m) at below 493 K. At least one first-order enanti­otropic phase transition was observed below 139 K from both the single-crystal X-ray diffraction and the differential scanning calorimetry analyses. Periodic first-principles calculations within density functional theory show that both P21/c superstructure (III) and P21 substructure (I) are more stable than P21/m structure (II), and that P21/c superstructure (III) is more stable that P21 substructure (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615008530/yp3086sup1.cif
Contains datablocks yzq173, yzq295, yzq495, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615008530/yp3086_173sup2.hkl
Contains datablock yzq173

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615008530/yp3086_295sup3.hkl
Contains datablock yzq295

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615008530/yp3086_495sup4.hkl
Contains datablock yzq495

CCDC references: 1062709; 1062708; 1062707

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

(yzq173) Sodium vanadium dioxide difluoride top
Crystal data top
NaVO2F2F(000) = 272
Mr = 143.93Dx = 3.087 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.3846 (18) ÅCell parameters from 2232 reflections
b = 3.6024 (9) Åθ = 3.0–28.2°
c = 14.387 (4) ŵ = 3.21 mm1
β = 110.636 (10)°T = 173 K
V = 309.67 (15) Å3Prism, green
Z = 40.50 × 0.30 × 0.10 mm
Data collection top
Bruker CCD area-detector
diffractometer
744 independent reflections
Radiation source: fine-focus sealed tube726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
1265 images,φ=0, 90, 180 degree, and Δω=0.3 degree, χ= 54.74 degree scansθmax = 28.6°, θmin = 3.0°
Absorption correction: multi-scan
(SMART; Bruker, 2001)
h = 88
Tmin = 0.635, Tmax = 0.834k = 44
2232 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.4648P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.64 e Å3
744 reflectionsΔρmin = 0.63 e Å3
56 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.049 (5)
Special details top

Experimental. Data collections were carried out by ω scanning with a step of 0.3° and an exposure time of 6 s per frame. Three groups with total 1800 frames were collected at χ = 54.74°, φ = 0, 90 and 180°, respectively. A total of 2232 observed reflections were collected from 3.03° < θ < 28.56°, of which 744 (Rint = 0.020) were independent, and 726 unique reflections with I > 2σ(I). The crystal structure was solved by direct methods and refined by the full-matrix least-squares method using the SHEXLS2013 and SHELXL2013 software package (Sheldrick, 2015).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.63842 (5)0.25633 (9)0.35760 (3)0.0105 (2)
Na10.13432 (13)0.7154 (2)0.35395 (6)0.0120 (3)
F10.8790 (2)0.2135 (3)0.30904 (10)0.0115 (3)
F20.3595 (2)0.2138 (3)0.37051 (11)0.0135 (3)
O10.5941 (2)0.7251 (3)0.32098 (12)0.0107 (3)
O20.7874 (3)0.2637 (4)0.47197 (13)0.0196 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0070 (3)0.0167 (3)0.0082 (3)0.00079 (10)0.00330 (17)0.00107 (10)
Na10.0127 (5)0.0123 (5)0.0112 (5)0.0001 (3)0.0042 (4)0.0001 (3)
F10.0082 (6)0.0152 (6)0.0119 (6)0.0001 (4)0.0047 (5)0.0001 (4)
F20.0107 (6)0.0143 (6)0.0182 (6)0.0004 (4)0.0083 (5)0.0001 (4)
O10.0103 (7)0.0091 (7)0.0137 (8)0.0000 (4)0.0056 (6)0.0003 (5)
O20.0154 (8)0.0315 (10)0.0110 (8)0.0016 (6)0.0037 (6)0.0009 (5)
Geometric parameters (Å, º) top
V1—O21.5843 (18)Na1—O2vii2.376 (2)
V1—O11.7618 (14)Na1—Na1viii3.3937 (16)
V1—F21.8609 (14)Na1—Na1ix3.3937 (16)
V1—F11.9047 (13)Na1—V1vi3.5887 (12)
V1—O1i1.9787 (14)Na1—Na1i3.6024 (9)
V1—Na1ii3.5887 (12)Na1—Na1iii3.6024 (9)
V1—Na13.6024 (12)F1—Na1x2.3163 (16)
Na1—F2iii2.2596 (14)F1—Na1xi2.3563 (14)
Na1—F22.2687 (14)F1—Na1ii2.3667 (15)
Na1—F1iv2.3163 (16)F2—Na1i2.2595 (14)
Na1—F1v2.3562 (14)O1—V1iii1.9787 (14)
Na1—F1vi2.3667 (15)O2—Na1vii2.376 (2)
O2—V1—O1105.59 (8)F2iii—Na1—V1vi153.69 (4)
O2—V1—F298.23 (8)F2—Na1—V1vi99.27 (4)
O1—V1—F292.88 (6)F1iv—Na1—V1vi107.19 (4)
O2—V1—F196.64 (8)F1v—Na1—V1vi80.00 (4)
O1—V1—F191.91 (6)F1vi—Na1—V1vi29.03 (3)
F2—V1—F1162.53 (7)O2vii—Na1—V1vi81.84 (5)
O2—V1—O1i105.66 (7)Na1viii—Na1—V1vi66.04 (3)
O1—V1—O1i148.71 (9)Na1ix—Na1—V1vi94.76 (4)
F2—V1—O1i83.96 (6)F2iii—Na1—V180.29 (4)
F1—V1—O1i83.23 (6)F2—Na1—V126.24 (3)
O2—V1—Na1ii78.32 (7)F1iv—Na1—V174.17 (4)
O1—V1—Na1ii66.64 (5)F1v—Na1—V1151.85 (4)
F2—V1—Na1ii156.88 (4)F1vi—Na1—V1100.32 (4)
F1—V1—Na1ii37.09 (4)O2vii—Na1—V198.30 (5)
O1i—V1—Na1ii119.08 (5)Na1viii—Na1—V186.60 (3)
O2—V1—Na1102.34 (7)Na1ix—Na1—V1115.34 (4)
O1—V1—Na160.47 (5)V1vi—Na1—V1125.21 (3)
F2—V1—Na132.62 (4)F2iii—Na1—Na1i142.62 (4)
F1—V1—Na1149.74 (4)F2—Na1—Na1i37.21 (4)
O1i—V1—Na1113.38 (5)F1iv—Na1—Na1i89.83 (3)
Na1ii—V1—Na1125.21 (3)F1v—Na1—Na1i139.60 (4)
F2iii—Na1—F2105.41 (6)F1vi—Na1—Na1i40.19 (4)
F2iii—Na1—F1iv84.50 (5)O2vii—Na1—Na1i91.81 (4)
F2—Na1—F1iv84.25 (6)Na1viii—Na1—Na1i57.944 (18)
F2iii—Na1—F1v77.10 (5)Na1ix—Na1—Na1i122.057 (17)
F2—Na1—F1v170.70 (7)V1vi—Na1—Na1i62.561 (17)
F1iv—Na1—F1v87.11 (5)V1—Na1—Na1i62.673 (17)
F2iii—Na1—F1vi170.83 (7)F2iii—Na1—Na1iii37.38 (4)
F2—Na1—F1vi76.71 (5)F2—Na1—Na1iii142.79 (4)
F1iv—Na1—F1vi86.86 (5)F1iv—Na1—Na1iii90.17 (3)
F1v—Na1—F1vi99.41 (6)F1v—Na1—Na1iii40.40 (4)
F2iii—Na1—O2vii88.51 (6)F1vi—Na1—Na1iii139.81 (4)
F2—Na1—O2vii91.40 (6)O2vii—Na1—Na1iii88.19 (4)
F1iv—Na1—O2vii170.48 (7)Na1viii—Na1—Na1iii122.056 (18)
F1v—Na1—O2vii97.65 (6)Na1ix—Na1—Na1iii57.944 (18)
F1vi—Na1—O2vii100.41 (6)V1vi—Na1—Na1iii117.439 (17)
F2iii—Na1—Na1viii128.30 (6)V1—Na1—Na1iii117.327 (17)
F2—Na1—Na1viii76.97 (4)Na1i—Na1—Na1iii180.0
F1iv—Na1—Na1viii43.89 (4)V1—F1—Na1x128.64 (7)
F1v—Na1—Na1viii94.39 (5)V1—F1—Na1xi122.04 (6)
F1vi—Na1—Na1viii42.98 (4)Na1x—F1—Na1xi93.15 (5)
O2vii—Na1—Na1viii143.04 (5)V1—F1—Na1ii113.88 (6)
F2iii—Na1—Na1ix77.08 (4)Na1x—F1—Na1ii92.88 (5)
F2—Na1—Na1ix128.32 (6)Na1xi—F1—Na1ii99.41 (6)
F1iv—Na1—Na1ix44.15 (4)V1—F2—Na1i130.59 (6)
F1v—Na1—Na1ix42.96 (4)V1—F2—Na1121.15 (6)
F1vi—Na1—Na1ix94.55 (5)Na1i—F2—Na1105.41 (6)
O2vii—Na1—Na1ix139.95 (5)V1—O1—V1iii148.71 (9)
Na1viii—Na1—Na1ix64.11 (3)V1—O2—Na1vii157.15 (11)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x1, y+1, z; (vi) x1, y, z; (vii) x+1, y+1, z+1; (viii) x, y1/2, z+1/2; (ix) x, y+1/2, z+1/2; (x) x+1, y1/2, z+1/2; (xi) x+1, y1, z.
(yzq295) Sodium vanadium dioxide difluoride top
Crystal data top
NaVO2F2F(000) = 272
Mr = 143.93Dx = 3.051 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.400 (5) ÅCell parameters from 1882 reflections
b = 3.614 (2) Åθ = 3.0–28.6°
c = 14.453 (12) ŵ = 3.17 mm1
β = 110.369 (10)°T = 295 K
V = 313.4 (6) Å3Prism, green
Z = 40.40 × 0.20 × 0.10 mm
Data collection top
Bruker CCD area-detector
diffractometer
728 independent reflections
Radiation source: fine-focus sealed tube685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
1265 images,φ=0, 90, 180 degree, and Δω=0.3 degree, χ= 54.74 degree scansθmax = 28.6°, θmin = 3.4°
Absorption correction: multi-scan
(SMART; Bruker, 2001)
h = 88
Tmin = 0.556, Tmax = 0.834k = 44
1711 measured reflectionsl = 1319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0998P)2 + 0.8843P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max = 0.001
S = 1.04Δρmax = 1.17 e Å3
728 reflectionsΔρmin = 0.92 e Å3
56 parametersExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.067 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.63884 (10)0.25482 (13)0.35808 (5)0.0156 (4)
Na10.1347 (2)0.7287 (3)0.35399 (12)0.0175 (5)
F10.8782 (4)0.2276 (5)0.30933 (19)0.0159 (6)
F20.3596 (4)0.2276 (5)0.3704 (2)0.0193 (6)
O10.5939 (4)0.7349 (5)0.3214 (2)0.0148 (6)
O20.7861 (6)0.2599 (7)0.4717 (2)0.0300 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0097 (5)0.0248 (6)0.0137 (6)0.00061 (16)0.0060 (3)0.00079 (16)
Na10.0191 (10)0.0159 (9)0.0181 (10)0.0004 (4)0.0073 (8)0.0006 (4)
F10.0110 (11)0.0203 (11)0.0191 (12)0.0005 (6)0.0086 (9)0.0005 (6)
F20.0148 (11)0.0185 (11)0.0299 (13)0.0000 (6)0.0145 (10)0.0002 (7)
O10.0153 (13)0.0097 (12)0.0216 (15)0.0005 (7)0.0092 (12)0.0006 (7)
O20.0222 (16)0.050 (2)0.0161 (16)0.0025 (10)0.0046 (13)0.0020 (9)
Geometric parameters (Å, º) top
V1—O21.584 (4)Na1—O2vii2.390 (5)
V1—O11.808 (3)Na1—Na1viii3.416 (4)
V1—F21.859 (3)Na1—Na1ix3.416 (4)
V1—F11.899 (3)Na1—Na1iii3.614 (4)
V1—O1i1.946 (3)Na1—Na1i3.614 (4)
V1—Na1ii3.625 (3)Na1—V1vi3.625 (3)
V1—Na13.635 (4)F1—Na1x2.333 (4)
Na1—F2iii2.267 (3)F1—Na1xi2.372 (3)
Na1—F22.274 (3)F1—Na1ii2.378 (3)
Na1—F1iv2.333 (4)F2—Na1i2.267 (3)
Na1—F1v2.372 (3)O1—V1iii1.946 (3)
Na1—F1vi2.378 (3)O2—Na1vii2.390 (5)
O2—V1—O1105.63 (13)F2iii—Na1—Na1iii37.33 (7)
O2—V1—F298.40 (17)F2—Na1—Na1iii142.79 (7)
O1—V1—F291.08 (10)F1iv—Na1—Na1iii90.10 (5)
O2—V1—F196.89 (18)F1v—Na1—Na1iii40.52 (7)
O1—V1—F190.42 (10)F1vi—Na1—Na1iii139.61 (7)
F2—V1—F1163.63 (13)O2vii—Na1—Na1iii89.02 (6)
O2—V1—O1i105.78 (12)Na1viii—Na1—Na1iii121.94 (5)
O1—V1—O1i148.58 (18)Na1ix—Na1—Na1iii58.06 (5)
F2—V1—O1i85.37 (10)F2iii—Na1—Na1i142.67 (7)
F1—V1—O1i84.87 (10)F2—Na1—Na1i37.21 (7)
O2—V1—Na1ii78.66 (13)F1iv—Na1—Na1i89.90 (5)
O1—V1—Na1ii65.95 (10)F1v—Na1—Na1i139.48 (7)
F2—V1—Na1ii154.53 (7)F1vi—Na1—Na1i40.39 (7)
F1—V1—Na1ii36.32 (7)O2vii—Na1—Na1i90.98 (6)
O1i—V1—Na1ii119.92 (9)Na1viii—Na1—Na1i58.06 (5)
O2—V1—Na1102.44 (13)Na1ix—Na1—Na1i121.94 (5)
O1—V1—Na159.57 (9)Na1iii—Na1—Na1i180.0
F2—V1—Na131.70 (7)F2iii—Na1—V1vi154.37 (8)
F1—V1—Na1147.64 (8)F2—Na1—V1vi98.51 (10)
O1i—V1—Na1113.85 (9)F1iv—Na1—V1vi107.02 (7)
Na1ii—V1—Na1123.66 (8)F1v—Na1—V1vi80.60 (10)
F2iii—Na1—F2105.46 (14)F1vi—Na1—V1vi28.22 (6)
F2iii—Na1—F1iv84.53 (10)O2vii—Na1—V1vi81.76 (9)
F2—Na1—F1iv84.38 (10)Na1viii—Na1—V1vi65.65 (6)
F2iii—Na1—F1v77.18 (12)Na1ix—Na1—V1vi95.03 (8)
F2—Na1—F1v170.72 (13)Na1iii—Na1—V1vi118.20 (4)
F1iv—Na1—F1v87.05 (9)Na1i—Na1—V1vi61.80 (4)
F2iii—Na1—F1vi170.81 (13)F2iii—Na1—V181.10 (10)
F2—Na1—F1vi76.93 (12)F2—Na1—V125.44 (6)
F1iv—Na1—F1vi86.90 (9)F1iv—Na1—V174.59 (6)
F1v—Na1—F1vi99.10 (13)F1v—Na1—V1152.75 (7)
F2iii—Na1—O2vii88.98 (11)F1vi—Na1—V199.82 (10)
F2—Na1—O2vii90.55 (11)O2vii—Na1—V197.43 (9)
F1iv—Na1—O2vii170.39 (13)Na1viii—Na1—V186.47 (7)
F1v—Na1—O2vii98.43 (11)Na1ix—Na1—V1115.91 (8)
F1vi—Na1—O2vii99.92 (11)Na1iii—Na1—V1118.11 (4)
F2iii—Na1—Na1viii128.33 (11)Na1i—Na1—V161.89 (4)
F2—Na1—Na1viii77.15 (9)V1vi—Na1—V1123.66 (8)
F1iv—Na1—Na1viii43.89 (8)V1—F1—Na1x128.78 (13)
F1v—Na1—Na1viii94.19 (11)V1—F1—Na1xi120.66 (12)
F1vi—Na1—Na1viii43.01 (7)Na1x—F1—Na1xi93.10 (9)
O2vii—Na1—Na1viii142.50 (9)V1—F1—Na1ii115.46 (11)
F2iii—Na1—Na1ix77.23 (9)Na1x—F1—Na1ii92.94 (9)
F2—Na1—Na1ix128.34 (11)Na1xi—F1—Na1ii99.10 (13)
F1iv—Na1—Na1ix44.05 (8)V1—F2—Na1i128.95 (11)
F1v—Na1—Na1ix43.00 (7)V1—F2—Na1122.86 (11)
F1vi—Na1—Na1ix94.28 (10)Na1i—F2—Na1105.46 (14)
O2vii—Na1—Na1ix140.83 (9)V1—O1—V1iii148.58 (18)
Na1viii—Na1—Na1ix63.88 (9)V1—O2—Na1vii157.6 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x1, y+1, z; (vi) x1, y, z; (vii) x+1, y+1, z+1; (viii) x, y1/2, z+1/2; (ix) x, y+1/2, z+1/2; (x) x+1, y1/2, z+1/2; (xi) x+1, y1, z.
(yzq495) Sodium vanadium dioxide difluoride top
Crystal data top
NaVO2F2Z = 2
Mr = 143.93F(000) = 136
Monoclinic, P21/mDx = 3.069 Mg m3
a = 6.369 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 3.625 (2) ŵ = 3.19 mm1
c = 7.196 (6) ÅT = 295 K
β = 110.37 (4)°Prism, green
V = 155.7 (4) Å30.45 × 0.11 × 0.11 mm
Data collection top
Bruker CCD area-detector
diffractometer
422 independent reflections
Radiation source: fine-focus sealed tube410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
1265 images,φ=0, 90, 180 degree, and Δω=0.3 degree, χ= 54.74 degree scansθmax = 28.4°, θmin = 3.0°
Absorption correction: multi-scan
(SMART; Bruker, 2001)
h = 58
Tmin = 0.543, Tmax = 0.736k = 44
960 measured reflectionsl = 99
Refinement top
Refinement on F237 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.0945P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.47 e Å3
422 reflectionsΔρmin = 0.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.36125 (7)0.25000.28387 (7)0.0185 (2)
Na10.13500 (18)0.25000.70839 (17)0.0196 (3)
F10.1213 (3)0.25000.3815 (3)0.0178 (4)
F20.6398 (3)0.25000.2589 (3)0.0215 (4)
O10.5938 (3)0.25000.6430 (3)0.0159 (4)
O20.2142 (4)0.25000.0565 (3)0.0347 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0093 (3)0.0328 (4)0.0150 (3)0.0000.0064 (2)0.000
Na10.0182 (7)0.0222 (7)0.0198 (7)0.0000.0084 (5)0.000
F10.0113 (8)0.0244 (9)0.0203 (8)0.0000.0088 (7)0.000
F20.0136 (8)0.0253 (9)0.0306 (9)0.0000.0142 (7)0.000
O10.0156 (9)0.0133 (9)0.0215 (10)0.0000.0098 (8)0.000
O20.0213 (11)0.0633 (18)0.0186 (12)0.0000.0057 (10)0.000
Geometric parameters (Å, º) top
V1—O21.577 (3)Na1—O2v2.377 (4)
V1—F21.844 (3)Na1—Na1iii3.413 (4)
V1—O1i1.881 (2)Na1—Na1iv3.413 (4)
V1—O1ii1.881 (2)Na1—Na1vi3.625 (5)
V1—F11.891 (3)Na1—Na1vii3.625 (5)
V1—Na1iii3.661 (4)Na1—V1iii3.661 (4)
V1—Na1iv3.661 (4)Na1—V1iv3.661 (4)
V1—Na1i3.668 (4)F1—Na1iii2.373 (3)
V1—Na1ii3.668 (4)F1—Na1iv2.373 (3)
Na1—F2i2.272 (3)F2—Na1i2.272 (3)
Na1—F2ii2.272 (3)F2—Na1ii2.272 (3)
Na1—F12.323 (4)O1—V1i1.881 (2)
Na1—F1iii2.373 (3)O1—V1ii1.881 (2)
Na1—F1iv2.373 (3)O2—Na1viii2.377 (4)
O2—V1—F298.23 (13)F2i—Na1—Na1iv76.95 (9)
O2—V1—O1i105.54 (7)F2ii—Na1—Na1iv128.43 (9)
F2—V1—O1i88.25 (6)F1—Na1—Na1iv43.98 (7)
O2—V1—O1ii105.54 (7)F1iii—Na1—Na1iv94.45 (10)
F2—V1—O1ii88.25 (6)F1iv—Na1—Na1iv42.82 (6)
O1i—V1—O1ii148.91 (13)O2v—Na1—Na1iv141.56 (7)
O2—V1—F196.91 (14)Na1iii—Na1—Na1iv64.16 (10)
F2—V1—F1164.86 (9)F2i—Na1—Na1vi142.91 (6)
O1i—V1—F187.71 (6)F2ii—Na1—Na1vi37.09 (6)
O1ii—V1—F187.71 (6)F1—Na1—Na1vi90.0
O2—V1—Na1iii79.14 (10)F1iii—Na1—Na1vi40.21 (6)
F2—V1—Na1iii150.04 (5)F1iv—Na1—Na1vi139.79 (6)
O1i—V1—Na1iii121.39 (7)O2v—Na1—Na1vi90.0
O1ii—V1—Na1iii64.33 (8)Na1iii—Na1—Na1vi57.92 (5)
F1—V1—Na1iii34.99 (5)Na1iv—Na1—Na1vi122.08 (5)
O2—V1—Na1iv79.14 (10)F2i—Na1—Na1vii37.09 (6)
F2—V1—Na1iv150.04 (5)F2ii—Na1—Na1vii142.91 (6)
O1i—V1—Na1iv64.33 (8)F1—Na1—Na1vii90.0
O1ii—V1—Na1iv121.39 (7)F1iii—Na1—Na1vii139.79 (6)
F1—V1—Na1iv34.99 (5)F1iv—Na1—Na1vii40.21 (6)
Na1iii—V1—Na1iv59.36 (9)O2v—Na1—Na1vii90.0
O2—V1—Na1i102.49 (10)Na1iii—Na1—Na1vii122.08 (5)
F2—V1—Na1i30.19 (5)Na1iv—Na1—Na1vii57.92 (5)
O1i—V1—Na1i58.17 (7)Na1vi—Na1—Na1vii180.0
O1ii—V1—Na1i115.13 (8)F2i—Na1—V1iii155.59 (5)
F1—V1—Na1i144.09 (6)F2ii—Na1—V1iii96.94 (10)
Na1iii—V1—Na1i178.37 (4)F1—Na1—V1iii106.68 (6)
Na1iv—V1—Na1i120.69 (9)F1iii—Na1—V1iii27.19 (4)
O2—V1—Na1ii102.49 (10)F1iv—Na1—V1iii82.34 (11)
F2—V1—Na1ii30.19 (5)O2v—Na1—V1iii81.46 (7)
O1i—V1—Na1ii115.13 (8)Na1iii—Na1—V1iii64.96 (7)
O1ii—V1—Na1ii58.17 (7)Na1iv—Na1—V1iii95.90 (8)
F1—V1—Na1ii144.09 (6)Na1vi—Na1—V1iii60.32 (5)
Na1iii—V1—Na1ii120.69 (9)Na1vii—Na1—V1iii119.68 (5)
Na1iv—V1—Na1ii178.37 (4)F2i—Na1—V1iv96.94 (10)
Na1i—V1—Na1ii59.22 (9)F2ii—Na1—V1iv155.59 (5)
F2i—Na1—F2ii105.81 (13)F1—Na1—V1iv106.68 (6)
F2i—Na1—F184.53 (7)F1iii—Na1—V1iv82.34 (11)
F2ii—Na1—F184.53 (7)F1iv—Na1—V1iv27.19 (4)
F2i—Na1—F1iii170.71 (9)O2v—Na1—V1iv81.46 (7)
F2ii—Na1—F1iii76.62 (11)Na1iii—Na1—V1iv95.90 (8)
F1—Na1—F1iii86.80 (7)Na1iv—Na1—V1iv64.96 (7)
F2i—Na1—F1iv76.62 (11)Na1vi—Na1—V1iv119.68 (5)
F2ii—Na1—F1iv170.71 (9)Na1vii—Na1—V1iv60.32 (5)
F1—Na1—F1iv86.80 (7)V1iii—Na1—V1iv59.36 (9)
F1iii—Na1—F1iv99.57 (13)V1—F1—Na1128.74 (10)
F2i—Na1—O2v89.78 (7)V1—F1—Na1iii117.83 (8)
F2ii—Na1—O2v89.78 (7)Na1—F1—Na1iii93.20 (7)
F1—Na1—O2v170.55 (9)V1—F1—Na1iv117.83 (8)
F1iii—Na1—O2v99.25 (7)Na1—F1—Na1iv93.20 (7)
F1iv—Na1—O2v99.25 (7)Na1iii—F1—Na1iv99.57 (13)
F2i—Na1—Na1iii128.43 (9)V1—F2—Na1i125.72 (7)
F2ii—Na1—Na1iii76.95 (9)V1—F2—Na1ii125.72 (7)
F1—Na1—Na1iii43.98 (7)Na1i—F2—Na1ii105.82 (13)
F1iii—Na1—Na1iii42.82 (6)V1i—O1—V1ii148.91 (13)
F1iv—Na1—Na1iii94.45 (10)V1—O2—Na1viii157.63 (15)
O2v—Na1—Na1iii141.56 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x, y+1, z+1; (v) x, y, z+1; (vi) x, y1, z; (vii) x, y+1, z; (viii) x, y, z1.
Selected bond distances (Å) of superstructure (III) and high-temperature phase II of NaVO2F2 top
Bonds173 K (III)295 K III)493 K (II)Bonds173 K (III)295 K (III)493 K (II)
Na1—F2iv2.2596 (14)2.267 (3)2.272 (3)V1—O21.5843 (18)1.584 (4)1.577 (3)
Na1—F22.2687 (14)2.274 (3)2.272 (3)V1—O11.7618 (14)1.808 (3)1.881 (2)
Na1—F1xi2.3163 (16)2.333 (4)2.323 (4)V1—F21.8609 (14)1.859 (3)1.844 (3)
Na1—F1x2.3562 (14)2.372 (3)2.373 (3)V1—F11.9047 (13)1.899 (3)1.891 (3)
Na1—F1ix2.3667 (15)2.378 (3)2.373 (3)V1—O1ii1.9787 (14)1.946 (3)1.881 (2)
Na1—O2v2.376 (2)2.390 (5)2.377 (4)V1—O1iv2.4757 (19)2.503 (4)2.491 (4)
Mean2.3242.3362.3321.9281.9331.928
Symmetry codes: (ii) x, y-1, z; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1; (ix) x+1, y, z; (x) x+1, y+1, z; (xi) -x+1, y+1/2, -z+3/2.
Bond valence sum (BVS) calculations for superstructure (III) of NaVO2F2 top
Na1V15+*Σij (v.u.)V14+Σij (v.u.)
O10.01.9021.901.8071.81
O20.2111.8062.021.7161.93
F10.4920.5911.080.5751.07
F20.4090.6651.070.6471.06
Σij (v.u.)1.11[4.96i4.74ii
Note: (*) BVS calculations of (i) and (ii) calculated by using V5+ and V4+ parameters, respectively.
Comparison of selected reflections at different temperatures top
hklIntensity (200 K)*Intensity (230 K)*Intensity (260 K)*
(020)1000 (100%)1000(100%)1000(100%)
(116)561.26(56%)567.93(56%)561.65(56%)
(116)527.59 (52%)526.11(52%)484.83(48%)
(004)453.57(45%)426.10(42%)421.62(42%)
(231)24.01 (2.4%)21.14(2.1%)13.90 (1.4%)
(231)20.39 (2.0%)18.82 (1.8%)15.06 (1.5%)
(021)20.31 (2.0%)17.11(1.7%)13.75 (1.3%)
(021)19.69 (1.9%)16.32(1.6%)12.34 (1.2%)
(235)16.21 (1.6%)13.91 (1.4%)9.56 (0.9%)
(235)15.48 (1.5%)14.07(1.4%)6.99 (0.7%)
hklIntensity (100 K)Intensity (120 K)Intensity (173 K)
(400)1000 (100%)1000 (100%)550.11 (57%)
(608)562.52(56%)671.65 (67%)304.27 (32%)
(020)544.34 (54%)641.55 (64%)960.12(100%)
(420)436.3 (43%)640.32 (64%)292.22 (30%)
(110)222.99 (22%)300.58 (30%)392.19 (40%)
(231)46.44 (4.6%)45.51 (4.5%)46.18 (4.8%)
(231)37.44(3.7%)50.40 (5.0%)34.58 (3.6%)
(021)35.42 (3.5%)29.88 (3.0%)39.73 (4.1%)
(021)36.92 (3.7%)30.92 (3.1%)42.25 (4.4%)
(235)21.63 (2.2%)29.46(2.9%)32.23 (3.4%)
(235)36.92 (3.7%)44.98 (4.5%)31.53 (3.2%)
Note: (*) only the data at 200, 230 and 260 K were measured using the same crystal and conditions.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds