Download citation
Download citation
link to html
In catena-poly[[aqua­[1,3-bis­(pyridine-3-ylmeth­oxy)benzene-[kappa]N]zinc(II)]-[mu]2-benzene-1,4-di­carboxyl­ato-[kappa]2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetra­hedrally coordinated by two O atoms of bridging carboxyl­ate groups from two benzene-1,4-di­carboxyl­ate anions (denoted L2-), one O atom from a water mol­ecule and one N atom from a 1,3-bis­[(pyridin-3-yl)meth­oxy]benzene ligand (denoted bpmb). (Aqua)O-H...N hydrogen-bonding inter­actions induce the formation of one-dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are inter­linked through (aqua)O-H...O hydrogen-bonding inter­actions, producing two-dimensional corrugated sheets.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614025546/yp3085sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614025546/yp3085Isup2.hkl
Contains datablock I

CCDC reference: 1035564

Introduction top

Recently, helical coordination polymers (CPs) have received much attention because of their molecular self-assembly and potential applications in asymmetric catalysis, nonlinear optics and biomimetic chemistry (Zhang et al., 2005; Zhao et al., 2008; Piguet et al., 1997). Significant effort has been devoted to producing CPs with helical structures using various approaches. One of the most successful approaches is the rational selection of flexible N-containing bridging ligands and metal cations to construct target CPs with the desired properties (Chen et al., 2009; Liu, Yu et al., 2014).

Flexible N-containing bridging linkers, such as 1,4-bis­[(pyridin-4-yl)meth­oxy]­benzene, 1,4-bis­[(pyridin-3-yl)meth­oxy]­benzene and 1,3-bis­[(pyridin-4-yl)meth­oxy]­benzene, have been employed as linkers to construct versatile functional CPs (Li, Qin et al., 2012; Li, Zhao et al. 2012; Liu et al., 2010; Oh et al., 2005; Steel & Fitchett, 2013). Liu and co-workers have investigated the coordination chemistry of 1,3-bis­[(pyridin-4-yl)meth­oxy]­benzene with ZnII, AgI and HgII salts to form several helical complexes and cage-like structures (Liu et al., 2010). Li and co-workers have prepared and structurally characterized some two- or three-dimensional entangled structures through the assembly of 1,4-bis­[(pyridin-4-yl)meth­oxy]­benzene with ZnII salts (Li, Qin et al., 2012). However, to the best of our knowledge, the coordination chemistry of 1,3-bis­[(pyridin-3-yl)meth­oxy]­benzene (bpmb) has attracted little attention. A mixed-ligand system consisting of two types of ligand provides more variability in the construction of different topologies (Liu, Yu et al., 2014). Thus, we reacted Zn(OAc)2·2H2O (OAc is acetate) with bpmb and benzene-1,4-di­carb­oxy­lic acid (H2L) to produce the title compound, [Zn(L)(bpmb)(H2O)]n, (I).

Experimental top

Synthesis and crystallization top

1,3-Bis[(pyridin-3-yl)meth­oxy]­benzene (bpmb) was prepared according to the literature method of Xiao et al. (2011). All other chemicals and reagents were obtained from commercial sources (Sigma–Aldrich) and used as received. A mixture of Zn(OAc)2·2H2O (9 mg, 0.04 mmol), benzene-1,4-di­carb­oxy­lic acid (3 mg, 0.02 mmol), bpmb (6 mg, 0.02 mmol) and H2O (4 ml) was sealed in a 10 ml Pyrex glass tube and heated at 423 K for 4 d, then cooled to room temperature at a rate of 5 K h-1. Colourless blocks of (I) were collected and dried in air (yield 4 mg, 37%, based on bpmb). IR (KBr disc, ν, cm-1): 3396 (w), 3030 (w), 2980 (w), 1659 (m), 1602 (s), 1575 (s), 1535 (m), 1458 (m), 1389 (m), 1326 (w), 1244 (w), 1158 (m), 1041 (m), 990 (w), 889 (w), 862 (w), 837 (w), 786 (m), 646 (m).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å for aromatic H atoms, C—H = 0.97 Å for methyl­ene H atoms and O—H = 0.85 Å for coordinated water H atoms, and refined as riding, with Uiso(H) = 1.2Ueq(C,O).

Results and discussion top

Compound (I) crystallizes in the monoclinic space group P21/c and its asymmetric unit contains one [Zn(L)(bpmb)(H2O)] unit. Each ZnII centre is tetra­hedrally coordinated by two carboxyl­ate O atoms [O3 and O6i; symmetry code: (i) -x + 1, y + 1/2, -z + 1/2] from two L2- ligands, one O atom from a water ligand (O1W) and one N atom from one bpmb ligand (Table 2). A weak inter­action [2.5190 (15) Å] exists between atoms Zn1 and O4 (Fig. 1).

In (I), the L2- ligands adopt a µ2-η1:η1 coordination mode to link two ZnII cations. The L2- anions bridge these metal centres in a head-to-tail fashion via the monodentate aromatic carboxyl­ate atoms O3 and O6, to form a one-dimensional [Zn(L)]n chain extending along the b axis (Fig. 2; purple represents the L2- ligands), with a Zn···Zn separation of 10.955 (5) Å. Notably, only one N atom (N1) of the bpmb ligand is bound to a ZnII centre. The other N atom (N2) is employed as an acceptor and inter­acts with the H atom of the water ligand (O1W), forming an intra­molecular hydrogen bond (O1W—H1WB···N2i). These hydrogen-bonding inter­actions induce the formation of a one-dimensional helical [Zn(L)(bpmb)(H2O)]n chain (Fig. 2). Adjacent one-dimensional arrays are inter­connected via O1W—H1WA···O4ii hydrogen bonds [symmetry code: (ii) x - 1, y, z] between the aqua ligands O1W and the uncoordinated carboxyl­ate O4 atoms of L2-, resulting in two-dimensional corrugated sheets extending in the ab plane.

A previously reported ZnII coordination polymer, viz. [Zn(L)(3-bpmb)(H2O)]n, (II), assembled from 1,4-bis­[(pyridin-3-yl)meth­oxy]­benzene (3-bpmb) and H2L, shows a three-dimensional coordination framework (Li, Zhao et al., 2012). In (II), each ZnII cation is five-coordinated and displays a distorted square-pyramidal coordination geometry. The 3-bpmb ligands in (II) adopt a bridging mode to connect two adjacent ZnII cations, resulting in a meso-helical [Zn(3-bpmb)]n chain, while in (I) only one N atom of the bpmb ligand coordinates to the ZnII centre, resulting in helical chains, which are rare in the literature.

In conclusion, a new zinc coordination polymer, (I), containing infinite helical chains has been prepared under solvothermal conditions using flexible bpmb and L2- ligands. The structural differences between (I) and (II) suggest that the substituted positions of the N atoms in bpmb and 3-bpmb ligands significantly affect the helicity of the resulting CPs.

Related literature top

For related literature, see: Chen et al. (2009); Li, Qin, Wang, Wang, Zhao, Yang, Wang, Yuan, Shao & Su (2012); Li, Zhao, Zhang, Zhang, Tan, Lu, Feng & Yang (2012); Liu et al. (2010, 2014); Oh et al. (2005); Piguet et al. (1997); Steel & Fitchett (2013); Xiao et al. (2011); Zhang et al. (2005); Zhao et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The coordination environment of the Zn atom in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the weak interaction between atoms Zn1 and O4. [Symmetry code: (i) -x + 1, y + 1/2, -z + 1/2.]
[Figure 2] Fig. 2. A view of the one-dimensional helical [Zn(L)(bpmb)(H2O)]n chain of (I), linked via bridging L2- ligands. All H atoms, except those involved in hydrogen-bonding interactions, have been omitted for clarity.
catena-Poly[[aqua[1,3-bis(pyridine-3-ylmethoxy)benzene-κN]zinc(II)]-µ2-benzene-1,4-dicarboxylato-κ2O1:O4] top
Crystal data top
[Zn(C8H4O4)(C18H16N2O2)(H2O)]F(000) = 1112
Mr = 539.82Dx = 1.519 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.0706 (12) ÅCell parameters from 5574 reflections
b = 17.914 (4) Åθ = 2.2–27.1°
c = 21.750 (4) ŵ = 1.09 mm1
β = 93.54 (3)°T = 296 K
V = 2360.9 (8) Å3Block, colourless
Z = 40.25 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3617 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
ϕ and ω scansθmax = 25.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 77
Tmin = 0.759, Tmax = 0.761k = 2121
16703 measured reflectionsl = 2626
4279 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.069H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.7485P]
where P = (Fo2 + 2Fc2)/3
4279 reflections(Δ/σ)max = 0.003
325 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Zn(C8H4O4)(C18H16N2O2)(H2O)]V = 2360.9 (8) Å3
Mr = 539.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0706 (12) ŵ = 1.09 mm1
b = 17.914 (4) ÅT = 296 K
c = 21.750 (4) Å0.25 × 0.25 × 0.25 mm
β = 93.54 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4279 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3617 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.761Rint = 0.029
16703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
4279 reflectionsΔρmin = 0.26 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.05847 (4)0.92079 (2)0.31918 (2)0.03109 (8)
C10.1698 (3)0.93378 (11)0.43514 (10)0.0383 (5)
H10.27750.95770.41010.046*
C20.2010 (4)0.92626 (12)0.49689 (10)0.0426 (5)
H20.32600.94590.51350.051*
C30.0443 (4)0.88922 (12)0.53366 (10)0.0416 (5)
H30.06370.88300.57540.050*
C40.1426 (3)0.86114 (11)0.50832 (9)0.0359 (4)
C50.1642 (3)0.87254 (11)0.44631 (9)0.0354 (4)
H50.29050.85510.42890.042*
C60.3145 (4)0.82046 (12)0.54820 (9)0.0430 (5)
H6A0.40080.85590.57340.052*
H6B0.24370.78620.57530.052*
C70.6189 (4)0.73840 (11)0.53915 (9)0.0409 (5)
C80.6466 (4)0.72967 (12)0.60222 (10)0.0475 (5)
H80.55290.75350.62820.057*
C90.8166 (4)0.68480 (13)0.62595 (11)0.0548 (6)
H90.83740.67880.66840.066*
C100.9550 (4)0.64899 (14)0.58831 (11)0.0576 (6)
H101.06780.61870.60500.069*
C110.9252 (4)0.65839 (13)0.52491 (10)0.0506 (6)
C120.7594 (4)0.70389 (12)0.50010 (10)0.0451 (5)
H120.74200.71130.45780.054*
C131.0801 (4)0.63360 (14)0.42775 (11)0.0582 (6)
H13A1.12900.68450.42200.070*
H13B0.93660.62740.40620.070*
C141.2434 (4)0.57941 (12)0.40348 (10)0.0459 (5)
C151.2035 (4)0.54481 (13)0.34751 (10)0.0479 (5)
H151.07040.55480.32550.057*
C161.5836 (4)0.51371 (16)0.41171 (12)0.0632 (7)
H161.71570.50140.43330.076*
C171.5304 (4)0.48343 (14)0.35481 (11)0.0548 (6)
H171.63070.45120.33800.066*
C181.4388 (4)0.56246 (14)0.43619 (12)0.0561 (6)
H181.47200.58400.47460.067*
C190.2979 (4)0.80707 (11)0.29104 (9)0.0388 (5)
C200.3903 (3)0.73703 (10)0.26583 (9)0.0336 (4)
C210.6058 (3)0.71618 (11)0.28222 (10)0.0406 (5)
H210.69200.74540.30960.049*
C220.6929 (3)0.65231 (11)0.25806 (10)0.0393 (5)
H220.83650.63810.27010.047*
C230.5687 (3)0.60890 (10)0.21598 (9)0.0319 (4)
C240.3524 (3)0.62906 (10)0.20045 (9)0.0338 (4)
H240.26620.59960.17320.041*
C250.2634 (3)0.69257 (10)0.22507 (9)0.0350 (4)
H250.11780.70560.21430.042*
C260.6699 (3)0.54289 (10)0.18561 (10)0.0345 (4)
N10.0108 (3)0.90773 (8)0.40990 (7)0.0330 (4)
N21.3434 (3)0.49782 (10)0.32272 (8)0.0485 (5)
O10.4546 (3)0.78031 (9)0.50984 (6)0.0497 (4)
O21.0674 (3)0.61795 (11)0.49119 (8)0.0708 (5)
O30.0969 (3)0.82184 (8)0.27830 (8)0.0543 (4)
O40.4168 (3)0.84955 (8)0.32416 (7)0.0488 (4)
O50.6113 (3)0.52729 (8)0.13198 (7)0.0472 (4)
O60.8176 (2)0.50765 (8)0.21884 (7)0.0447 (4)
O1W0.2544 (2)0.93862 (8)0.28920 (7)0.0443 (4)
H1WA0.35160.90660.29760.053*
H1WB0.29290.95570.25370.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03370 (14)0.02834 (12)0.03153 (13)0.00066 (9)0.00432 (9)0.00196 (9)
C10.0347 (11)0.0388 (11)0.0415 (12)0.0031 (9)0.0043 (9)0.0015 (9)
C20.0379 (12)0.0488 (12)0.0424 (12)0.0044 (10)0.0125 (10)0.0015 (10)
C30.0485 (13)0.0462 (12)0.0310 (11)0.0024 (10)0.0087 (10)0.0016 (9)
C40.0405 (11)0.0342 (10)0.0331 (11)0.0025 (9)0.0032 (9)0.0008 (8)
C50.0346 (11)0.0375 (11)0.0345 (11)0.0023 (9)0.0061 (9)0.0011 (8)
C60.0491 (13)0.0482 (12)0.0321 (11)0.0078 (10)0.0055 (10)0.0025 (9)
C70.0502 (13)0.0362 (11)0.0355 (11)0.0050 (10)0.0034 (10)0.0003 (9)
C80.0593 (14)0.0482 (13)0.0351 (12)0.0115 (11)0.0033 (11)0.0007 (10)
C90.0709 (16)0.0570 (14)0.0358 (12)0.0134 (13)0.0039 (12)0.0038 (11)
C100.0656 (16)0.0613 (15)0.0450 (14)0.0234 (13)0.0037 (12)0.0033 (11)
C110.0590 (15)0.0493 (13)0.0433 (13)0.0135 (11)0.0006 (11)0.0047 (10)
C120.0585 (14)0.0450 (12)0.0312 (11)0.0058 (11)0.0011 (10)0.0019 (9)
C130.0712 (17)0.0566 (14)0.0470 (14)0.0173 (13)0.0067 (12)0.0033 (11)
C140.0522 (14)0.0456 (12)0.0399 (12)0.0041 (10)0.0045 (10)0.0012 (10)
C150.0482 (13)0.0549 (13)0.0396 (12)0.0072 (11)0.0054 (10)0.0016 (11)
C160.0463 (14)0.090 (2)0.0519 (15)0.0137 (14)0.0070 (12)0.0079 (14)
C170.0520 (14)0.0661 (16)0.0464 (14)0.0136 (12)0.0046 (11)0.0022 (12)
C180.0521 (14)0.0688 (16)0.0466 (14)0.0002 (12)0.0038 (12)0.0126 (12)
C190.0486 (13)0.0312 (10)0.0381 (11)0.0005 (9)0.0156 (10)0.0013 (9)
C200.0373 (11)0.0297 (10)0.0345 (11)0.0005 (8)0.0077 (9)0.0001 (8)
C210.0399 (12)0.0377 (11)0.0437 (12)0.0032 (9)0.0012 (10)0.0090 (9)
C220.0313 (11)0.0378 (11)0.0484 (12)0.0031 (9)0.0001 (9)0.0035 (9)
C230.0354 (11)0.0279 (9)0.0331 (10)0.0012 (8)0.0073 (8)0.0021 (8)
C240.0372 (11)0.0316 (10)0.0326 (10)0.0043 (8)0.0019 (9)0.0013 (8)
C250.0295 (10)0.0356 (10)0.0401 (11)0.0012 (8)0.0028 (9)0.0016 (9)
C260.0330 (11)0.0293 (10)0.0427 (12)0.0041 (8)0.0127 (9)0.0006 (9)
N10.0340 (9)0.0323 (8)0.0329 (9)0.0000 (7)0.0034 (7)0.0021 (7)
N20.0539 (12)0.0545 (11)0.0370 (10)0.0086 (9)0.0011 (9)0.0030 (8)
O10.0603 (10)0.0575 (9)0.0309 (8)0.0209 (8)0.0008 (7)0.0001 (7)
O20.0859 (13)0.0836 (13)0.0438 (10)0.0432 (11)0.0097 (9)0.0014 (9)
O30.0472 (9)0.0453 (9)0.0703 (11)0.0126 (7)0.0030 (8)0.0155 (8)
O40.0565 (10)0.0384 (8)0.0531 (9)0.0094 (7)0.0165 (8)0.0120 (7)
O50.0594 (10)0.0456 (8)0.0374 (8)0.0049 (7)0.0094 (7)0.0056 (7)
O60.0418 (8)0.0389 (8)0.0527 (9)0.0107 (7)0.0014 (7)0.0099 (7)
O1W0.0334 (8)0.0524 (9)0.0469 (9)0.0017 (6)0.0007 (7)0.0162 (7)
Geometric parameters (Å, º) top
Zn1—O6i1.9360 (14)C13—C141.506 (3)
Zn1—O1W1.9954 (14)C13—H13A0.9700
Zn1—O32.0032 (15)C13—H13B0.9700
Zn1—N12.0256 (17)C14—C151.374 (3)
Zn1—C192.598 (2)C14—C181.379 (3)
C1—N11.340 (3)C15—N21.333 (3)
C1—C21.375 (3)C15—H150.9300
C1—H10.9300C16—C181.370 (3)
C2—C31.375 (3)C16—C171.372 (3)
C2—H20.9300C16—H160.9300
C3—C41.386 (3)C17—N21.321 (3)
C3—H30.9300C17—H170.9300
C4—C51.378 (3)C18—H180.9300
C4—C61.504 (3)C19—O41.247 (2)
C5—N11.342 (2)C19—O31.263 (3)
C5—H50.9300C19—C201.492 (3)
C6—O11.423 (2)C20—C211.386 (3)
C6—H6A0.9700C20—C251.389 (3)
C6—H6B0.9700C21—C221.378 (3)
C7—O11.373 (2)C21—H210.9300
C7—C81.381 (3)C22—C231.388 (3)
C7—C121.386 (3)C22—H220.9300
C8—C91.383 (3)C23—C241.383 (3)
C8—H80.9300C23—C261.504 (3)
C9—C101.368 (3)C24—C251.382 (3)
C9—H90.9300C24—H240.9300
C10—C111.390 (3)C25—H250.9300
C10—H100.9300C26—O51.230 (2)
C11—O21.374 (3)C26—O61.282 (2)
C11—C121.379 (3)O6—Zn1ii1.9359 (14)
C12—H120.9300O1W—H1WA0.8500
C13—O21.415 (3)O1W—H1WB0.8501
O6i—Zn1—O1W96.83 (6)H13A—C13—H13B108.6
O6i—Zn1—O3117.57 (7)C15—C14—C18117.2 (2)
O1W—Zn1—O397.54 (7)C15—C14—C13121.1 (2)
O6i—Zn1—N1126.27 (6)C18—C14—C13121.7 (2)
O1W—Zn1—N198.42 (7)N2—C15—C14124.1 (2)
O3—Zn1—N1110.96 (7)N2—C15—H15117.9
O6i—Zn1—C19106.97 (7)C14—C15—H15117.9
O1W—Zn1—C19125.71 (7)C18—C16—C17118.8 (2)
O3—Zn1—C1928.27 (6)C18—C16—H16120.6
N1—Zn1—C19104.76 (6)C17—C16—H16120.6
N1—C1—C2122.12 (19)N2—C17—C16123.2 (2)
N1—C1—H1118.9N2—C17—H17118.4
C2—C1—H1118.9C16—C17—H17118.4
C1—C2—C3118.9 (2)C16—C18—C14119.5 (2)
C1—C2—H2120.5C16—C18—H18120.3
C3—C2—H2120.5C14—C18—H18120.3
C2—C3—C4119.85 (19)O4—C19—O3121.07 (19)
C2—C3—H3120.1O4—C19—C20120.53 (19)
C4—C3—H3120.1O3—C19—C20118.39 (18)
C5—C4—C3117.69 (19)O4—C19—Zn172.40 (11)
C5—C4—C6122.14 (18)O3—C19—Zn148.70 (10)
C3—C4—C6120.16 (18)C20—C19—Zn1166.99 (15)
N1—C5—C4122.87 (18)C21—C20—C25119.15 (18)
N1—C5—H5118.6C21—C20—C19120.15 (18)
C4—C5—H5118.6C25—C20—C19120.69 (18)
O1—C6—C4108.98 (16)C22—C21—C20120.27 (18)
O1—C6—H6A109.9C22—C21—H21119.9
C4—C6—H6A109.9C20—C21—H21119.9
O1—C6—H6B109.9C21—C22—C23120.73 (19)
C4—C6—H6B109.9C21—C22—H22119.6
H6A—C6—H6B108.3C23—C22—H22119.6
O1—C7—C8124.31 (19)C24—C23—C22118.92 (18)
O1—C7—C12114.58 (18)C24—C23—C26120.35 (17)
C8—C7—C12121.1 (2)C22—C23—C26120.67 (17)
C7—C8—C9118.6 (2)C25—C24—C23120.56 (18)
C7—C8—H8120.7C25—C24—H24119.7
C9—C8—H8120.7C23—C24—H24119.7
C10—C9—C8121.4 (2)C24—C25—C20120.32 (18)
C10—C9—H9119.3C24—C25—H25119.8
C8—C9—H9119.3C20—C25—H25119.8
C9—C10—C11119.3 (2)O5—C26—O6125.01 (18)
C9—C10—H10120.3O5—C26—C23119.53 (18)
C11—C10—H10120.3O6—C26—C23115.45 (17)
O2—C11—C12124.8 (2)C1—N1—C5118.51 (17)
O2—C11—C10114.7 (2)C1—N1—Zn1121.92 (13)
C12—C11—C10120.5 (2)C5—N1—Zn1119.57 (13)
C11—C12—C7119.1 (2)C17—N2—C15117.25 (19)
C11—C12—H12120.5C7—O1—C6116.57 (15)
C7—C12—H12120.5C11—O2—C13119.34 (18)
O2—C13—C14106.90 (19)C19—O3—Zn1103.03 (13)
O2—C13—H13A110.3C26—O6—Zn1ii115.57 (13)
C14—C13—H13A110.3Zn1—O1W—H1WA118.8
O2—C13—H13B110.3Zn1—O1W—H1WB123.9
C14—C13—H13B110.3H1WA—O1W—H1WB106.3
N1—C1—C2—C31.6 (3)Zn1—C19—C20—C251.4 (7)
C1—C2—C3—C40.9 (3)C25—C20—C21—C220.3 (3)
C2—C3—C4—C50.6 (3)C19—C20—C21—C22178.71 (18)
C2—C3—C4—C6179.89 (19)C20—C21—C22—C231.5 (3)
C3—C4—C5—N11.6 (3)C21—C22—C23—C242.6 (3)
C6—C4—C5—N1178.97 (18)C21—C22—C23—C26174.80 (19)
C5—C4—C6—O116.3 (3)C22—C23—C24—C251.8 (3)
C3—C4—C6—O1164.21 (18)C26—C23—C24—C25175.56 (17)
O1—C7—C8—C9178.8 (2)C23—C24—C25—C200.0 (3)
C12—C7—C8—C90.8 (3)C21—C20—C25—C241.0 (3)
C7—C8—C9—C100.4 (4)C19—C20—C25—C24177.96 (17)
C8—C9—C10—C110.5 (4)C24—C23—C26—O532.1 (3)
C9—C10—C11—O2177.7 (2)C22—C23—C26—O5145.2 (2)
C9—C10—C11—C120.6 (4)C24—C23—C26—O6149.15 (18)
O2—C11—C12—C7176.3 (2)C22—C23—C26—O633.5 (3)
C10—C11—C12—C71.8 (4)C2—C1—N1—C50.7 (3)
O1—C7—C12—C11177.8 (2)C2—C1—N1—Zn1178.78 (15)
C8—C7—C12—C111.9 (3)C4—C5—N1—C10.9 (3)
O2—C13—C14—C15137.8 (2)C4—C5—N1—Zn1179.58 (15)
O2—C13—C14—C1842.3 (3)C16—C17—N2—C150.7 (4)
C18—C14—C15—N21.7 (4)C14—C15—N2—C170.9 (4)
C13—C14—C15—N2178.2 (2)C8—C7—O1—C64.0 (3)
C18—C16—C17—N21.4 (4)C12—C7—O1—C6176.30 (19)
C17—C16—C18—C140.5 (4)C4—C6—O1—C7178.57 (17)
C15—C14—C18—C160.9 (4)C12—C11—O2—C1313.5 (4)
C13—C14—C18—C16179.0 (2)C10—C11—O2—C13168.2 (2)
O4—C19—C20—C214.1 (3)C14—C13—O2—C11178.5 (2)
O3—C19—C20—C21175.50 (19)O4—C19—O3—Zn12.5 (2)
Zn1—C19—C20—C21177.6 (5)C20—C19—O3—Zn1177.93 (14)
O4—C19—C20—C25174.92 (18)O5—C26—O6—Zn1ii3.2 (3)
O3—C19—C20—C255.5 (3)C23—C26—O6—Zn1ii178.12 (12)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.382.729 (2)102
C5—H5···O40.932.453.176 (3)135
O1W—H1WA···O4iii0.851.862.701 (2)170
O1W—H1WB···N2i0.851.832.679 (2)173
C1—H1···O5iv0.932.503.412 (3)165
Symmetry codes: (i) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O4)(C18H16N2O2)(H2O)]
Mr539.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.0706 (12), 17.914 (4), 21.750 (4)
β (°) 93.54 (3)
V3)2360.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.759, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
16703, 4279, 3617
Rint0.029
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.03
No. of reflections4279
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2003), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Zn1—O6i1.9360 (14)Zn1—O32.0032 (15)
Zn1—O1W1.9954 (14)Zn1—N12.0256 (17)
O6i—Zn1—O1W96.83 (6)O6i—Zn1—N1126.27 (6)
O6i—Zn1—O3117.57 (7)O1W—Zn1—N198.42 (7)
O1W—Zn1—O397.54 (7)O3—Zn1—N1110.96 (7)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.382.729 (2)102.0
C5—H5···O40.932.453.176 (3)134.8
O1W—H1WA···O4ii0.851.862.701 (2)170.2
O1W—H1WB···N2i0.851.832.679 (2)173.2
C1—H1···O5iii0.932.503.412 (3)165.4
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds