Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The tris­(pyrazol­yl)hydro­borate compounds [tris­(3,5-dimethyl-1H-pyrazol-1-yl-[kappa]N2)hydro­borato]indium(I), [In(C15H22BN6)], abbreviated as [TpMe2]In, and [tris­(3-tert-butyl-5-methyl-1H-pyrazol-1-yl-[kappa]N2)hydro­borato]indium(I), [In(C24H40BN6)], abbreviated as [TpBut,Me]In, represent well defined examples of three-coordinate monovalent indium. In both compounds, the geometry at indium is pyramidal and natural bond orbital (NBO) calculations indicate that the indium lone pair occupies an orbital that is primarily 5s in character. The trivalent gallium hydride compound hydrido[tris­(3-tert-butyl-5-methyl-1H-pyrazol-1-yl-[kappa]N2)hydroborato]gallium(III) tetra­chlorido­gallium(III), [Ga(C24H40BN6)H][GaCl4], abbreviated as {[TpBut,Me]GaH}[GaCl4], is obtained via reaction of [TpBut,Me]Tl with [HGaCl2]2, and the Ga-H bond length of 1.49 (6) Å compares favorably with the mean value of 1.50 Å for structurally characterized gallium hydride compounds that are listed in the Cambridge Structural Database.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113016648/yp3041sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113016648/yp3041Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113016648/yp3041IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113016648/yp3041IIIsup4.hkl
Contains datablock III

CCDC references: 964749; 964750; 964751

Comment top

Since its introduction by Trofimenko in 1966 (Trofimenko, 1966), the poly(pyrazolylborate) ligand system, and most notably the bis- and tris(pyrazolyl)hydroborate derivatives, denoted [BpR,R'] and [TpR,R'], respectively, has proven to be of immense value to coordination chemists (Trofimenko, 1999, 2004; Parkin, 1995; Kitajima & Tolman, 1995; Pettinari, 2008; Santini et al., 2010; Armbruster et al., 2009). Furthermore, the poly(pyrazolylborate) ligand system has also inspired the creation of a variety of related ligands, as exemplified by tris(mercaptoimidazolyl)hydroborate and tris(imidazolylidene)hydroborate derivatives (Spicer & Reglinski, 2009; Parkin, 2007; Smith, 2008). We report here the application of [TpR,R'] ligands to Group 13 element chemistry, with specific emphasis on the structural characterization of trivalent gallium hydride and monovalent indium compounds.

Although a large variety of tris(pyrazolyl)hydroborate complexes of the Group 13 metals have been reported, the majority of these investigations pertain to trivalent complexes (Reger, 1996). For example, the first tris(pyrazolyl)hydroborate indium complex, namely trivalent [TpMe,Me]InCl2.MeCN, was reported in 1988 (Cowley et al., 1988). Nevertheless, despite the prominence of trivalent compounds, the [TpR,R'] ligand system is also capable of affording monovalent compounds, as illustrated by our report of the use of the sterically demanding tris(3,5-di-tert-butylpyrazolyl)hydroborate ligand [TpBu,Bu] ligand to synthesize [TpBu,Bu]Ga, the first monomeric monovalent gallium compound (Kuchta, Bonanno & Parkin, 1996 or Kuchta, Dias et al., 1996 ?). Moreover, trifluoromethyl substituents have likewise been shown to enable the isolation of monovalent [TpCF3,CF3]Ga (Dias & Jin, 2000).

Sterically demanding substituents have also allowed for the synthesis of monovalent indium derivatives of [TpR,R'], as illustrated by [TpPh]In (Frazer et al., 1994), [TpBu]In (Kuchta, Bonanno & Parkin, 1996 or Kuchta, Dias et al., 1996 ?; Dias et al., 1995), [TpBu,Bu]In (Dias et al., 1995) and [TpCF3,CF3]In (Dias & Jin, 1996, 2000). However, despite the fact that monovalent [TpR,R']In has been isolated when the [TpR,R'] ligand features bulky substituents, efforts to synthesize the methyl counterpart, [TpMe,Me]In, have been unsuccessful (Dias & Jin, 1996, 2000; Frazer et al., 1994). Specifically, rather than yield the required [TpMe,Me]In, the reaction of [TpMe,Me]K with InI gives the trivalent complex [In(TpMe,Me)2]I (Frazer et al., 1992). It is, therefore, significant that we have been able to isolate [tris(3,5-dimethyl-1H-pyrazol-1-yl-κN2)hydroborato]indium(I), (I), abbreviated as [TpMe,Me]In, from the reaction of [TpMe,Me]K with InCl (see Scheme 1). The compound was structurally characterized by X-ray diffraction (Fig. 1). In addition, we have also isolated and structurally characterized [tris(3-tert-butyl-5-methyl-1H-pyrazol-1-yl-κN2)hydroborato]indium(I), (II), abbreviated as [TpBu,Me]In (Fig. 2), and have previously reported the Tl counterpart (Yoon & Parkin, 1995).

Since [TpMe,Me]In, (I), and [TpBu,Me]In, (II), possess a common 5-methyl substituent, comparison of their structures provides a means of assessing the impact of a 3-methyl versus a 3-tert-butyl substituent and, interestingly, the In—N bond lengths of (I) (average 2.367 Å; Table 2) are only slightly shorter than those of (II) (average 2.411 Å; Table 3). For comparison, the range of In—N bond lengths is 1.93–2.93 Å (average 2.28 Å) in the Cambridge Structural Database (CSD, Version 5.34; Allen, 2002). In this regard, the In—N bonds in all of these monovalent (Parkin, 2006) [TpR,R']In compounds are considerably longer than those in trivalent compounds such as [TpMe,Me]InCl2.MeCN (Cowley et al., 1988), [In{TpMe,Me}]+ (Frazer et al., 1992), [TpBu,Bu]InSe (Kuchta & Parkin, 1995), and [WIn{TpMe,Me}(CO)5] (Reger et al., 1994).

The structural characterization of (II) also completes the series of compounds [TpBu,R]In for which the 5-R substituent is H, Me and Bu. It is of note that only the Bu substituent is sufficiently large to cause a significant propeller-like twist, such that the In···B axis is not coincident with the pyrazolyl planes and the molecular geometry deviates considerably from C3v symmetry. However, despite this twist, the coordination geometry about the In atom is similar in all three compounds (Tables 2–4).

The most interesting feature of (I) and (II) is that the N—In—N angles are very acute, such that the indium centers are highly pyramidal. A simple measure of the degree of the pyramidality (P) is provided by the deviation of the sum of the N—In—N bond angles from 360°, i.e. P = 360° - Σ(N—In—N), and the values of P for (I) (126.0°) and (II) (121.4°) are in the range observed for other monovalent [TpR,R']In compounds (Table 4). Furthermore, the indium centers of all of the monovalent [TpR,R']In compounds are distinctly more pyramidal than those of the [TpR,R']In fragments in four-, five- and six-coordinate compounds. For example, the pyramidalities of indium in four-coordinate [TpBu,Bu]InSe (Kuchta & Parkin, 1995) and [WIn{TpMe,Me}(CO)5] (Reger et al., 1994) are 100.7 and 111.7°, respectively. It is also of note that the pyramidality of indium in all of the three-coordinate [TpR,R']In derivatives (120.3–145.4°) is significantly greater than that of the tris(mercaptoimidazolyl)hydroborate counterpart, In[TmBu] (96.3°; Yurkerwich et al., 2008). Although In[TmBu] differs from [TpR,R']In in that the former has an S3 coordination environment, the reduced pyramidality of the former is presumably a consequence of the greater flexibility of the [TmBu] ligand due to the greater chelate ring size.

With respect to comparisons within the [TpR,R']In series of complexes, the most interesting observation is that the trifluoromethyl derivative [TpCF3,CF3]In is significantly more pyramidal (145.4°) than the other derivatives (120.3–126.0°). In this regard, the average In—N bond for [TpCF3,CF3]In (2.578 Å) is longer than those in other [TpR,R']In derivatives (2.367–2.488 Å), as summarized in Table 4. Density functional theory (DFT; B3LYP level; see Refinement for details) calculations reproduce this trend, with [TpCF3,CF3]In having the longest In—N bonds and the most pyramidal indium center. Furthermore, a natural bond orbital (NBO) analysis (Weinhold & Landis, 2005; Weinhold, 2012; Glendening et al., 2012) indicates that the highest occupied orbital of each of the [TpR,R']In compounds is an indium spn lone-pair hybrid orbital (Fig. 3), for which [TpCF3,CF3]In (95.8°) and (I) (90.7°) possess the greatest and least amount of 5s character, respectively. Finally, the pyramidality of the In atom in [TpR,R']In is intermediate between those of gallium and thallium, as illustrated by the values for [TpBu,Bu]Ga (107.3°; Dias & Jin, 2000), [TpBu,Bu]In (120.3°; Frazer et al., 1994) and [TpBu,Bu]Tl (125.8°; Dowling et al., 1995), a trend that is anticipated on the basis of the variation in the covalent radii of Ga (1.22 Å), In (1.42 Å) and Tl (1.45 Å) (Cordero et al., 2008).

In addition to the synthesis of monovalent [TpBu,Bu]Ga (Kuchta, Bonanno & Parkin, 1996 or Kuchta, Dias et al., 1996 ?), we have previously employed [TpR,R'] ligands to afford a variety of trivalent gallium compounds, including [TpBu,Bu]Ga GaI3 (Kuchta, Bonanno & Parkin, 1996 or Kuchta, Dias et al., 1996 ?), [TpMe,Me]Ga GaX3 (X = Cl, I), [TpMe,Me]GaGaI2GaI2(HpzMe2) and [TpMe,Me]Ga(GaI2)2Ga[TpMe,Me] (Yurkerwich & Parkin, 2010). We now report that a tris(pyrazolyl)hydroborate ligand can be used to obtain a gallium hydride complex. Specifically, hydrido[tris(3-tert-butyl-5-methyl-1H-pyrazol-1-yl-κN2)hydroborato]gallium(III) tetrachloridogallium(III), [Ga(TpBu,Me)H][GaCl4], (III), may be obtained via the reaction of [TpBu,Me]Tl with [HGaCl2]2 (Nogai & Schmidbaur, 2002; Alexander & Cole, 2008), as illustrated in Scheme 2.

The molecular structure of (III) has been determined by X-ray diffraction, as illustrated in Fig. 4, thereby demonstrating that the compound consists of a discrete monomeric cationic gallium species that features a terminal hydride ligand. In this regard, tris(pyrazolyl)hydroborate ligands have been employed to synthesize several other monomeric [TpR,R']MH compounds, namely [TpBu]BeH (Han & Parkin, 1992), [TpBu]ZnH (Looney et al., 1995; Han et al., 1991), [TpBu,Me]ZnH (Bergquist & Parkin, 1999), [TpPh,Me]ZnH (Rombach et al., 2002), [TpBu]CdH (Reger et al., 1993) and [TpBu,Me]CoH (Jewson et al., 1999). For comparison, selected bond-length data are summarized in Table 5. It is of note that the Ga—H bond length of 1.49 (6) Å compares favorably with the mean value of 1.50 Å for structurally characterized gallium hydride compounds that are listed in the CSD, and also with the value in the DFT geometry-optimized [Ga(TpBu,Me)H]+ cation (1.53 Å). The Ga–N bonds of [Ga(TpBu,Me)H]+ (Table 6) are comparable with, although slightly shorter than, the average values in related trivalent [TpR,R']Ga compounds, [Ga(TpMe,Me)2]+ (2.064 Å; Cowley et al., 1988), [TpBu,Bu]GaTe (2.060 Å; Kuchta & Parkin, 1997) and [FeGa(TpMe,Me)(CO)4] (1.990 Å; Reger et al., 1994), but all of these bonds are distinctly shorter than that for the monovalent gallium compound [TpBu,Bu]Ga (2.230 Å; Kuchta, Bonanno & Parkin, 1996 or Kuchta, Dias et al., 1996 ?).

In conclusion, tris(pyrazolyl)hydroborate ligation has been used to isolate mononuclear examples of trivalent gallium hydride and monovalent indium complexes, namely [Ga(TpBu,Me)H][GaCl4], [TpMe,Me]In and [TpBu,Me]In, all of which have been structurally characterized by X-ray diffraction.

Related literature top

For related literature, see: Alexander & Cole (2008); Allen (2002); Armbruster et al. (2009); Bergquist & Parkin (1999); Burger & Bercaw (1987); Cordero et al. (2008); Cowley et al. (1988); Dias & Jin (1996, 2000); Dias et al. (1995); Dowling et al. (1995); Frazer et al. (1992, 1994); Glendening et al. (2001, 2012); Han & Parkin (1992); Han et al. (1991); Jewson et al. (1999); Kitajima & Tolman (1995); Kuchta & Parkin (1995, 1997); Kuchta, Bonanno & Parkin (1996); Kuchta, Dias, Bott & Parkin (1996); Looney et al. (1995); McNally et al. (1987); Nogai & Schmidbaur (2002); Parkin (1995, 2006, 2007); Pettinari (2008); Reger (1996); Reger et al. (1993, 1994); Rombach et al. (2002); Santini et al. (2010); Schrödinger (2009); Shriver & Drezdzon (1986); Smith (2008); Spicer & Reglinski (2009); Trofimenko (1966, 1967, 1999, 2004); Trofimenko et al. (1992); Weinhold (2012); Weinhold & Landis (2005); Yoon & Parkin (1995); Yurkerwich & Parkin (2010); Yurkerwich et al. (2008).

Experimental top

All manipulations were performed using a combination of glove-box, high vacuum and Schlenk techniques under a nitrogen or argon atmosphere (McNally et al., 1987; Burger & Bercaw, 1987; Shriver & Drezdzon, 1986). Solvents were purified and degassed by standard procedures. [TpMe,Me]In, (I), was synthesized by the reaction of InCl with [TpMe,Me]K (Trofimenko, 1967) and crystals suitable for X-ray diffraction were obtained from a solution in benzene. [TpBu,Me]In, (II), was synthesized by the reaction of InCl with [TpBu,Me]Tl (Trofimenko et al., 1992) and crystals suitable for X-ray diffraction were obtained from a solution in benzene. [Ga(TpBu,Me)H][GaCl4], (III), was synthesized via the reaction of [TpBu,Me]Tl (Trofimenko et al., 1992) with (HGaCl2)2 and crystals suitable for X-ray diffraction were obtained from a solution in benzene.

Refinement top

Calculations were carried out using density functional theory (DFT) as implemented in the JAGUAR7.6 (release 110) suite of ab initio quantum chemistry programs (Schrödinger, 2009). Geometry optimizations were performed with the B3LYP density functional using the 6–31G** (H, B, C, N, S) and LAV3P (In, Ga) basis set, and NBO calculations were performed with the program NBO (Glendening et al., 2001), as implemented in the JAGUAR suite of programs, using the 6–31G** and LAV3P basis sets.

[TpBu,Me]In resides on a mirror plane and, although the structure can be refined reasonably well neglecting disorder, the displacement parameters associated with the pyrazolyl group on the mirror plane are poorly behaved. The structure was therefore modeled as two components using noncrystallographic symmetry restraints, and they refined to site occupancies of 0.488 and 0.512. In addition, rigid-bond and geometric restraints were used to improve the model.

The H atom on boron in (III) was refined isotropically with Uiso = 1.2UisoB, while that for (I) was restrained to a B—H distance of 1.10 (2)Å, with Uiso = 1.2UisoB and that for (II) was restrained to a B—H distance of 1.07 (2)Å. The H atom on gallium in (III) was refined isotropically with no restraints. All other H atoms were placed in calculated positions, with Uiso(H) = 1.2Uiso(Csp2) or 1.5Uiso(Csp3).

Computing details top

Data collection: SMART (Bruker, 2007) for (I), (III); APEX2 (Bruker, 2007) for (II). Cell refinement: SMART (Bruker, 2007) for (I), (III); SAINT (Bruker, 2007) for (II). For all compounds, data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of (I), with the atom-numbering scheme. [Please provide a revised plot with C atoms labelled as well] Displacement ellipsoids are drawn at the 30% probability level. C- and N-bound H atoms have been omitted for clarity. Atoms marked with a prime (') are at the symmetry position (x, -y + 1/2, z).

Fig. 2. The molecular structure of (II), with the atom-numbering scheme. [Please provide a revised plot with C atoms labelled as well] Only one of the disordered components is shown [Which?]. Displacement ellipsoids are drawn at the 30% probability level. C- and N-bound H atoms have been omitted for clarity. Atoms marked with a prime (') are at the symmetry position (-x - 1/2, y, z).

Fig. 3. Highest occupied NBOs of geometry-optimized (I) (left) and [TpCF3,CF3]In (right).

Fig. 4. The molecular structure of the cation of (III), with the atom-numbering scheme. [Please provide a revised plot with C atoms labelled as well] Displacement ellipsoids are drawn at the 30% probability level. C- and N-bound H atoms have been omitted for clarity.
(I) [Tris(3,5-dimethyl-1H-pyrazol-1-yl-κN2)hydroborato]indium(I) top
Crystal data top
[In(C15H22BN6)]Dx = 1.535 Mg m3
Mr = 412.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9848 reflections
a = 17.1939 (7) Åθ = 2.4–32.2°
b = 13.3487 (5) ŵ = 1.33 mm1
c = 7.7658 (3) ÅT = 125 K
V = 1782.38 (12) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm
F(000) = 832
Data collection top
Bruker SMART CCD area-detector
diffractometer
2311 independent reflections
Radiation source: fine-focus sealed tube2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2007)
h = 2222
Tmin = 0.776, Tmax = 0.878k = 1717
23607 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0388P)2 + 2.7729P]
where P = (Fo2 + 2Fc2)/3
2311 reflections(Δ/σ)max = 0.001
120 parametersΔρmax = 0.86 e Å3
1 restraintΔρmin = 0.56 e Å3
Crystal data top
[In(C15H22BN6)]V = 1782.38 (12) Å3
Mr = 412.02Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 17.1939 (7) ŵ = 1.33 mm1
b = 13.3487 (5) ÅT = 125 K
c = 7.7658 (3) Å0.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2311 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2007)
2124 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.878Rint = 0.036
23607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.86 e Å3
2311 reflectionsΔρmin = 0.56 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
In10.183897 (13)0.25000.90716 (3)0.01583 (9)
B10.3871 (2)0.25000.9081 (5)0.0166 (7)
H10.4515 (11)0.25000.905 (5)0.020*
N110.35660 (17)0.25001.0958 (4)0.0189 (6)
C110.3966 (2)0.25001.2460 (5)0.0233 (7)
N120.27834 (17)0.25001.1292 (4)0.0177 (6)
C120.3431 (2)0.25001.3796 (4)0.0248 (7)
H12A0.35380.25001.49960.030*
C130.2699 (2)0.25001.3004 (4)0.0201 (7)
C140.4836 (2)0.25001.2550 (6)0.0340 (9)
H14A0.50510.25001.13810.051*
H14B0.50130.19011.31640.051*0.50
H14C0.50130.30991.31640.051*0.50
C150.1912 (2)0.25001.3824 (5)0.0273 (8)
H15A0.15110.25001.29260.041*
H15B0.18540.30991.45410.041*0.50
H15C0.18540.19011.45410.041*0.50
N210.35699 (11)0.15535 (15)0.8142 (2)0.0171 (4)
C210.39666 (14)0.07833 (18)0.7421 (3)0.0210 (5)
N220.27854 (11)0.13922 (14)0.7947 (2)0.0170 (4)
C220.34355 (15)0.01168 (18)0.6752 (3)0.0225 (5)
H22A0.35450.04930.61700.027*
C230.27008 (14)0.05217 (17)0.7104 (3)0.0192 (4)
C240.48369 (15)0.0719 (2)0.7427 (4)0.0304 (6)
H24A0.50530.13100.80030.046*
H24B0.50280.06920.62380.046*
H24C0.50000.01140.80420.046*
C250.19127 (14)0.0111 (2)0.6717 (4)0.0239 (5)
H25A0.15150.05760.71430.036*
H25B0.18510.05400.72840.036*
H25C0.18540.00290.54700.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.01785 (13)0.01438 (13)0.01524 (13)0.0000.00005 (8)0.000
B10.0213 (17)0.0121 (15)0.0165 (16)0.0000.0010 (13)0.000
N110.0208 (14)0.0180 (13)0.0179 (13)0.0000.0033 (11)0.000
C110.0291 (18)0.0190 (15)0.0218 (17)0.0000.0092 (14)0.000
N120.0218 (14)0.0181 (13)0.0132 (13)0.0000.0005 (10)0.000
C120.036 (2)0.0232 (17)0.0148 (15)0.0000.0076 (14)0.000
C130.0278 (17)0.0156 (15)0.0170 (15)0.0000.0020 (13)0.000
C140.0265 (19)0.044 (2)0.031 (2)0.0000.0112 (16)0.000
C150.035 (2)0.029 (2)0.0181 (17)0.0000.0054 (14)0.000
N210.0187 (9)0.0152 (9)0.0176 (9)0.0012 (7)0.0005 (7)0.0006 (7)
C210.0242 (12)0.0175 (10)0.0213 (11)0.0021 (9)0.0040 (9)0.0013 (9)
N220.0196 (9)0.0156 (9)0.0156 (9)0.0004 (7)0.0001 (7)0.0008 (7)
C220.0303 (12)0.0149 (10)0.0224 (12)0.0010 (10)0.0046 (10)0.0036 (9)
C230.0263 (11)0.0149 (10)0.0166 (10)0.0001 (9)0.0000 (9)0.0005 (8)
C240.0248 (12)0.0258 (13)0.0406 (16)0.0052 (10)0.0046 (11)0.0026 (12)
C250.0283 (13)0.0175 (11)0.0259 (13)0.0024 (9)0.0017 (10)0.0057 (10)
Geometric parameters (Å, º) top
In1—N222.3658 (19)N12—C131.338 (4)
In1—N22i2.3659 (19)C12—C131.400 (5)
In1—N122.369 (3)C13—C151.496 (5)
B1—H11.109 (19)N21—C211.355 (3)
B1—N21i1.548 (3)N21—N221.374 (3)
B1—N211.548 (3)C21—C221.377 (3)
B1—N111.548 (5)C21—C241.499 (4)
N11—C111.354 (4)N22—C231.342 (3)
N11—N121.370 (4)C22—C231.401 (3)
C11—C121.387 (5)C23—C251.492 (3)
C11—C141.498 (5)
N22—In1—N22i77.37 (9)C11—C12—C13105.5 (3)
N22—In1—N1278.30 (7)N12—C13—C12109.8 (3)
N22i—In1—N1278.30 (7)N12—C13—C15121.4 (3)
H1—B1—N21i108.9 (10)C12—C13—C15128.8 (3)
H1—B1—N21108.9 (10)C21—N21—N22109.24 (19)
N21i—B1—N21109.4 (3)C21—N21—B1130.2 (2)
H1—B1—N11111 (2)N22—N21—B1120.5 (2)
N21i—B1—N11109.28 (19)N21—C21—C22108.2 (2)
N21—B1—N11109.28 (19)N21—C21—C24123.0 (2)
C11—N11—N12109.6 (3)C22—C21—C24128.8 (2)
C11—N11—B1129.7 (3)C23—N22—N21107.21 (19)
N12—N11—B1120.7 (3)C23—N22—In1130.31 (16)
N11—C11—C12107.9 (3)N21—N22—In1122.44 (13)
N11—C11—C14123.2 (4)C21—C22—C23106.0 (2)
C12—C11—C14128.9 (4)N22—C23—C22109.4 (2)
C13—N12—N11107.1 (3)N22—C23—C25121.0 (2)
C13—N12—In1130.5 (2)C22—C23—C25129.6 (2)
N11—N12—In1122.36 (19)
Symmetry code: (i) x, y+1/2, z.
(II) \ [Tris(3-tert-butyl-5-methyl-1H-pyrazol-1-yl-\ κN2)hydroborato]indium(I) top
Crystal data top
[In(C24H40BN6)]Dx = 1.306 Mg m3
Mr = 538.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Ama2Cell parameters from 9981 reflections
a = 16.6414 (8) Åθ = 2.4–30.7°
b = 15.8504 (7) ŵ = 0.89 mm1
c = 10.3779 (5) ÅT = 125 K
V = 2737.4 (2) Å3Block, colourless
Z = 40.30 × 0.15 × 0.10 mm
F(000) = 1120
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4378 independent reflections
Radiation source: fine-focus sealed tube4151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.7°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2007)
h = 2323
Tmin = 0.777, Tmax = 0.917k = 2222
22008 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0173P)2 + 1.2139P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.004
4378 reflectionsΔρmax = 0.29 e Å3
295 parametersΔρmin = 0.25 e Å3
797 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.051 (15)
Crystal data top
[In(C24H40BN6)]V = 2737.4 (2) Å3
Mr = 538.25Z = 4
Orthorhombic, Ama2Mo Kα radiation
a = 16.6414 (8) ŵ = 0.89 mm1
b = 15.8504 (7) ÅT = 125 K
c = 10.3779 (5) Å0.30 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4378 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2007)
4151 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.917Rint = 0.028
22008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.043Δρmax = 0.29 e Å3
S = 1.00Δρmin = 0.25 e Å3
4378 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
295 parametersAbsolute structure parameter: 0.051 (15)
797 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was modeled by including two components with occupancies of 48.8% and 51.2%.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
In10.25000.1758 (5)0.6586 (5)0.0209 (3)0.488 (7)
B10.25000.3426 (6)0.4384 (14)0.0162 (12)0.488 (7)
H10.25000.395 (4)0.371 (6)0.036 (12)*0.488 (7)
N110.1759 (6)0.3514 (5)0.5267 (11)0.0126 (10)0.488 (7)
N120.1541 (5)0.2881 (6)0.6101 (11)0.0108 (13)0.488 (7)
C110.1177 (6)0.4114 (5)0.5267 (9)0.0133 (9)0.488 (7)
C120.0576 (6)0.3911 (6)0.6145 (9)0.0129 (11)0.488 (7)
H12A0.01000.42130.63490.016*0.488 (7)
C130.0851 (6)0.3150 (6)0.6647 (9)0.0187 (16)0.488 (7)
C140.0466 (8)0.2630 (7)0.7719 (11)0.024 (2)0.488 (7)
C150.0991 (15)0.2547 (17)0.8913 (19)0.0303 (15)0.488 (7)
H15A0.14660.22070.87080.045*0.488 (7)
H15B0.11600.31090.91990.045*0.488 (7)
H15C0.06840.22720.96020.045*0.488 (7)
C160.0322 (10)0.3061 (10)0.8108 (18)0.046 (3)0.488 (7)
H16A0.06640.31270.73460.069*0.488 (7)
H16B0.06000.27150.87500.069*0.488 (7)
H16C0.02050.36170.84750.069*0.488 (7)
C170.0266 (12)0.1738 (8)0.7232 (16)0.040 (3)0.488 (7)
H17A0.07530.14770.68790.060*0.488 (7)
H17B0.00640.13960.79480.060*0.488 (7)
H17C0.01450.17730.65580.060*0.488 (7)
C180.1208 (9)0.4861 (6)0.4388 (10)0.0231 (13)0.488 (7)
H18A0.12250.46690.34910.035*0.488 (7)
H18B0.07290.52110.45210.035*0.488 (7)
H18C0.16900.51940.45760.035*0.488 (7)
N210.25000.2583 (4)0.3660 (7)0.0168 (10)0.488 (7)
N220.25000.1807 (5)0.4277 (7)0.0183 (14)0.488 (7)
C210.25000.2470 (5)0.2367 (7)0.0208 (13)0.488 (7)
C220.25000.1616 (5)0.2142 (7)0.0270 (13)0.488 (7)
H22A0.25000.13470.13230.032*0.488 (7)
C230.25000.1218 (4)0.3331 (8)0.0239 (15)0.488 (7)
C240.25000.0287 (4)0.3668 (7)0.0288 (14)0.488 (7)
C250.25000.0233 (5)0.2427 (8)0.049 (2)0.488 (7)
H25A0.20180.01000.19240.073*0.244 (3)
H25B0.29800.00960.19200.073*0.244 (3)
H25C0.25030.08350.26420.073*0.488 (7)
C260.3255 (4)0.0055 (4)0.4426 (6)0.0368 (13)0.488 (7)
H26A0.32700.03780.52310.055*0.488 (7)
H26B0.32480.05500.46240.055*0.488 (7)
H26C0.37320.01870.39100.055*0.488 (7)
C270.25000.3189 (5)0.1437 (7)0.0391 (13)0.488 (7)
H27A0.25000.37230.19130.059*0.488 (7)
H27B0.29810.31580.08940.059*0.244 (3)
H27C0.20190.31580.08940.059*0.244 (3)
In20.25000.1749 (4)0.6762 (4)0.0209 (3)0.512 (7)
B20.25000.3242 (6)0.4384 (13)0.0162 (12)0.512 (7)
H20.25000.371 (4)0.363 (6)0.036 (12)*0.512 (7)
N310.1716 (6)0.3355 (5)0.5174 (10)0.0126 (10)0.512 (7)
N320.1539 (6)0.2824 (7)0.6213 (12)0.0226 (19)0.512 (7)
C310.1154 (6)0.3971 (5)0.5059 (8)0.0133 (9)0.512 (7)
C320.0598 (6)0.3780 (6)0.5967 (9)0.0198 (16)0.512 (7)
H32A0.01200.40940.61140.024*0.512 (7)
C330.0819 (5)0.3062 (6)0.6656 (9)0.0164 (14)0.512 (7)
C340.0371 (7)0.2584 (7)0.7707 (9)0.0201 (17)0.512 (7)
C350.0897 (15)0.2539 (16)0.8928 (18)0.0303 (15)0.512 (7)
H35A0.06460.21610.95560.045*0.512 (7)
H35B0.14310.23240.87010.045*0.512 (7)
H35C0.09490.31040.93020.045*0.512 (7)
C360.0410 (9)0.3027 (8)0.8071 (17)0.035 (2)0.512 (7)
H36A0.06690.27210.87800.052*0.512 (7)
H36B0.02940.36060.83430.052*0.512 (7)
H36C0.07710.30370.73240.052*0.512 (7)
C370.0200 (10)0.1689 (6)0.7231 (15)0.027 (2)0.512 (7)
H37A0.01590.14040.78390.041*0.512 (7)
H37B0.00560.17140.63810.041*0.512 (7)
H37C0.07060.13750.71670.041*0.512 (7)
C380.1225 (9)0.4706 (5)0.4156 (9)0.0231 (13)0.512 (7)
H38A0.07290.50380.41820.035*0.512 (7)
H38B0.16790.50610.44180.035*0.512 (7)
H38C0.13150.44980.32780.035*0.512 (7)
N410.25000.2358 (4)0.3752 (7)0.0168 (10)0.512 (7)
N420.25000.1636 (5)0.4483 (7)0.0225 (15)0.512 (7)
C410.25000.2154 (5)0.2485 (6)0.0221 (13)0.512 (7)
C420.25000.1286 (5)0.2395 (6)0.0253 (12)0.512 (7)
H42A0.25000.09580.16280.030*0.512 (7)
C430.25000.0986 (4)0.3657 (7)0.0215 (13)0.512 (7)
C440.25000.0084 (4)0.4145 (7)0.0305 (14)0.512 (7)
C450.25000.0520 (4)0.3001 (8)0.0457 (18)0.512 (7)
H45A0.20210.04200.24740.069*0.256 (3)
H45B0.29830.04250.24800.069*0.256 (3)
H45C0.24970.11030.33150.069*0.512 (7)
C460.3263 (3)0.0086 (4)0.4933 (6)0.0356 (12)0.512 (7)
H46A0.32480.02470.57300.053*0.512 (7)
H46B0.32930.06870.51470.053*0.512 (7)
H46C0.37360.00750.44270.053*0.512 (7)
C470.25000.2795 (5)0.1438 (6)0.0391 (13)0.512 (7)
H47A0.25000.25100.06000.059*0.512 (7)
H47B0.20190.31490.15120.059*0.256 (3)
H47C0.29810.31490.15120.059*0.256 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.02145 (6)0.01882 (12)0.0224 (9)0.0000.0000.0042 (7)
B10.0161 (10)0.015 (4)0.0176 (10)0.0000.0000.008 (3)
N110.0146 (9)0.006 (2)0.0168 (13)0.0051 (16)0.0030 (9)0.0014 (18)
N120.008 (2)0.016 (2)0.009 (2)0.0039 (19)0.0006 (14)0.0027 (17)
C110.0162 (8)0.010 (2)0.014 (2)0.0027 (14)0.0066 (14)0.0081 (16)
C120.0128 (18)0.010 (2)0.016 (2)0.0033 (16)0.0044 (15)0.0071 (19)
C130.016 (2)0.025 (3)0.016 (3)0.0101 (19)0.002 (3)0.009 (3)
C140.013 (3)0.026 (3)0.034 (4)0.002 (2)0.004 (2)0.004 (2)
C150.023 (4)0.0474 (11)0.0203 (8)0.008 (2)0.0022 (18)0.0036 (7)
C160.024 (4)0.075 (6)0.039 (5)0.002 (3)0.015 (3)0.018 (4)
C170.041 (6)0.047 (5)0.031 (5)0.021 (4)0.000 (4)0.015 (4)
C180.0223 (10)0.019 (3)0.028 (3)0.003 (2)0.002 (2)0.002 (2)
N210.0190 (9)0.016 (3)0.0157 (12)0.0000.0000.0025 (18)
N220.019 (2)0.018 (3)0.018 (2)0.0000.0000.005 (2)
C210.018 (2)0.028 (4)0.017 (3)0.0000.0000.002 (3)
C220.023 (2)0.033 (4)0.025 (3)0.0000.0000.006 (2)
C230.018 (2)0.019 (3)0.035 (4)0.0000.0000.006 (2)
C240.022 (2)0.024 (3)0.040 (4)0.0000.0000.008 (2)
C250.059 (4)0.036 (4)0.050 (4)0.0000.0000.024 (3)
C260.040 (2)0.018 (2)0.052 (4)0.0045 (17)0.005 (3)0.003 (2)
C270.0412 (17)0.058 (4)0.018 (2)0.0000.0000.011 (3)
In20.02145 (6)0.01882 (12)0.0224 (9)0.0000.0000.0042 (7)
B20.0161 (10)0.015 (4)0.0176 (10)0.0000.0000.008 (3)
N310.0146 (9)0.006 (2)0.0168 (13)0.0051 (16)0.0030 (9)0.0014 (18)
N320.026 (3)0.021 (2)0.020 (3)0.0080 (19)0.001 (2)0.0100 (18)
C310.0162 (8)0.010 (2)0.014 (2)0.0027 (14)0.0066 (14)0.0081 (16)
C320.018 (2)0.017 (3)0.025 (3)0.0072 (18)0.0031 (18)0.010 (2)
C330.014 (2)0.0115 (15)0.024 (3)0.0012 (16)0.008 (3)0.002 (3)
C340.011 (3)0.035 (3)0.015 (3)0.0120 (19)0.0004 (16)0.009 (2)
C350.023 (4)0.0474 (11)0.0203 (8)0.008 (2)0.0022 (18)0.0036 (7)
C360.016 (3)0.037 (3)0.051 (6)0.007 (2)0.013 (2)0.006 (3)
C370.024 (3)0.023 (3)0.035 (5)0.014 (2)0.003 (3)0.002 (3)
C380.0223 (10)0.019 (3)0.028 (3)0.003 (2)0.002 (2)0.002 (2)
N410.0190 (9)0.016 (3)0.0157 (12)0.0000.0000.0025 (18)
N420.028 (3)0.015 (3)0.024 (3)0.0000.0000.001 (2)
C410.021 (2)0.029 (4)0.017 (2)0.0000.0000.004 (3)
C420.022 (2)0.037 (3)0.017 (3)0.0000.0000.012 (2)
C430.017 (2)0.025 (3)0.023 (3)0.0000.0000.005 (2)
C440.036 (3)0.017 (3)0.039 (4)0.0000.0000.009 (2)
C450.034 (3)0.034 (3)0.069 (5)0.0000.0000.027 (3)
C460.033 (2)0.024 (2)0.050 (3)0.0034 (16)0.006 (2)0.001 (2)
C470.0412 (17)0.058 (4)0.018 (2)0.0000.0000.011 (3)
Geometric parameters (Å, º) top
In1—N222.397 (7)In2—N422.372 (8)
In1—N122.443 (7)In2—N322.405 (8)
In1—N12i2.443 (7)In2—N32i2.405 (8)
B1—H11.08 (2)B2—H21.08 (2)
B1—N211.533 (9)B2—N411.547 (8)
B1—N111.543 (9)B2—N31i1.551 (8)
B1—N11i1.543 (9)B2—N311.551 (8)
B1—H11.08 (2)B2—H11.32 (3)
B1—H20.90 (4)B2—H21.08 (2)
N11—C111.358 (9)N31—C311.358 (8)
N11—N121.374 (9)N31—N321.399 (9)
N12—C131.349 (8)N32—C331.338 (9)
C11—C121.391 (9)C31—C321.355 (9)
C11—C181.495 (9)C31—C381.500 (9)
C12—C131.391 (9)C32—C331.393 (9)
C12—H12A0.9500C32—H32A0.9500
C13—C141.526 (9)C33—C341.522 (8)
C14—C151.522 (10)C34—C361.525 (9)
C14—C161.532 (10)C34—C371.530 (9)
C14—C171.538 (10)C34—C351.542 (9)
C15—H15A0.9800C35—H35A0.9800
C15—H15B0.9800C35—H35B0.9800
C15—H15C0.9800C35—H35C0.9800
C16—H16A0.9800C36—H36A0.9800
C16—H16B0.9800C36—H36B0.9800
C16—H16C0.9800C36—H36C0.9800
C17—H17A0.9800C37—H37A0.9800
C17—H17B0.9800C37—H37B0.9800
C17—H17C0.9800C37—H37C0.9800
C18—H18A0.9800C38—H38A0.9800
C18—H18B0.9800C38—H38B0.9800
C18—H18C0.9800C38—H38C0.9800
N21—C211.354 (8)N41—C411.354 (8)
N21—N221.387 (7)N41—N421.374 (7)
N22—C231.355 (8)N42—C431.340 (8)
C21—C221.375 (8)C41—C421.380 (9)
C21—C271.493 (8)C41—C471.488 (8)
C22—C231.386 (9)C42—C431.394 (8)
C22—H22A0.9500C42—H42A0.9500
C23—C241.516 (9)C43—C441.516 (8)
C24—C26i1.528 (7)C44—C451.525 (8)
C24—C261.528 (7)C44—C461.535 (6)
C24—C251.529 (8)C44—C46i1.535 (6)
C25—H25A0.9800C45—H45A0.9800
C25—H25B0.9800C45—H45B0.9800
C25—H25C0.9800C45—H45C0.9800
C26—H26A0.9800C46—H46A0.9800
C26—H26B0.9800C46—H46B0.9800
C26—H26C0.9800C46—H46C0.9800
C27—H27A0.9800C47—H47A0.9800
C27—H27B0.9800C47—H47B0.9800
C27—H27C0.9800C47—H47C0.9800
N22—In1—N1276.7 (3)N31—B2—H1100.5 (19)
N22—In1—N12i76.7 (3)H2—B2—H20 (3)
N12—In1—N12i81.6 (6)N41—B2—H2109 (4)
H1—B1—N21110 (5)N31i—B2—H2108 (2)
H1—B1—N11108 (2)N31—B2—H2108 (2)
N21—B1—N11111.7 (6)H1—B2—H214 (7)
H1—B1—N11i108 (2)C31—N31—N32110.8 (7)
N21—B1—N11i111.7 (6)C31—N31—B2128.0 (7)
N11—B1—N11i106.2 (12)N32—N31—B2121.1 (8)
H1—B1—H10 (3)C33—N32—N31106.5 (7)
N21—B1—H1110 (5)C33—N32—In2135.5 (6)
N11—B1—H1108 (2)N31—N32—In2117.9 (6)
N11i—B1—H1108 (2)C32—C31—N31104.4 (7)
H1—B1—H220 (8)C32—C31—C38131.5 (8)
N21—B1—H291 (5)N31—C31—C38124.0 (8)
N11—B1—H2118 (2)C31—C32—C33111.0 (7)
N11i—B1—H2118 (2)C31—C32—H32A124.5
H1—B1—H220 (8)C33—C32—H32A124.5
C11—N11—N12108.9 (7)N32—C33—C32106.9 (7)
C11—N11—B1129.3 (8)N32—C33—C34123.0 (7)
N12—N11—B1121.3 (7)C32—C33—C34130.1 (7)
C13—N12—N11105.0 (7)C33—C34—C36111.5 (8)
C13—N12—In1134.4 (7)C33—C34—C37108.7 (9)
N11—N12—In1119.3 (5)C36—C34—C37110.4 (9)
N11—C11—C12110.5 (7)C33—C34—C35109.5 (11)
N11—C11—C18122.0 (8)C36—C34—C35107.6 (10)
C12—C11—C18127.5 (8)C37—C34—C35109.1 (10)
C11—C12—C13102.1 (7)C34—C35—H35A109.5
C11—C12—H12A128.9C34—C35—H35B109.5
C13—C12—H12A128.9H35A—C35—H35B109.5
N12—C13—C12113.4 (7)C34—C35—H35C109.5
N12—C13—C14119.5 (8)H35A—C35—H35C109.5
C12—C13—C14127.1 (7)H35B—C35—H35C109.5
C15—C14—C13113.5 (12)C34—C36—H36A109.5
C15—C14—C16108.4 (11)C34—C36—H36B109.5
C13—C14—C16108.1 (9)H36A—C36—H36B109.5
C15—C14—C17108.2 (11)C34—C36—H36C109.5
C13—C14—C17110.3 (9)H36A—C36—H36C109.5
C16—C14—C17108.2 (11)H36B—C36—H36C109.5
C14—C16—H16A109.5C34—C37—H37A109.5
C14—C16—H16B109.5C34—C37—H37B109.5
H16A—C16—H16B109.5H37A—C37—H37B109.5
C14—C16—H16C109.5C34—C37—H37C109.5
H16A—C16—H16C109.5H37A—C37—H37C109.5
H16B—C16—H16C109.5H37B—C37—H37C109.5
C21—N21—N22109.9 (6)C31—C38—H38A109.5
C21—N21—B1126.9 (7)C31—C38—H38B109.5
N22—N21—B1123.2 (7)H38A—C38—H38B109.5
C23—N22—N21106.1 (6)C31—C38—H38C109.5
C23—N22—In1134.6 (6)H38A—C38—H38C109.5
N21—N22—In1119.4 (5)H38B—C38—H38C109.5
N21—C21—C22107.4 (6)C41—N41—N42109.7 (5)
N21—C21—C27122.7 (6)C41—N41—B2128.9 (7)
C22—C21—C27130.0 (6)N42—N41—B2121.4 (7)
C21—C22—C23107.3 (6)C43—N42—N41106.7 (6)
C21—C22—H22A126.4C43—N42—In2134.1 (5)
C23—C22—H22A126.4N41—N42—In2119.2 (5)
N22—C23—C22109.4 (6)N41—C41—C42107.7 (5)
N22—C23—C24120.2 (7)N41—C41—C47123.1 (6)
C22—C23—C24130.4 (6)C42—C41—C47129.2 (6)
C23—C24—C26i110.7 (4)C41—C42—C43106.0 (5)
C23—C24—C26110.7 (4)C41—C42—H42A127.0
C26i—C24—C26110.7 (7)C43—C42—H42A127.0
C23—C24—C25109.3 (6)N42—C43—C42109.8 (6)
C26i—C24—C25107.7 (4)N42—C43—C44120.7 (6)
C26—C24—C25107.7 (4)C42—C43—C44129.4 (6)
C24—C25—H25A109.5C43—C44—C45109.4 (6)
C24—C25—H25B109.5C43—C44—C46110.1 (3)
H25A—C25—H25B109.5C45—C44—C46107.8 (4)
C24—C25—H25C109.5C43—C44—C46i110.1 (3)
H25A—C25—H25C109.5C45—C44—C46i107.8 (4)
H25B—C25—H25C109.5C46—C44—C46i111.7 (6)
C21—C27—H27A109.5C44—C45—H45A109.5
C21—C27—H27B109.5C44—C45—H45B109.5
H27A—C27—H27B109.5H45A—C45—H45B109.5
C21—C27—H27C109.5C44—C45—H45C109.5
H27A—C27—H27C109.5H45A—C45—H45C109.5
H27B—C27—H27C109.5H45B—C45—H45C109.5
N42—In2—N3279.5 (3)C44—C46—H46A109.5
N42—In2—N32i79.5 (3)C44—C46—H46B109.5
N32—In2—N32i83.3 (6)H46A—C46—H46B109.5
H2—B2—N41109 (4)C44—C46—H46C109.5
H2—B2—N31i108 (2)H46A—C46—H46C109.5
N41—B2—N31i109.2 (5)H46B—C46—H46C109.5
H2—B2—N31108 (2)C41—C47—H47A109.5
N41—B2—N31109.2 (5)C41—C47—H47B109.5
N31i—B2—N31114.5 (11)H47A—C47—H47B109.5
H2—B2—H114 (7)C41—C47—H47C109.5
N41—B2—H1123 (4)H47A—C47—H47C109.5
N31i—B2—H1100.5 (19)H47B—C47—H47C109.5
H1—B1—N11—C110 (4)H2—B2—N31—C316 (4)
N21—B1—N11—C11121.6 (11)N41—B2—N31—C31123.6 (10)
N11i—B1—N11—C11116.4 (11)N31i—B2—N31—C31113.7 (11)
H1—B1—N11—N12171 (4)H2—B2—N31—N32179 (4)
N21—B1—N11—N1249.1 (15)N41—B2—N31—N3261.5 (13)
N11i—B1—N11—N1272.8 (13)N31i—B2—N31—N3261.2 (13)
C11—N11—N12—C133.9 (13)C31—N31—N32—C336.5 (14)
B1—N11—N12—C13176.4 (10)B2—N31—N32—C33177.8 (9)
C11—N11—N12—In1172.6 (7)C31—N31—N32—In2174.6 (7)
B1—N11—N12—In115.0 (15)B2—N31—N32—In21.1 (15)
N22—In1—N12—C13145.1 (13)N42—In2—N32—C33135.8 (15)
N12i—In1—N12—C13136.7 (11)N32i—In2—N32—C33143.7 (12)
N22—In1—N12—N1150.4 (9)N42—In2—N32—N3142.8 (10)
N12i—In1—N12—N1127.9 (12)N32i—In2—N32—N3137.7 (13)
N12—N11—C11—C122.6 (12)N32—N31—C31—C324.6 (11)
B1—N11—C11—C12174.3 (10)B2—N31—C31—C32180.0 (9)
N12—N11—C11—C18175.8 (10)N32—N31—C31—C38171.6 (10)
B1—N11—C11—C184.1 (15)B2—N31—C31—C383.7 (14)
N11—C11—C12—C130.2 (8)N31—C31—C32—C331.1 (7)
C18—C11—C12—C13178.1 (9)C38—C31—C32—C33174.7 (9)
N11—N12—C13—C124.0 (13)N31—N32—C33—C325.4 (13)
In1—N12—C13—C12170.1 (9)In2—N32—C33—C32175.9 (11)
N11—N12—C13—C14175.1 (10)N31—N32—C33—C34173.9 (10)
In1—N12—C13—C149.0 (17)In2—N32—C33—C345 (2)
C11—C12—C13—N122.4 (9)C31—C32—C33—N322.8 (9)
C11—C12—C13—C14176.6 (10)C31—C32—C33—C34176.4 (10)
N12—C13—C14—C1562.4 (16)N32—C33—C34—C36176.7 (13)
C12—C13—C14—C15116.6 (13)C32—C33—C34—C364.2 (13)
N12—C13—C14—C16177.4 (13)N32—C33—C34—C3761.5 (14)
C12—C13—C14—C163.6 (14)C32—C33—C34—C37117.7 (10)
N12—C13—C14—C1759.3 (15)N32—C33—C34—C3557.7 (16)
C12—C13—C14—C17121.7 (11)C32—C33—C34—C35123.1 (12)
H1—B1—N21—C210.000 (3)H2—B2—N41—C410.000 (3)
N11—B1—N21—C21120.7 (8)N31i—B2—N41—C41117.1 (7)
N11i—B1—N21—C21120.6 (8)N31—B2—N41—C41117.1 (7)
H1—B1—N21—N22180.000 (3)H2—B2—N41—N42180.000 (3)
N11—B1—N21—N2259.3 (8)N31i—B2—N41—N4262.9 (7)
N11i—B1—N21—N2259.4 (8)N31—B2—N41—N4262.9 (7)
C21—N21—N22—C230.000 (1)C41—N41—N42—C430.000 (1)
B1—N21—N22—C23180.000 (1)B2—N41—N42—C43180.000 (1)
C21—N21—N22—In1180.000 (1)C41—N41—N42—In2180.0
B1—N21—N22—In10.000 (2)B2—N41—N42—In20.000 (1)
N12—In1—N22—C23137.8 (3)N32—In2—N42—C43137.5 (3)
N12i—In1—N22—C23137.8 (3)N32i—In2—N42—C43137.5 (3)
N12—In1—N22—N2142.2 (3)N32—In2—N42—N4142.5 (3)
N12i—In1—N22—N2142.2 (3)N32i—In2—N42—N4142.5 (3)
N22—N21—C21—C220.000 (1)N42—N41—C41—C420.0
B1—N21—C21—C22180.000 (1)B2—N41—C41—C42180.000 (1)
N22—N21—C21—C27180.000 (1)N42—N41—C41—C47180.000 (1)
B1—N21—C21—C270.000 (2)B2—N41—C41—C470.000 (2)
N21—C21—C22—C230.000 (1)N41—C41—C42—C430.000 (1)
C27—C21—C22—C23180.000 (1)C47—C41—C42—C43180.0
N21—N22—C23—C220.000 (1)N41—N42—C43—C420.000 (1)
In1—N22—C23—C22180.000 (1)In2—N42—C43—C42180.0
N21—N22—C23—C24180.000 (1)N41—N42—C43—C44180.000 (1)
In1—N22—C23—C240.000 (1)In2—N42—C43—C440.000 (1)
C21—C22—C23—N220.000 (1)C41—C42—C43—N420.000 (1)
C21—C22—C23—C24180.000 (1)C41—C42—C43—C44180.000 (1)
N22—C23—C24—C26i61.6 (4)N42—C43—C44—C45180.0
C22—C23—C24—C26i118.4 (4)C42—C43—C44—C450.0
N22—C23—C24—C2661.6 (4)N42—C43—C44—C4661.8 (4)
C22—C23—C24—C26118.4 (4)C42—C43—C44—C46118.2 (4)
N22—C23—C24—C25180.000 (1)N42—C43—C44—C46i61.8 (4)
C22—C23—C24—C250.000 (1)C42—C43—C44—C46i118.2 (4)
Symmetry code: (i) x1/2, y, z.
(III) \ Hydrido[tris(3-tert-butyl-5-methyl-1H-pyrazol-1-yl-\ κN2)hydroborato]gallium(III) tetrachloridogallium(III), top
Crystal data top
[Ga(C24H40BN6)H][GaCl4]F(000) = 1448
Mr = 705.68Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5170 (15) ÅCell parameters from 2436 reflections
b = 17.753 (3) Åθ = 2.4–21.5°
c = 19.763 (3) ŵ = 1.96 mm1
β = 93.952 (3)°T = 125 K
V = 3331.2 (9) Å3Plate, colourless
Z = 40.08 × 0.03 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5876 independent reflections
Radiation source: fine-focus sealed tube3039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.243
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.859, Tmax = 0.962k = 2121
35586 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
5876 reflections(Δ/σ)max < 0.001
353 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ga(C24H40BN6)H][GaCl4]V = 3331.2 (9) Å3
Mr = 705.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5170 (15) ŵ = 1.96 mm1
b = 17.753 (3) ÅT = 125 K
c = 19.763 (3) Å0.08 × 0.03 × 0.02 mm
β = 93.952 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5876 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2007)
3039 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.962Rint = 0.243
35586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.65 e Å3
5876 reflectionsΔρmin = 0.65 e Å3
353 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ga10.52796 (7)0.11754 (4)0.75445 (4)0.0172 (2)
H10.482 (6)0.182 (3)0.797 (3)0.027 (18)*
Ga20.80991 (9)0.21620 (5)0.51098 (4)0.0290 (2)
Cl10.6764 (2)0.27063 (13)0.58040 (12)0.0631 (7)
Cl20.9045 (3)0.29659 (14)0.44610 (13)0.0732 (8)
Cl30.9818 (2)0.15992 (12)0.56903 (11)0.0418 (6)
Cl40.6811 (2)0.13766 (12)0.44944 (11)0.0527 (6)
B10.6191 (8)0.0058 (5)0.6682 (4)0.020 (2)
H20.651 (6)0.050 (3)0.637 (3)0.024*
N110.4566 (5)0.0057 (3)0.6716 (3)0.0201 (14)
C110.3581 (7)0.0522 (4)0.6427 (3)0.0228 (17)
N120.3936 (5)0.0477 (3)0.7105 (3)0.0198 (14)
C120.2297 (7)0.0283 (4)0.6630 (4)0.0249 (18)
H12A0.14100.05050.65030.030*
C130.2518 (7)0.0340 (4)0.7051 (3)0.0185 (16)
C140.1502 (6)0.0784 (4)0.7430 (3)0.0201 (17)
C150.0004 (7)0.0592 (5)0.7155 (4)0.043 (2)
H15A0.01970.00630.72550.064*
H15B0.06670.09170.73710.064*
H15C0.00830.06710.66630.064*
C160.1666 (8)0.0593 (5)0.8180 (4)0.042 (2)
H16A0.14580.00580.82430.064*
H16B0.26350.06980.83550.064*
H16C0.10120.08990.84250.064*
C170.1685 (7)0.1641 (4)0.7322 (4)0.035 (2)
H17A0.25850.18050.75440.053*
H17B0.16730.17480.68350.053*
H17C0.09130.19120.75170.053*
C180.3942 (7)0.1178 (4)0.6006 (3)0.0290 (18)
H18A0.44900.10070.56330.044*
H18B0.44980.15400.62870.044*
H18C0.30740.14210.58200.044*
N210.6633 (5)0.0716 (3)0.6413 (3)0.0179 (13)
C210.7379 (7)0.0899 (4)0.5883 (4)0.0220 (18)
N220.6283 (5)0.1372 (3)0.6741 (3)0.0197 (14)
C220.7480 (7)0.1676 (4)0.5863 (3)0.0210 (17)
H22A0.79310.19630.55350.025*
C230.6810 (7)0.1960 (4)0.6406 (3)0.0185 (16)
C240.6637 (7)0.2763 (4)0.6629 (3)0.0213 (17)
C250.7483 (8)0.2890 (4)0.7295 (4)0.046 (2)
H25A0.84730.27640.72440.069*
H25B0.74110.34200.74280.069*
H25C0.71150.25690.76450.069*
C260.5075 (8)0.2955 (4)0.6694 (4)0.045 (2)
H26A0.47040.26440.70500.067*
H26B0.49850.34880.68110.067*
H26C0.45410.28550.62620.067*
C270.7192 (9)0.3285 (4)0.6092 (4)0.052 (3)
H27A0.81820.31660.60320.078*
H27B0.66360.32130.56610.078*
H27C0.71150.38100.62390.078*
C280.7950 (8)0.0326 (4)0.5427 (4)0.032 (2)
H28A0.85720.00190.56950.047*
H28B0.71710.00410.52010.047*
H28C0.84850.05780.50860.047*
N310.6834 (5)0.0148 (3)0.7418 (3)0.0168 (13)
C310.7637 (7)0.0693 (4)0.7730 (3)0.0202 (17)
N320.6586 (5)0.0395 (3)0.7898 (3)0.0163 (13)
C320.7914 (7)0.0493 (4)0.8398 (4)0.0240 (18)
H32A0.84530.07730.87330.029*
C330.7268 (7)0.0189 (4)0.8490 (3)0.0208 (17)
C340.7202 (8)0.0639 (4)0.9131 (3)0.0280 (19)
C350.8147 (9)0.0263 (5)0.9695 (4)0.055 (3)
H35A0.91280.02720.95730.082*
H35B0.80690.05381.01210.082*
H35C0.78470.02600.97510.082*
C360.7734 (7)0.1441 (4)0.9029 (4)0.032 (2)
H36A0.70780.17080.87090.049*
H36B0.77990.17060.94650.049*
H36C0.86670.14220.88480.049*
C370.5678 (8)0.0651 (4)0.9346 (4)0.039 (2)
H37A0.50820.09350.90120.059*
H37C0.53260.01340.93720.059*
H37D0.56560.08920.97910.059*
C380.8094 (8)0.1369 (4)0.7359 (4)0.032 (2)
H38C0.72650.16300.71520.047*
H38D0.87020.12130.70030.047*
H38A0.86160.17080.76760.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ga10.0138 (4)0.0193 (4)0.0185 (4)0.0004 (4)0.0019 (3)0.0008 (4)
Ga20.0323 (5)0.0248 (5)0.0303 (5)0.0068 (4)0.0037 (4)0.0039 (4)
Cl10.0606 (16)0.0637 (17)0.0660 (17)0.0216 (13)0.0124 (13)0.0239 (14)
Cl20.0654 (17)0.0650 (17)0.089 (2)0.0020 (14)0.0020 (14)0.0549 (16)
Cl30.0333 (12)0.0471 (14)0.0453 (14)0.0103 (10)0.0039 (10)0.0192 (11)
Cl40.0771 (17)0.0407 (14)0.0379 (13)0.0003 (12)0.0135 (12)0.0022 (11)
B10.021 (5)0.017 (5)0.022 (5)0.005 (4)0.005 (4)0.005 (4)
N110.019 (3)0.019 (3)0.023 (4)0.003 (3)0.005 (3)0.001 (3)
C110.023 (4)0.015 (4)0.029 (5)0.005 (3)0.005 (3)0.006 (4)
N120.012 (3)0.021 (3)0.026 (4)0.002 (3)0.006 (3)0.000 (3)
C120.019 (4)0.021 (4)0.033 (5)0.006 (3)0.011 (4)0.001 (4)
C130.015 (4)0.024 (4)0.017 (4)0.002 (3)0.005 (3)0.007 (3)
C140.011 (4)0.022 (4)0.027 (5)0.004 (3)0.001 (3)0.001 (4)
C150.016 (4)0.051 (6)0.062 (6)0.008 (4)0.001 (4)0.015 (5)
C160.040 (5)0.051 (6)0.037 (6)0.011 (4)0.011 (4)0.001 (5)
C170.026 (5)0.026 (5)0.055 (6)0.002 (4)0.015 (4)0.006 (4)
C180.029 (4)0.025 (4)0.031 (4)0.004 (4)0.008 (3)0.003 (4)
N210.019 (3)0.015 (3)0.019 (4)0.001 (3)0.002 (3)0.002 (3)
C210.013 (4)0.029 (5)0.024 (5)0.001 (3)0.003 (3)0.008 (4)
N220.019 (3)0.020 (3)0.020 (3)0.001 (3)0.002 (3)0.004 (3)
C220.026 (4)0.017 (4)0.020 (4)0.002 (3)0.006 (3)0.001 (3)
C230.021 (4)0.019 (4)0.016 (4)0.002 (3)0.003 (3)0.002 (3)
C240.030 (4)0.016 (4)0.020 (4)0.000 (3)0.011 (3)0.002 (3)
C250.054 (6)0.026 (5)0.057 (6)0.012 (4)0.005 (5)0.012 (4)
C260.049 (6)0.024 (5)0.063 (6)0.005 (4)0.018 (5)0.006 (4)
C270.084 (7)0.026 (5)0.051 (6)0.009 (5)0.036 (5)0.002 (4)
C280.047 (5)0.023 (4)0.028 (5)0.004 (4)0.021 (4)0.002 (4)
N310.011 (3)0.020 (3)0.020 (3)0.002 (3)0.005 (2)0.004 (3)
C310.018 (4)0.020 (4)0.023 (5)0.001 (3)0.007 (3)0.010 (4)
N320.013 (3)0.021 (3)0.015 (3)0.000 (3)0.003 (3)0.001 (3)
C320.025 (4)0.026 (4)0.019 (5)0.007 (4)0.006 (3)0.001 (4)
C330.021 (4)0.027 (4)0.015 (4)0.003 (3)0.003 (3)0.009 (3)
C340.038 (5)0.033 (5)0.013 (4)0.017 (4)0.001 (4)0.002 (4)
C350.079 (7)0.066 (7)0.017 (5)0.027 (5)0.009 (5)0.014 (4)
C360.029 (5)0.039 (5)0.028 (5)0.005 (4)0.003 (4)0.015 (4)
C370.045 (5)0.047 (5)0.027 (5)0.006 (4)0.008 (4)0.003 (4)
C380.040 (5)0.017 (4)0.039 (5)0.008 (4)0.009 (4)0.002 (4)
Geometric parameters (Å, º) top
Ga1—H11.49 (6)N21—C211.346 (8)
Ga1—N221.941 (5)N21—N221.385 (7)
Ga1—N121.942 (5)C21—C221.383 (9)
Ga1—N321.958 (5)C21—C281.486 (9)
Ga2—Cl22.156 (2)N22—C231.350 (8)
Ga2—Cl12.161 (2)C22—C231.380 (8)
Ga2—Cl42.173 (2)C23—C241.506 (9)
Ga2—Cl32.175 (2)C24—C251.511 (9)
B1—N211.542 (9)C24—C271.530 (9)
B1—N311.547 (9)C24—C261.539 (9)
B1—N111.553 (9)N31—C311.355 (8)
N11—C111.346 (8)N31—N321.384 (7)
N11—N121.383 (7)C31—C321.375 (9)
C11—C121.378 (9)C31—C381.486 (9)
C11—C181.486 (9)N32—C331.349 (8)
N12—C131.368 (8)C32—C331.376 (9)
C12—C131.391 (9)C33—C341.502 (9)
C13—C141.489 (9)C34—C361.529 (10)
C14—C161.518 (9)C34—C351.536 (10)
C14—C151.529 (9)C34—C371.540 (9)
C14—C171.547 (9)
H1—Ga1—N22120 (2)N22—N21—B1120.6 (5)
H1—Ga1—N12122 (2)N21—C21—C22107.7 (6)
N22—Ga1—N1295.4 (2)N21—C21—C28122.7 (6)
H1—Ga1—N32123 (2)C22—C21—C28129.6 (7)
N22—Ga1—N3294.8 (2)C23—N22—N21108.2 (5)
N12—Ga1—N3295.2 (2)C23—N22—Ga1139.5 (5)
Cl2—Ga2—Cl1111.67 (11)N21—N22—Ga1112.3 (4)
Cl2—Ga2—Cl4109.53 (10)C23—C22—C21107.8 (6)
Cl1—Ga2—Cl4107.98 (10)N22—C23—C22107.8 (6)
Cl2—Ga2—Cl3106.75 (9)N22—C23—C24122.5 (6)
Cl1—Ga2—Cl3108.91 (10)C22—C23—C24129.7 (6)
Cl4—Ga2—Cl3112.04 (9)C23—C24—C25109.5 (6)
N21—B1—N31108.4 (6)C23—C24—C27108.7 (5)
N21—B1—N11108.0 (6)C25—C24—C27109.0 (6)
N31—B1—N11106.9 (6)C23—C24—C26111.0 (6)
C11—N11—N12109.9 (5)C25—C24—C26110.8 (6)
C11—N11—B1130.3 (6)C27—C24—C26107.8 (6)
N12—N11—B1119.8 (5)C31—N31—N32107.7 (5)
N11—C11—C12107.1 (6)C31—N31—B1132.5 (6)
N11—C11—C18122.5 (6)N32—N31—B1119.9 (5)
C12—C11—C18130.4 (6)N31—C31—C32108.5 (6)
C13—N12—N11107.3 (5)N31—C31—C38121.8 (6)
C13—N12—Ga1139.9 (5)C32—C31—C38129.7 (7)
N11—N12—Ga1112.9 (4)C33—N32—N31108.1 (5)
C11—C12—C13108.5 (6)C33—N32—Ga1139.2 (5)
N12—C13—C12107.2 (6)N31—N32—Ga1112.5 (4)
N12—C13—C14122.5 (6)C31—C32—C33107.3 (6)
C12—C13—C14130.2 (6)N32—C33—C32108.5 (6)
C13—C14—C16110.2 (6)N32—C33—C34122.8 (6)
C13—C14—C15109.0 (6)C32—C33—C34128.7 (6)
C16—C14—C15109.1 (6)C33—C34—C36110.5 (6)
C13—C14—C17111.6 (6)C33—C34—C35109.0 (6)
C16—C14—C17110.4 (6)C36—C34—C35108.5 (6)
C15—C14—C17106.4 (6)C33—C34—C37109.6 (6)
C21—N21—N22108.5 (5)C36—C34—C37110.5 (6)
C21—N21—B1130.9 (6)C35—C34—C37108.7 (6)

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[In(C15H22BN6)][In(C24H40BN6)][Ga(C24H40BN6)H][GaCl4]
Mr412.02538.25705.68
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, Ama2Monoclinic, P21/c
Temperature (K)125125125
a, b, c (Å)17.1939 (7), 13.3487 (5), 7.7658 (3)16.6414 (8), 15.8504 (7), 10.3779 (5)9.5170 (15), 17.753 (3), 19.763 (3)
α, β, γ (°)90, 90, 9090, 90, 9090, 93.952 (3), 90
V3)1782.38 (12)2737.4 (2)3331.2 (9)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.330.891.96
Crystal size (mm)0.20 × 0.10 × 0.100.30 × 0.15 × 0.100.08 × 0.03 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2007)
Empirical (using intensity measurements)
(SADABS; Bruker, 2007)
Empirical (using intensity measurements)
(SADABS; Bruker, 2007)
Tmin, Tmax0.776, 0.8780.777, 0.9170.859, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
23607, 2311, 2124 22008, 4378, 4151 35586, 5876, 3039
Rint0.0360.0280.243
(sin θ/λ)max1)0.6670.7180.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.076, 1.09 0.019, 0.043, 1.00 0.063, 0.116, 1.01
No. of reflections231143785876
No. of parameters120295353
No. of restraints17970
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.560.29, 0.250.65, 0.65
Absolute structure?Flack (1983), with how many Friedel pairs??
Absolute structure parameter?0.051 (15)?

Computer programs: SMART (Bruker, 2007), APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
In1—N222.3658 (19)In1—N122.369 (3)
N22—In1—N22i77.37 (9)N22—In1—N1278.30 (7)
Symmetry code: (i) x, y+1/2, z.
Selected geometric parameters (Å, º) for (II) top
In1—N222.397 (7)In2—N422.372 (8)
In1—N122.443 (7)In2—N322.405 (8)
N22—In1—N1276.7 (3)N42—In2—N3279.5 (3)
N12—In1—N12i81.6 (6)N32—In2—N32i83.3 (6)
Symmetry code: (i) x1/2, y, z.
Selected geometric parameters (Å, º) for (III) top
Ga1—H11.49 (6)Ga2—Cl22.156 (2)
Ga1—N221.941 (5)Ga2—Cl12.161 (2)
Ga1—N121.942 (5)Ga2—Cl42.173 (2)
Ga1—N321.958 (5)Ga2—Cl32.175 (2)
H1—Ga1—N22120 (2)Cl2—Ga2—Cl1111.67 (11)
H1—Ga1—N12122 (2)Cl2—Ga2—Cl4109.53 (10)
N22—Ga1—N1295.4 (2)Cl1—Ga2—Cl4107.98 (10)
H1—Ga1—N32123 (2)Cl2—Ga2—Cl3106.75 (9)
N22—Ga1—N3294.8 (2)Cl1—Ga2—Cl3108.91 (10)
N12—Ga1—N3295.2 (2)Cl4—Ga2—Cl3112.04 (9)
Selected geometric data for {[TpR,R']In} fragments top
Compound(In—N)av (Å)(N—In—N)av (°)Σ(N—In—N) (°)P (°)aReference
[TpPh]In2.43078.2234.7125.3Frazer et al. (1994)
[TpMe,Me]In2.36778.0234.0126.0This work
[TpBu,Me]Inb2.41179.6238.7121.4This work
[TpBu]In2.48879.3237.9122.1Kuchta, Bonanno & Parkin (1996) or Kuchta, Dias et al. (1996) ?
[TpBu,Bu]In2.46879.9239.7120.3Kuchta, Bonanno & Parkin (1996) or Kuchta, Dias et al. (1996) ?
[TpCF3,CF3]In2.57871.5214.6145.4Dias & Jin (2000)
[TpMe,Me]InCl2.MeCN2.293cccCowley et al. (1988)
[TpMe,Me]InFe(CO)42.19985.3256.0104.0Reger et al. (1994)
[TpMe,Me]InW(CO)52.24682.8248.3111.7Reger et al. (1994)
[TpBu,Bu]InSe2.24286.4259.3100.7Kuchta & Parkin (1995)
{[TpMe,Me]In2}+2.24184.9254.7105.3Frazer et al. (1992)
Notes: (a) pyramidality, P = 360° - Σ(N—In—N). (b) Average values for two disordered configurations. (c) Values not listed by Cowley et al. (1988).
Selected bond lengths and angles for M[TpR,R']H derivatives top
Compound(M—N)av (Å)M—H (Å)Reference
Be[TpBu]H1.7781.228 (70)Han & Parkin (1992)
[Ga(TpBu,Me)H][GaCl4]1.9471.51 (6)This work
Co[TpBu,Me]H2.0391.69 (4)Jewson et al. (1999)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds