Download citation
Download citation
link to html
The heteroscorpionate ligand bis­(3,5-di-tert-butyl­pyrazol-1-yl)di­thio­acetate (bdtbpzdta) has been synthesized by reacting bis­(3,5-di-tert-butyl­pyrazol-1-yl)methane with n-BuLi and CS2. The ligand was isolated as [bis­(3,5-di-tert-butyl­pyrazol-1-yl)di­thio­acetato](tetra­hydro­furan)­lithium(I) tetra­hydro­furan mono­solvate, [Li(C24H39N4S2)(C4H8O)]·C4H8O or [Li(bdtbpzdta)(THF)]·THF, in which the lithium cation is bound by the [kappa]3N,N',S-coordinated heteroscorpionate ligand. A similar coordination mode is observed for a zinc chloride complex bearing the bdtbpzdta ligand, namely [bis­(3,5-di-tert-butyl­pyrazol-1-yl)di­thio­acetato]­chlorido­zinc(II), [Zn(C24H39N4S2)Cl] or [Zn(bdtbpzdta)Cl], which exhibits [kappa]3N,N',S-coordination and resembles the active site of zinc-containing peptide de­formyl­ases (PDFs).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113021148/yp3040sup1.cif
Contains datablocks global, compound2, compound1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113021148/yp3040compound1sup2.hkl
Contains datablock compound1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113021148/yp3040compound2sup3.hkl
Contains datablock compound2

CCDC references: 964754; 964755

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

The bis­(di-tert-butyl­pyrazol-1-yl)di­thio­acetate ligand (bdtbpzdta) and complexes thereof top

Synthesis of [Li(bdtbpzdta)(THF)].THF, (1) top

The synthesis of (1) was achieved following the procedure described for Li[bdmpzdta] (Otero et al., 2002). This procedure is almost identical to the procedures reported by others previously (Bassanetti et al., 2010; Spiro­pulos et al., 2011). Bis(3,5-di-tert-butyl­pyrazol-1-yl)methane (bdtbpzm) was treated with an equimolar amount of n-butyl­lithium at low temperature in tetra­hydro­furan. Upon warming, an excess of carbon di­sulfide was added inducing an instant colour change to deep red (Fig. 6). Upon standing overnight the product separated from the solution as the red lithium salt [Li(bdtbpzdta)(THF)].THF. Precipitation was completed by partial removal of the solvent and cooling to 243 K. No attempts were made to obtain the solvent free product. The 1H NMR spectrum displays two multiplet signals for the two tetra­hydro­furan molecules (1.76 and 3.60 p.p.m.). The appropriate signals are also present in the 13C NMR spectrum (25.1 and 67.0 p.p.m.). Signals at 1.24 and 1.76 p.p.m. (1H) and at 30.4, 30.6, 31.4, and 31.6 p.p.m. (13C) are assigned to the tert-butyl substituents. In the IR spectrum, the C—S vibrations occur at ν(CS2)asym = 1085 cm-1 and ν(CS2)sym = 801 cm-1. In the MS, the [Li(bdtbpzdta)]+ ion is detected at m/z = 455. The spectroscopic data agrees well with that reported in the literature (Bassanetti et al., 2010; Spiro­pulos et al., 2011).

The zinc-dependent metalloprotein peptide de­formyl­ase in eubacteria is essential for bacterial survival. The active site of this class of enzymes features a tetra­hedral N,N,S-coordination of the coenzyme zinc by two histidine and one cysteine residues (Fig. 1) (Dirk et al., 2008). These enzymes catalyse the hydrolysis of an N-terminal formyl group of me­thio­nine (Fig. 2), which is essential for the bacterial protein synthesis, growth, and survival (Goldberg et al., 2005). The high activity of anti-PDF drugs on bacterial PDF and the low effect on mammal and vegetal PDFs, make inhibitors for PDFs inter­esting for potential anti-bacterial drugs. Derivatives of hydroxamic acids are widely used as model inhibitors for these enzymes (Guay, 2007). Several model complexes have been established to mimic the active site of zinc PDFs, such as Zinc Tp or bis­(pyrazol-1-yl)acetato complexes (Ruf et al., 1996; Hammes et al., 2003). Furthermore, heteroscorpionate N,N,S ligands were employed, such as (2-methyl­ethane­thiol-bis­(3,5-di­methyl­pyrazol-1-yl)methane, because these due to higher similarity appear more suitable to model the active site of the zinc PDFs. Complexes thereof include aceto­hydroxamato derived inhibitors or acetate as ligands as well as halogenido donors (Figure 3) (Hammes et al., 2003; Galardon et al., 2007; Hammes & Carrano, 2000, 2001). So far, only little research has been done on bis­(pyrazol-1-yl)di­thio­acetato ligands, although some complexes of Cu, Ru as well as of the early transition metals titanium, hafnium, zirconium, scandium, and yttrium have been described (Ortiz et al., 2005; Otero et al., 2002, 2004a, 2004b, 2005). Under similar conditions, the bulkier lithium bis­(3,5-di­phenyl­pyrazol-1-yl)di­thio­acetate Li[bdphpzdt] was isolated as a water and tetra­hydro­furan adduct [Li(bdphpzdta)(THF)(H2O)], as well as [Li(bdphpza)(THF)(H2O)] [bdphpza = bis­(3,5-di­phenyl­pyrazol-1-yl)acetate]. Although structural data is only available for [Li(bdphpzdta)(THF)(H2O)] (Figure 5), the lithium ion in all three salts is most likely coordinated tetra­hedrally by the two pyrazolyl moieties and the tetra­hydro­furan/water molecules (Otero et al., 2002). In case of the bis­(3,5-di-tert-butyl­pyrazol-1-yl)di­thio­acetate (bdtbpzdta) the molecular structure gained by X-ray structure determination revealed formation of a trinuclear complex [Li(bdtbpzdta)]3.2.25THF (Bassanetti et al., 2010). Nevertheless, in contrast to this N2S2 coordination mode also an ?3-N2S coordination was recently reported for [Zn(bdtbpzdta)Br] (Spiro­pulos et al., 2011).

Molecular structure of [Li(bdtbpzdta)(THF)].THF, (1) top

Crystals suitable for single-crystal X-ray structure analysis were obtained from the mother liquor. A presentation of the molecular structure is given in Fig. 7. Selected bond lengths and angles are summarized in Table 1. The substance crystallises in the space group P21/c with Z = 4. The final structural model shows rotational disorder for the two tert-butyl groups of the pyrazole ring containing atom N1 with a ratio of 51:49 and 81:19, respectively. Fig. 7 depicts the fragment with the higher occupancy. Also a non coordinated THF molecule is disordered and was refined on two different positions with an occupancy ratio of 66:33. SIMU restraints (SIMU 0.01 0.02) have been applied for each of the disordered tert-butyl groups and the disordered THF as well, resulting in 180 restraints. An additional 30 restraints were applied by linking the disordered noncoordinated THF to the coordinated THF (via SAME O1 > C28) to ensure chemical reasonable distances and angles in the disordered THF.

The lithium ion is coordinated by the bdtbpzdta ligand and the tetra­hydro­furan molecule in a tetra­hedral geometry. Thus, the bdtbpzdta ligand features an N,N',S-coordination, whereas the aforementioned ligand bdphpzdta coordinates to the Li atom in [Li(bdphpzdta)(THF)(H2O)] in a N,N'-mode,. The bond lengths involving sulfur are 1.675 (3) (C—S), 1.660 (2) (CS), and 2.492 (4) Å (Li—S). In contrast to these findings, the CS2 group in [Li(bdphpzdta)(THF)(H2O)] remains nonbonded, and the C—S bond lengths are slightly shorter [1.663 (7) and 1.655 (7) Å]. The Li—O distance is 1.957 (3)Å. The Li—N distances are 2.085 (4) and 2.060 (5)Å. These bond lengths are comparable to the values of [Li(bdphpzdta)(THF)(H2O)] [Li—N = 2.07 (1) and 2.06 (1)Å and Li—O = 1.94 (1)Å; Otero et al., 2002].

Synthesis of [Zn(bdtbpzdta)Cl], (2) top

For the syntheses of [Zn(bdtbpzdta)Cl], (2), [Li(bdtbpzdta)(THF)].THF, (1), was treated with a slight excess of anhydrous zinc chloride at room temperature. In order to separate any unreacted zinc chloride, the crude product was dried and re-dissolved in di­chloro­methane, the salts were filtered off, and the product was precipitated with pentane (Fig. 8).

Compared to the starting lithium compound the 1H NMR spectra of the zinc complex 2 shows considerable down-field shifts of the resonances. Thus, the signals arising from the tert-butyl groups are shifted from 1.11 and 1.24 p.p.m. to 1.44 and 1.49 p.p.m. (CD2Cl2) and to 1.46 and 1.52 p.p.m. (CDCl3), respectively. In the 13C NMR spectrum, coordination of the di­thio­carboxyl­ate moiety to zinc caused an up-field shift of the CS2- carbon signal from 248.4 to 238.3 p.p.m. (CDCl3). In the IR spectra, the di­thio­carboxyl­ate resonances were assigned to bands at νasym = 1084cm-1 (KBr) and 1082cm-1 (CH2Cl2).

Molecular structure of [Zn(bdtbpzdta)Cl], (2) top

Red crystals suitable for an X-ray single-crystal structure determination could be obtained from a di­chloro­methane solution. The molecular structure is shown in Fig. 9. Relevant bond lengths and angles are given in Table 3. The substance crystallizes in the space group P21/n with Z = 4. The [Zn(bdtbpzdta)Cl] molecule features the expected tetra­hedral coordination geometry. The two pyrazole donors are tilted to each other by 41.2°. The di­thio­acetate group displays an almost coplanar or linear coordination with respect to the zinc di­thio­acetate plane compared to the lithium compound [Li(bdtbpzdta)(THF)], (1), and the complexes [Zn(bdtbpza)Cl], [Zn(bdmpzEtMe2S)Cl], [Zn(bdmpzEtMe2S)(PhN(O)C(O)H)], and [Zn(b3campzEtMe2S)Cl], where the O- or S-donor groups are tilted (Galardon et al., 2007; Hammes & Carrano, 2000; Beck et al., 2001; Godau et al., 2009). The Zn—S bond length is 2.3335 (5)Å, and is thus comparable to that of [Zn(HBpz23tBuim2S)Cl] [2.323 (1) Å; Benkmil et al., 2004] and [Zn(bdtbpzdta)Br] [2.334 (2) Å; Spiro­pulos et al., 2011]. The two Zn—N distances differ by 0.08 Å [2.0490 (13) and 2.1338 (13) Å], which contrasts to the data of complexes known from the literature, where Zn–pyrazole bonds are of almost identical in length (2.1 Å). The Zn—Cl bond length is 2.1832 (5) Å. The valence angles at the zinc centre differ only marginally from those reported for related complexes, apart from the rather small N—Zn—N angle of 86.49 (5)° which again agrees well with that of [Zn(bdtbpzdta)Br] [86.8 (3)°; Spiro­pulos et al., 2011].

Conclusions top

In summary, we observed an coordination mode of the bis­(di-tert-butyl­pyrazol-1-yl)di­thio­acetate ligand in the molecular structures of [Li(bdtbpzdta)THF].THF, (1), and [Zn(bdtbpzdta)Cl], (2). This coordination mode resembles nicely the metal ion coordination reported for the peptide de­formyl­ases (PDFs) and makes this ligand a promising candidate for more advanced structural models regarding these enzymes.

Experimental top

Synthesis of [Li(bdtbpzdta)(THF)].THF, (1) top

To a tetra­hydro­furan solution (200 ml) of bdtbpzm (14.85 g, 40.1 mmol), one equivalent of n-BuLi (25.1 ml, 40.1 mmol, 1.6 M in n-hexane) was added at 193 K. After warming to 233 K within 3 h, 1.5 equivalents of CS2 (3.6 ml, 40.1 mmol) were added. The turbid solution instantly turned deep red and was stirred for an additional 18h reaching ambient temperature. Half of the solvent was removed in vacuo. After storing the solution in a refrigerator at 243 K overnight, the light-red product was filtered off and washed twice with a small amount of THF (2 × 10 ml) yielding 16.7 g (27.9 mmol, 69.6%) as a first crop of [Li(bdtbpzdta)(THF)].THF, (1).

1H NMR (300 K, 300 MHz, DMSO-d6): δ 1.11 (s, 18H, t-Bu), 1.24 (s, 18H, t-Bu), 1.76 (m, 8H, THF), 3.60 (m, 8H, THF), 5.81 (s, 2H, CH), 7.48 (s, 1H, CH); 13C{1H} NMR (300 K, 75.5 MHz, DMSO-d6): δ 25.1 (THF), 30.4 (s, Me), 30.6 (s, Me), 31.4 (s, Ct-Bu), 31.6 (s, Ct-Bu), 67.0 (THF), 99.8 (s, CH), 150.9 (s, Cpz), 155.8 (s, Cpz), 245.4 (s, CS2-); 13C{1H} NMR (300 K, 75.5 MHz, CDCl3): δ 25.5 (THF), 30.3 (s, Me), 30.9 (s, Me), 31.8 (s, Ct-Bu), 31.9 (s, Ct-Bu), 67.8 (THF), 83.7 (s, CH), 101.7 (s, Cpz), 153.5 (s, Cpz), 161.1 (s, Cpz), 248.4 (s, CS2-). FD+ MS: m/z (%) 455 (100) [Li(bdtbpzdta)+H]+. IR (KBr): ν (cm-1) = 2965 (s), 2872 (m), 1653 (w), 1542 (m), 1462 (m), 1443 (m), 1364 (m), 1317 (m), 1253 (m), 1224 (m), 1085 (s), 1057 (m), 1036 (m), 1009 (m), 878 (m), 853 (w), 801 (m), 744 (m), 622 (w), 445 (w). IR (CH2Cl2): ν? (cm-1) = 2971 (s), 2909 (w), 2874 (w), 1543 (w), 1464 (w), 1364 (m), 1226 (w), 1083 (m),1063m, 1037 (m), 1037 (w), 1006 (w). CHN analysis calculated for C32H55LiN4O2S2, (1): C 64.18, H 9.26, N 9.36, S 10.71%; found: C 63.86, H 9.21, N 9.41, S 10.79%.

Synthesis of [Zn(bdtbpzdta)Cl], (2) top

To an aceto­nitrile solution (100 ml) of anhydrous ZnCl2 (590 mg, 4.33 mmol) [Li(bdtbpzdta)(THF)].THF, (1) (2.59 g, 4.33 mmol), was added and stirred overnight. All volatiles were removed in vacuo and di­chloro­methane (50 ml) was added. The solution was filtered through celite and the solvent was removed in vacuo to yield 1.91 g (3.47 mmol, 80.1%) of [Zn(bdtbpzdta)Cl], (2), as a light-red solid (m.p. ~452 K (decomposition). 1H NMR (298 K, 300 MHz, CD2Cl2): δ 1.44 (s, 18H, t-Bu), 1.49 (s, 18H, t-Bu), 6.24 (s, 2H, pz), 8.07 (s, 1H, CH). 1H NMR (298 K, 300 MHz, CDCl3): δ 1.46 (s, 18H, t-Bu), 1.52 (s, 18H, t-Bu'), 6.20 (s, 2H, pz), 8.09 (s, 1H, CH). 13C{1H} NMR (298 K, 75.5 MHz, CD2Cl2): δ 30.4 (s, Me), 31.4 (s, Me), 32.8 (s, Ct-Bu), 33.2 (s, Ct-Bu), 81.6 (s, CH), 105.0 (s, Cpz), 157.3 (s, Cpz), 165.6 (s, Cpz), 239.0 (s, CS2-); 13C{1H} NMR (298 K, 75.5 MHz, CDCl3): δ 30.3 (s, Me), 31.2 (s, Me), 32.5 (s, Ct-Bu), 32.8 (s, Ct-Bu), 81.1 (s, CH), 104.3 (s, Cpz), 156.6 (s, Cpz), 165.1 (s, Cpz), 238.3 (s, CS2-). FD+ MS: m/z (%) 549 (100) [MH]+. IR (KBr): ν? (cm-1) = 2965 (s), 2872 (w), 1543 (m), 1533 (m), 1369 (m), 1339 (w), 1309 (w), 1253 (m), 1223 (m), 1136 (w), 1084 (s), 1058 (m), 1025 (w), 1010 (w), 879 (w), 827 (m), 790 (m), 720 (m), 690 (w), 625 (w). IR (CH2Cl2): ν?(cm–1) = 1543 (m), 1466 (w), 1439 (w), 1368 (m), 1249 (m), 1219 (s), 1082 (s), 1051 (m), 1026 (w). CHN analysis calculated for C24H39ClN4S2Zn: C 52.55, H 7.17, N 10.21, S 11.69%; found: C 52.42, H 7.39, N 10.27, S 11.45%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For related literature, see: Bassanetti et al. (2010); Beck et al. (2001); Benkmil et al. (2004); Dirk et al. (2008); Galardon et al. (2007); Godau et al. (2009); Goldberg et al. (2005); Guay (2007); Hammes & Carrano (2000, 2001); Hammes et al. (2003); Ortiz et al. (2005); Otero et al. (2002, 2004a, 2004b, 2005); Ruf et al. (1996); Spiropulos et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008) for compound1; COLLECT (Hooft, 1999) for compound2. Cell refinement: SAINT (Bruker, 2008) for compound1; EVALCCD (Duisenberg et al., 2003) for compound2. Data reduction: SAINT (Bruker, 2008) for compound1; EVALCCD (Duisenberg et al., 2003) for compound2. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for compound1; SHELXS86 (Sheldrick, 2008) for compound2. For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
(a) Zinc-dependent peptide deformylase (PDF) and (b) the N,N',S-coordination motif of the active site (PDB: 3CPM) (Dirk et al., 2008).

The deformylation reaction of PDF in the peptide biosynthesis.

Zinc complexes bearing bispyrazolyl-based thiolate and thioether ligands.

The synthesis of [Li(bdmpzdta)] according to the literature. Conditions: (i) n-BuLi; (ii) CS2.

The molecular structure of [Li(bdphpzdta)(H2O)(THF)]. Cocrystallised solvent has been omitted for clarity (Otero et al., 2002).

The synthesis of [Li(bdtbpzdta)(THF)].THF, (1). Conditions: (i) n-BuLi, 353 K; (ii) CS2.

The molecular structure of [Li(bdtbpzdta)(THF)].THF, (1) (main orientation of the disordered t-Bu group depicted). Displacement ellipsoids are drawn at the 50% probability level. H atoms and cocrystallised solvent have been omitted for clarity.

The synthesis of [Zn(bdtbpzdta)Cl], (2). Conditions: (i) ZnCl2; (ii) CH2Cl2/pentane

The molecular structure of [Zn(bdtbpzdta)Cl], (2), Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
(compound1) [Bis(3,5-di-tert-butylpyrazol-1-yl)dithioacetato](tetrahydrofuran)lithium(I) tetrahydrofuran monosolvate top
Crystal data top
[Li(C24H39N4S2)(C4H8O)]·C4H8OF(000) = 1304
Mr = 598.86Dx = 1.132 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4077 reflections
a = 12.4026 (3) Åθ = 2.5–23.8°
b = 16.3932 (4) ŵ = 0.18 mm1
c = 17.8867 (4) ÅT = 220 K
β = 105.013 (2)°Block, orange
V = 3512.56 (14) Å30.34 × 0.3 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
7066 independent reflections
Graphite monochromator4549 reflections with I > 2σ(I)
Detector resolution: 83.33 pixels mm-1Rint = 0.050
ϕ and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.687, Tmax = 0.746k = 2020
25289 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.7204P]
where P = (Fo2 + 2Fc2)/3
7066 reflections(Δ/σ)max = 0.037
490 parametersΔρmax = 0.42 e Å3
210 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Li(C24H39N4S2)(C4H8O)]·C4H8OV = 3512.56 (14) Å3
Mr = 598.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4026 (3) ŵ = 0.18 mm1
b = 16.3932 (4) ÅT = 220 K
c = 17.8867 (4) Å0.34 × 0.3 × 0.2 mm
β = 105.013 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
7066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4549 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.746Rint = 0.050
25289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054210 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
7066 reflectionsΔρmin = 0.29 e Å3
490 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The final structural model shows rotational disorder for the two tert-butyl groups of the pyrazolyl ring containing N1 with a ratio of 51:49 and 81:19, respectively. Figure 7 depicts the fragment with the higher occupancy. Also a non coordinated THF molecule is disordered and was refined on two different positions with an occupancy ratio of 66:33. SIMU restraints (SIMU 0.01 0.02 C5 > C7A; SIMU 0.01 0.02 C9 > C11A; SIMU 0.01 0.02 O2 > C32A) have been applied for each of the disordered tert-butyl groups and the disordered THF as well, resulting in 180 restraints. Additional 30 restraints were applied by linking the disordered THF to the coordinated THF (via SAME O1 > C28) to ensure chemical reasonable distances and angles in the disordered THF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.50049 (5)0.82629 (4)0.04498 (4)0.0456 (2)
S20.50893 (6)0.65679 (5)0.10867 (4)0.0542 (2)
N10.70873 (15)0.81874 (11)0.04239 (10)0.0334 (4)
N20.64554 (15)0.74906 (11)0.05018 (10)0.0328 (4)
N30.74992 (15)0.70770 (11)0.07637 (10)0.0320 (4)
N40.77524 (15)0.77819 (12)0.11917 (10)0.0343 (4)
C10.69882 (18)0.84496 (14)0.11427 (13)0.0351 (5)
C20.6279 (2)0.79386 (16)0.16745 (13)0.0421 (6)
H2A0.60760.79980.22160.051*
C30.59315 (19)0.73333 (15)0.12613 (13)0.0377 (6)
C40.7610 (2)0.91937 (15)0.12973 (13)0.0408 (6)
C50.8587 (8)0.8871 (4)0.1622 (7)0.093 (3)0.513 (7)
H5A0.82860.85390.20770.139*0.513 (7)
H5B0.9090.85440.1230.139*0.513 (7)
H5C0.89920.93290.1760.139*0.513 (7)
C60.6905 (7)0.9699 (5)0.1922 (6)0.091 (3)0.513 (7)
H6A0.62320.98590.17790.137*0.513 (7)
H6B0.67050.93860.23980.137*0.513 (7)
H6C0.73161.01820.19970.137*0.513 (7)
C70.8116 (12)0.9678 (6)0.0588 (5)0.107 (4)0.513 (7)
H7A0.75290.99380.04060.161*0.513 (7)
H7B0.86051.00910.07080.161*0.513 (7)
H7C0.85420.93190.01880.161*0.513 (7)
C5A0.7753 (10)0.9194 (6)0.2101 (5)0.096 (3)0.487 (7)
H5AA0.70290.91490.24690.144*0.487 (7)
H5AB0.82150.87340.21640.144*0.487 (7)
H5AC0.81110.96970.21910.144*0.487 (7)
C6A0.6860 (6)0.9945 (4)0.1231 (6)0.081 (3)0.487 (7)
H6AA0.66170.99020.07580.121*0.487 (7)
H6AB0.62130.99550.16730.121*0.487 (7)
H6AC0.72851.04440.12190.121*0.487 (7)
C7A0.8691 (6)0.9301 (6)0.0697 (6)0.074 (3)0.487 (7)
H7AA0.85630.92620.01860.112*0.487 (7)
H7AB0.90020.98320.07590.112*0.487 (7)
H7AC0.9210.88790.07580.112*0.487 (7)
C80.5074 (2)0.66674 (16)0.15768 (14)0.0472 (7)
C90.4641 (7)0.6814 (5)0.2452 (4)0.088 (3)0.808 (13)
H9A0.52520.67560.26940.132*0.808 (13)
H9B0.43340.7360.25430.132*0.808 (13)
H9C0.40650.64180.26710.132*0.808 (13)
C100.5547 (6)0.5816 (3)0.1453 (4)0.0743 (18)0.808 (13)
H10A0.61990.57790.16550.111*0.808 (13)
H10B0.49890.54280.1720.111*0.808 (13)
H10C0.57580.56930.09030.111*0.808 (13)
C110.4073 (5)0.6752 (4)0.1228 (4)0.0714 (17)0.808 (13)
H11A0.38330.73170.12570.107*0.808 (13)
H11B0.42880.65790.06910.107*0.808 (13)
H11C0.34650.64130.15150.107*0.808 (13)
C9A0.512 (4)0.644 (2)0.2394 (16)0.095 (8)0.192 (13)
H9A10.45070.60740.2620.143*0.192 (13)
H9A20.58220.61760.23770.143*0.192 (13)
H9A30.50490.69320.27070.143*0.192 (13)
C10A0.518 (2)0.5825 (13)0.1102 (17)0.068 (6)0.192 (13)
H10D0.48140.58810.06860.102*0.192 (13)
H10E0.59610.56950.08860.102*0.192 (13)
H10F0.48250.5390.14470.102*0.192 (13)
C11A0.397 (2)0.6983 (19)0.163 (2)0.079 (7)0.192 (13)
H11D0.39750.72810.11590.118*0.192 (13)
H11E0.34460.65340.16890.118*0.192 (13)
H11F0.37510.73450.2070.118*0.192 (13)
C120.64205 (18)0.70426 (15)0.01973 (12)0.0333 (5)
H12A0.62820.64630.00460.04*
C130.54890 (18)0.73052 (15)0.05815 (13)0.0366 (6)
C140.83005 (19)0.64977 (15)0.09937 (13)0.0359 (5)
C150.90923 (19)0.68445 (16)0.15871 (14)0.0412 (6)
H15A0.97560.65970.18710.049*
C160.87333 (18)0.76334 (15)0.16942 (12)0.0364 (6)
C170.8319 (2)0.56637 (16)0.06327 (14)0.0446 (6)
C180.8322 (2)0.57615 (18)0.02235 (15)0.0520 (7)
H18A0.90020.60340.02560.078*
H18B0.76820.60840.0490.078*
H18C0.82830.52280.04640.078*
C190.7354 (3)0.51225 (17)0.07224 (17)0.0583 (8)
H19A0.73870.50630.12670.087*
H19B0.74140.4590.050.087*
H19C0.6650.53720.04570.087*
C200.9405 (3)0.52413 (19)0.10463 (18)0.0653 (8)
H20A0.94320.51760.1590.098*
H20B1.00340.5570.09970.098*
H20C0.94410.4710.08160.098*
C210.9301 (2)0.82853 (17)0.22574 (14)0.0442 (6)
C221.0347 (2)0.7935 (2)0.28147 (17)0.0706 (9)
H22A1.01420.74770.30920.106*
H22B1.070.83530.31810.106*
H22C1.08640.77530.25240.106*
C230.8492 (2)0.8597 (2)0.27062 (17)0.0606 (8)
H23A0.82840.81520.29980.091*
H23B0.78290.88130.23470.091*
H23C0.88480.90240.30590.091*
C240.9652 (2)0.89896 (19)0.18110 (17)0.0610 (8)
H24A0.89950.9230.14650.091*
H24B1.01460.87860.15120.091*
H24C1.00390.940.21730.091*
Li10.6941 (3)0.8768 (3)0.0583 (2)0.0407 (9)
O10.69211 (15)0.98799 (11)0.09766 (11)0.0536 (5)
C250.6046 (3)1.00941 (19)0.1326 (2)0.0699 (9)
H25A0.58010.96130.15640.084*
H25B0.54051.03140.09360.084*
C260.6508 (4)1.0724 (3)0.1928 (3)0.1142 (16)
H26A0.6651.04920.24490.137*
H26B0.59921.11840.18860.137*
C270.7588 (3)1.0993 (2)0.1756 (2)0.0983 (13)
H27A0.76241.15890.17260.118*
H27B0.82341.07990.21570.118*
C280.7557 (3)1.06179 (18)0.0999 (2)0.0676 (9)
H28A0.71951.09830.05740.081*
H28B0.83141.04950.09580.081*
O20.1078 (4)0.8440 (3)0.4725 (3)0.1200 (17)0.665 (5)
C290.2012 (7)0.8312 (5)0.4191 (6)0.117 (2)0.665 (5)
H29A0.19820.85780.37060.141*0.665 (5)
H29B0.26450.85370.43570.141*0.665 (5)
C300.2151 (8)0.7404 (5)0.4072 (5)0.115 (2)0.665 (5)
H30A0.18740.72120.36370.138*0.665 (5)
H30B0.29260.72290.40020.138*0.665 (5)
C310.1351 (8)0.7118 (6)0.4905 (6)0.127 (2)0.665 (5)
H31A0.17230.71820.53220.152*0.665 (5)
H31B0.11010.65520.48910.152*0.665 (5)
C320.0458 (7)0.7678 (5)0.4978 (5)0.122 (2)0.665 (5)
H32A0.00210.75320.46410.147*0.665 (5)
H32B0.00040.77160.55140.147*0.665 (5)
O2A0.1108 (10)0.6896 (7)0.4520 (8)0.134 (3)0.335 (5)
C29A0.2054 (16)0.7054 (10)0.3954 (11)0.125 (4)0.335 (5)
H29C0.27160.68530.40990.15*0.335 (5)
H29D0.20220.68010.34630.15*0.335 (5)
C30A0.2070 (15)0.7973 (10)0.3891 (9)0.110 (3)0.335 (5)
H30C0.27860.81930.35890.132*0.335 (5)
H30D0.14510.81960.37090.132*0.335 (5)
C31A0.1889 (14)0.8052 (10)0.4830 (9)0.122 (3)0.335 (5)
H31C0.16630.86070.50050.147*0.335 (5)
H31D0.25810.79190.49720.147*0.335 (5)
C32A0.1075 (17)0.7512 (12)0.5154 (9)0.130 (3)0.335 (5)
H32C0.12270.72520.56090.156*0.335 (5)
H32D0.03460.77820.53080.156*0.335 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0427 (3)0.0420 (4)0.0534 (4)0.0048 (3)0.0147 (3)0.0002 (3)
S20.0589 (4)0.0542 (5)0.0580 (4)0.0000 (4)0.0307 (3)0.0137 (3)
N10.0386 (10)0.0296 (11)0.0328 (10)0.0045 (9)0.0108 (8)0.0004 (8)
N20.0418 (10)0.0280 (11)0.0286 (10)0.0057 (9)0.0089 (8)0.0009 (8)
N30.0378 (10)0.0273 (11)0.0307 (10)0.0003 (9)0.0086 (8)0.0001 (8)
N40.0397 (10)0.0319 (11)0.0307 (10)0.0008 (9)0.0080 (8)0.0010 (9)
C10.0395 (12)0.0350 (14)0.0324 (12)0.0002 (11)0.0121 (10)0.0016 (11)
C20.0567 (14)0.0410 (15)0.0281 (12)0.0073 (13)0.0100 (11)0.0000 (11)
C30.0458 (13)0.0361 (14)0.0300 (12)0.0068 (11)0.0076 (10)0.0049 (11)
C40.0500 (13)0.0368 (15)0.0371 (13)0.0082 (12)0.0139 (11)0.0052 (11)
C50.099 (6)0.054 (4)0.155 (9)0.009 (4)0.086 (6)0.019 (5)
C60.091 (5)0.060 (5)0.111 (7)0.008 (4)0.005 (5)0.045 (5)
C70.180 (11)0.086 (8)0.061 (4)0.091 (7)0.040 (6)0.018 (5)
C5A0.138 (8)0.096 (7)0.070 (5)0.057 (6)0.055 (5)0.000 (5)
C6A0.069 (4)0.045 (4)0.129 (8)0.006 (3)0.026 (5)0.027 (5)
C7A0.057 (4)0.062 (6)0.092 (7)0.028 (4)0.001 (4)0.025 (5)
C80.0622 (16)0.0404 (16)0.0346 (14)0.0175 (14)0.0048 (12)0.0045 (12)
C90.140 (6)0.063 (4)0.043 (2)0.054 (4)0.011 (3)0.006 (3)
C100.097 (4)0.039 (2)0.076 (4)0.015 (3)0.002 (3)0.013 (3)
C110.062 (3)0.078 (4)0.071 (4)0.037 (3)0.011 (3)0.014 (3)
C9A0.168 (19)0.085 (17)0.043 (10)0.054 (14)0.047 (12)0.007 (12)
C10A0.067 (11)0.046 (9)0.087 (14)0.029 (9)0.013 (9)0.016 (10)
C11A0.057 (9)0.087 (15)0.088 (15)0.030 (11)0.012 (12)0.029 (13)
C120.0405 (12)0.0279 (13)0.0310 (12)0.0041 (11)0.0087 (9)0.0005 (10)
C130.0359 (11)0.0409 (15)0.0316 (12)0.0033 (11)0.0064 (9)0.0007 (11)
C140.0454 (12)0.0348 (14)0.0318 (12)0.0075 (11)0.0177 (10)0.0075 (10)
C150.0395 (12)0.0477 (16)0.0361 (13)0.0109 (12)0.0093 (10)0.0075 (12)
C160.0372 (11)0.0422 (15)0.0297 (12)0.0005 (11)0.0083 (9)0.0047 (11)
C170.0598 (15)0.0334 (14)0.0457 (14)0.0108 (13)0.0228 (12)0.0032 (12)
C180.0650 (16)0.0486 (17)0.0494 (15)0.0071 (14)0.0275 (13)0.0029 (13)
C190.085 (2)0.0341 (15)0.0644 (19)0.0000 (15)0.0342 (16)0.0019 (14)
C200.077 (2)0.0505 (19)0.070 (2)0.0268 (17)0.0221 (16)0.0036 (15)
C210.0429 (13)0.0508 (17)0.0340 (13)0.0039 (12)0.0009 (10)0.0022 (12)
C220.0620 (18)0.079 (2)0.0555 (19)0.0047 (18)0.0114 (14)0.0011 (17)
C230.0673 (18)0.066 (2)0.0502 (17)0.0158 (16)0.0183 (14)0.0203 (15)
C240.0610 (17)0.062 (2)0.0560 (18)0.0190 (16)0.0076 (14)0.0020 (15)
Li10.047 (2)0.035 (2)0.037 (2)0.0016 (19)0.0061 (17)0.0006 (18)
O10.0607 (11)0.0361 (11)0.0650 (12)0.0033 (9)0.0183 (9)0.0049 (9)
C250.074 (2)0.0506 (19)0.092 (2)0.0029 (17)0.0345 (18)0.0121 (18)
C260.142 (4)0.070 (3)0.155 (4)0.035 (3)0.084 (3)0.057 (3)
C270.103 (3)0.063 (2)0.122 (3)0.011 (2)0.017 (3)0.044 (2)
C280.0710 (19)0.0408 (18)0.089 (2)0.0121 (16)0.0166 (17)0.0008 (17)
O20.110 (3)0.076 (3)0.164 (4)0.023 (3)0.017 (3)0.032 (3)
C290.084 (3)0.092 (5)0.172 (6)0.001 (4)0.025 (4)0.011 (4)
C300.087 (3)0.094 (5)0.161 (4)0.010 (4)0.025 (3)0.045 (4)
C310.123 (4)0.098 (5)0.157 (5)0.026 (4)0.033 (4)0.018 (4)
C320.119 (4)0.111 (4)0.129 (5)0.036 (4)0.018 (4)0.007 (4)
O2A0.123 (5)0.122 (5)0.156 (5)0.002 (4)0.036 (4)0.018 (5)
C29A0.105 (6)0.112 (7)0.156 (6)0.005 (6)0.031 (5)0.027 (7)
C30A0.081 (5)0.094 (7)0.155 (6)0.001 (6)0.030 (5)0.020 (6)
C31A0.109 (4)0.094 (5)0.162 (5)0.002 (4)0.032 (4)0.039 (5)
C32A0.117 (5)0.118 (5)0.149 (5)0.031 (5)0.022 (5)0.017 (5)
Geometric parameters (Å, º) top
S1—Li12.492 (4)C14—C151.369 (3)
N1—Li12.085 (4)C14—C171.515 (3)
N4—Li12.060 (5)C15—C161.397 (3)
Li1—O11.957 (5)C15—H15A0.94
S1—C131.675 (3)C16—C211.512 (3)
S2—C131.660 (2)C17—C201.525 (4)
N1—C11.331 (3)C17—C191.531 (4)
N1—N21.372 (2)C17—C181.541 (3)
N2—C31.370 (3)C18—H18A0.97
N2—C121.460 (3)C18—H18B0.97
N3—C141.359 (3)C18—H18C0.97
N3—N41.377 (3)C19—H19A0.97
N3—C121.455 (3)C19—H19B0.97
N4—C161.334 (3)C19—H19C0.97
C1—C21.396 (3)C20—H20A0.97
C1—C41.506 (3)C20—H20B0.97
C2—C31.371 (3)C20—H20C0.97
C2—H2A0.94C21—C231.526 (4)
C3—C81.527 (3)C21—C221.529 (4)
C4—C61.480 (7)C21—C241.530 (4)
C4—C71.490 (8)C22—H22A0.97
C4—C5A1.493 (7)C22—H22B0.97
C4—C7A1.496 (8)C22—H22C0.97
C4—C51.566 (7)C23—H23A0.97
C4—C6A1.567 (8)C23—H23B0.97
C5—H5A0.97C23—H23C0.97
C5—H5B0.97C24—H24A0.97
C5—H5C0.97C24—H24B0.97
C6—H6A0.97C24—H24C0.97
C6—H6B0.97O1—C251.430 (3)
C6—H6C0.97O1—C281.439 (3)
C7—H7A0.97C25—C261.495 (5)
C7—H7B0.97C25—H25A0.98
C7—H7C0.97C25—H25B0.98
C5A—H5AA0.97C26—C271.515 (5)
C5A—H5AB0.97C26—H26A0.98
C5A—H5AC0.97C26—H26B0.98
C6A—H6AA0.97C27—C281.479 (5)
C6A—H6AB0.97C27—H27A0.98
C6A—H6AC0.97C27—H27B0.98
C7A—H7AA0.97C28—H28A0.98
C7A—H7AB0.97C28—H28B0.98
C7A—H7AC0.97O2—C291.314 (8)
C8—C11A1.44 (3)O2—C321.475 (8)
C8—C101.509 (6)C29—C301.507 (8)
C8—C9A1.52 (3)C29—H29A0.98
C8—C111.533 (7)C29—H29B0.98
C8—C91.536 (6)C30—C311.630 (10)
C8—C10A1.61 (2)C30—H30A0.98
C9—H9A0.97C30—H30B0.98
C9—H9B0.97C31—C321.418 (10)
C9—H9C0.97C31—H31A0.98
C10—H10A0.97C31—H31B0.98
C10—H10B0.97C32—H32A0.98
C10—H10C0.97C32—H32B0.98
C11—H11A0.97O2A—C29A1.361 (14)
C11—H11B0.97O2A—C32A1.511 (15)
C11—H11C0.97C29A—C30A1.511 (14)
C9A—H9A10.97C29A—H29C0.98
C9A—H9A20.97C29A—H29D0.98
C9A—H9A30.97C30A—C31A1.641 (15)
C10A—H10D0.97C30A—H30C0.98
C10A—H10E0.97C30A—H30D0.98
C10A—H10F0.97C31A—C32A1.354 (15)
C11A—H11D0.97C31A—H31C0.98
C11A—H11E0.97C31A—H31D0.98
C11A—H11F0.97C32A—H32C0.98
C12—C131.550 (3)C32A—H32D0.98
C12—H12A0.99
C13—S1—Li189.79 (12)N4—C16—C21120.4 (2)
C1—N1—N2105.28 (17)C15—C16—C21129.5 (2)
C1—N1—Li1132.83 (19)C14—C17—C20108.2 (2)
N2—N1—Li1106.99 (17)C14—C17—C19112.3 (2)
C3—N2—N1111.66 (17)C20—C17—C19107.6 (2)
C3—N2—C12130.00 (19)C14—C17—C18109.5 (2)
N1—N2—C12118.33 (17)C20—C17—C18107.5 (2)
C14—N3—N4112.00 (18)C19—C17—C18111.6 (2)
C14—N3—C12130.7 (2)C17—C18—H18A109.5
N4—N3—C12117.12 (18)C17—C18—H18B109.5
C16—N4—N3104.96 (19)H18A—C18—H18B109.5
C16—N4—Li1137.3 (2)C17—C18—H18C109.5
N3—N4—Li1110.76 (17)H18A—C18—H18C109.5
N1—C1—C2110.4 (2)H18B—C18—H18C109.5
N1—C1—C4121.0 (2)C17—C19—H19A109.5
C2—C1—C4128.6 (2)C17—C19—H19B109.5
C3—C2—C1107.3 (2)H19A—C19—H19B109.5
C3—C2—H2A126.3C17—C19—H19C109.5
C1—C2—H2A126.3H19A—C19—H19C109.5
N2—C3—C2105.3 (2)H19B—C19—H19C109.5
N2—C3—C8127.4 (2)C17—C20—H20A109.5
C2—C3—C8127.2 (2)C17—C20—H20B109.5
C6—C4—C7112.4 (6)H20A—C20—H20B109.5
C6—C4—C5A57.9 (6)C17—C20—H20C109.5
C7—C4—C5A133.7 (5)H20A—C20—H20C109.5
C6—C4—C7A136.1 (5)H20B—C20—H20C109.5
C7—C4—C7A39.2 (5)C16—C21—C23109.3 (2)
C5A—C4—C7A112.5 (6)C16—C21—C22109.8 (2)
C6—C4—C1111.2 (3)C23—C21—C22110.2 (2)
C7—C4—C1113.4 (4)C16—C21—C24109.4 (2)
C5A—C4—C1111.8 (4)C23—C21—C24109.7 (2)
C7A—C4—C1111.7 (4)C22—C21—C24108.4 (2)
C6—C4—C5105.8 (6)C21—C22—H22A109.5
C7—C4—C5107.5 (6)C21—C22—H22B109.5
C5A—C4—C549.2 (5)H22A—C22—H22B109.5
C7A—C4—C570.7 (5)C21—C22—H22C109.5
C1—C4—C5106.1 (3)H22A—C22—H22C109.5
C6—C4—C6A51.1 (5)H22B—C22—H22C109.5
C7—C4—C6A69.1 (6)C21—C23—H23A109.5
C5A—C4—C6A107.1 (6)C21—C23—H23B109.5
C7A—C4—C6A107.0 (5)H23A—C23—H23B109.5
C1—C4—C6A106.3 (3)C21—C23—H23C109.5
C5—C4—C6A145.7 (4)H23A—C23—H23C109.5
C4—C5—H5A109.5H23B—C23—H23C109.5
C4—C5—H5B109.5C21—C24—H24A109.5
C4—C5—H5C109.5C21—C24—H24B109.5
C4—C6—H6A109.5H24A—C24—H24B109.5
C4—C6—H6B109.5C21—C24—H24C109.5
C4—C6—H6C109.5H24A—C24—H24C109.5
C4—C7—H7A109.5H24B—C24—H24C109.5
C4—C7—H7B109.5O1—Li1—N4126.2 (2)
C4—C7—H7C109.5O1—Li1—N1138.4 (2)
C4—C5A—H5AA109.5N4—Li1—N187.65 (17)
C4—C5A—H5AB109.5O1—Li1—S1104.01 (17)
H5AA—C5A—H5AB109.5N4—Li1—S196.71 (17)
C4—C5A—H5AC109.5N1—Li1—S193.64 (16)
H5AA—C5A—H5AC109.5C25—O1—C28104.7 (2)
H5AB—C5A—H5AC109.5C25—O1—Li1117.9 (2)
C4—C6A—H6AA109.5C28—O1—Li1137.3 (2)
C4—C6A—H6AB109.5O1—C25—C26106.9 (3)
H6AA—C6A—H6AB109.5O1—C25—H25A110.3
C4—C6A—H6AC109.5C26—C25—H25A110.3
H6AA—C6A—H6AC109.5O1—C25—H25B110.3
H6AB—C6A—H6AC109.5C26—C25—H25B110.3
C4—C7A—H7AA109.5H25A—C25—H25B108.6
C4—C7A—H7AB109.5C25—C26—C27104.5 (3)
H7AA—C7A—H7AB109.5C25—C26—H26A110.9
C4—C7A—H7AC109.5C27—C26—H26A110.9
H7AA—C7A—H7AC109.5C25—C26—H26B110.9
H7AB—C7A—H7AC109.5C27—C26—H26B110.9
C11A—C8—C10131.9 (12)H26A—C26—H26B108.9
C11A—C8—C9A107.1 (17)C28—C27—C26104.5 (3)
C10—C8—C9A78.9 (14)C28—C27—H27A110.9
C11A—C8—C3109.0 (11)C26—C27—H27A110.9
C10—C8—C3113.6 (3)C28—C27—H27B110.9
C9A—C8—C3109.5 (12)C26—C27—H27B110.9
C11A—C8—C1130.6 (13)H27A—C27—H27B108.9
C10—C8—C11110.4 (4)O1—C28—C27105.0 (3)
C9A—C8—C11130.3 (15)O1—C28—H28A110.8
C3—C8—C11110.2 (3)C27—C28—H28A110.8
C11A—C8—C978.7 (13)O1—C28—H28B110.8
C10—C8—C9108.3 (4)C27—C28—H28B110.8
C9A—C8—C931.7 (15)H28A—C28—H28B108.8
C3—C8—C9106.9 (3)C29—O2—C32112.3 (5)
C11—C8—C9107.2 (4)O2—C29—C30107.9 (7)
C11A—C8—C10A106.7 (14)O2—C29—H29A110.1
C10—C8—C10A32.1 (9)C30—C29—H29A110.1
C9A—C8—C10A106.3 (13)O2—C29—H29B110.1
C3—C8—C10A117.7 (8)C30—C29—H29B110.1
C11—C8—C10A80.0 (10)H29A—C29—H29B108.4
C9—C8—C10A129.1 (9)C29—C30—C3197.7 (6)
C8—C9—H9A109.5C29—C30—H30A112.2
C8—C9—H9B109.5C31—C30—H30A112.2
C8—C9—H9C109.5C29—C30—H30B112.2
C8—C10—H10A109.5C31—C30—H30B112.2
C8—C10—H10B109.5H30A—C30—H30B109.8
C8—C10—H10C109.5C32—C31—C30100.1 (7)
C8—C11—H11A109.5C32—C31—H31A111.7
C8—C11—H11B109.5C30—C31—H31A111.8
C8—C11—H11C109.5C32—C31—H31B111.8
C8—C9A—H9A1109.5C30—C31—H31B111.8
C8—C9A—H9A2109.5H31A—C31—H31B109.5
H9A1—C9A—H9A2109.5C31—C32—O2100.8 (7)
C8—C9A—H9A3109.5C31—C32—H32A111.6
H9A1—C9A—H9A3109.5O2—C32—H32A111.6
H9A2—C9A—H9A3109.5C31—C32—H32B111.6
C8—C10A—H10D109.5O2—C32—H32B111.6
C8—C10A—H10E109.5H32A—C32—H32B109.4
H10D—C10A—H10E109.5C29A—O2A—C32A106.4 (11)
C8—C10A—H10F109.5O2A—C29A—C30A103.7 (12)
H10D—C10A—H10F109.5O2A—C29A—H29C111
H10E—C10A—H10F109.5C30A—C29A—H29C111
C8—C11A—H11D109.5O2A—C29A—H29D111
C8—C11A—H11E109.5C30A—C29A—H29D111
H11D—C11A—H11E109.5H29C—C29A—H29D109
C8—C11A—H11F109.5C29A—C30A—C31A90.4 (11)
H11D—C11A—H11F109.5C29A—C30A—H30C113.6
H11E—C11A—H11F109.5C31A—C30A—H30C113.6
N3—C12—N2110.54 (17)C29A—C30A—H30D113.6
N3—C12—C13109.69 (17)C31A—C30A—H30D113.6
N2—C12—C13115.51 (19)H30C—C30A—H30D110.8
N3—C12—H12A106.9C32A—C31A—C30A106.0 (11)
N2—C12—H12A106.9C32A—C31A—H31C110.6
C13—C12—H12A106.9C30A—C31A—H31C110.5
C12—C13—S2113.64 (17)C32A—C31A—H31D110.5
C12—C13—S1118.61 (17)C30A—C31A—H31D110.5
S2—C13—S1127.75 (14)H31C—C31A—H31D108.7
N3—C14—C15105.4 (2)C31A—C32A—O2A104.1 (11)
N3—C14—C17126.3 (2)C31A—C32A—H32C110.9
C15—C14—C17128.2 (2)O2A—C32A—H32C110.9
C14—C15—C16107.5 (2)C31A—C32A—H32D110.9
C14—C15—H15A126.3O2A—C32A—H32D110.9
C16—C15—H15A126.3H32C—C32A—H32D109
N4—C16—C15110.1 (2)
(compound2) [Bis(3,5-di-tert-butylpyrazol-1-yl)dithioacetato]chloridozinc(II) top
Crystal data top
[Zn(C24H39N4S2)Cl]F(000) = 1160
Mr = 548.53Dx = 1.314 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 238 reflections
a = 14.2713 (19) Åθ = 6–20°
b = 11.9298 (17) ŵ = 1.15 mm1
c = 16.8543 (12) ÅT = 150 K
β = 104.919 (8)°Prism, clear light red
V = 2772.8 (6) Å30.18 × 0.18 × 0.14 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
7007 independent reflections
Graphite monochromator5579 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.040
ϕ– and ω–rotations with 2.00 ° and 120 sec per frame scansθmax = 28.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1919
Tmin = 0.740, Tmax = 0.85k = 1616
68182 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.3233P]
where P = (Fo2 + 2Fc2)/3
7007 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Zn(C24H39N4S2)Cl]V = 2772.8 (6) Å3
Mr = 548.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.2713 (19) ŵ = 1.15 mm1
b = 11.9298 (17) ÅT = 150 K
c = 16.8543 (12) Å0.18 × 0.18 × 0.14 mm
β = 104.919 (8)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
7007 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5579 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.85Rint = 0.040
68182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.12Δρmax = 0.41 e Å3
7007 reflectionsΔρmin = 0.38 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.399158 (13)0.002463 (16)0.179063 (11)0.01772 (6)
S10.50065 (3)0.14913 (3)0.23984 (3)0.02247 (9)
Cl10.28048 (3)0.03791 (4)0.07121 (3)0.02954 (10)
S20.62476 (4)0.13051 (4)0.41197 (3)0.02826 (10)
N120.58399 (9)0.08936 (11)0.23786 (8)0.0147 (2)
N210.39162 (10)0.06311 (11)0.28961 (8)0.0179 (3)
C140.66718 (11)0.09750 (12)0.21208 (9)0.0154 (3)
N220.48081 (9)0.10527 (11)0.33078 (8)0.0165 (3)
C20.56349 (11)0.07628 (13)0.32396 (10)0.0180 (3)
C120.53931 (11)0.16156 (13)0.11602 (9)0.0171 (3)
C230.37361 (12)0.19120 (14)0.38172 (10)0.0204 (3)
H230.34350.23890.4130.024*
C210.21892 (12)0.08815 (14)0.29195 (10)0.0200 (3)
N110.50429 (9)0.12432 (11)0.17799 (8)0.0170 (3)
C220.32635 (11)0.11457 (13)0.32109 (9)0.0171 (3)
C15B0.80332 (14)0.08969 (18)0.34548 (11)0.0323 (4)
H15A0.76440.05250.37790.048*
H15B0.87160.06860.36670.048*
H15C0.79680.17110.34940.048*
C130.63954 (12)0.14540 (14)0.13506 (10)0.0194 (3)
H130.68110.1640.10120.023*
C150.76767 (11)0.05344 (13)0.25537 (10)0.0181 (3)
C110.47595 (12)0.22017 (15)0.04136 (10)0.0226 (3)
C21B0.20337 (13)0.03817 (15)0.27724 (12)0.0282 (4)
H21A0.23340.07890.32790.042*
H21B0.13370.05440.26070.042*
H21C0.23310.0620.23370.042*
C240.47132 (12)0.18433 (13)0.38740 (9)0.0175 (3)
C250.55343 (12)0.25046 (14)0.44289 (10)0.0215 (3)
C15C0.76737 (12)0.07563 (14)0.24991 (11)0.0224 (3)
H15D0.74210.09870.19260.034*
H15E0.83370.10380.27070.034*
H15F0.72610.10640.2830.034*
C25A0.61589 (14)0.30780 (16)0.39239 (12)0.0296 (4)
H25A0.5750.35740.35140.044*
H25B0.66710.35180.42910.044*
H25C0.64520.25060.36460.044*
C30.56773 (11)0.05290 (13)0.31698 (9)0.0156 (3)
H30.62420.07950.36140.019*
C15A0.83961 (12)0.09765 (16)0.20881 (13)0.0300 (4)
H15G0.83960.17980.20960.045*
H15H0.90480.070.23530.045*
H15I0.82030.07130.15180.045*
C25B0.61513 (13)0.17492 (16)0.51056 (10)0.0276 (4)
H25D0.64520.11550.48540.041*
H25E0.66580.21990.54710.041*
H25F0.57370.14130.54230.041*
C25C0.50885 (14)0.34436 (16)0.48452 (11)0.0300 (4)
H25G0.47160.3110.51990.045*
H25H0.56080.39120.51770.045*
H25I0.46580.39050.44240.045*
C21A0.17509 (13)0.15255 (16)0.21164 (11)0.0266 (4)
H21D0.20680.12850.16940.04*
H21E0.10540.1370.19320.04*
H21F0.18520.23320.22130.04*
C21C0.16894 (13)0.12494 (18)0.35828 (11)0.0296 (4)
H21G0.17660.2060.36680.044*
H21H0.09980.10630.34060.044*
H21I0.19860.08590.40980.044*
C11A0.38321 (16)0.2628 (2)0.05872 (13)0.0405 (5)
H11A0.39910.31370.10590.061*
H11B0.34490.3030.01050.061*
H11C0.34570.19930.0710.061*
C11B0.45095 (19)0.1394 (2)0.03125 (12)0.0526 (7)
H11D0.41250.0770.01860.079*
H11E0.41340.1790.08010.079*
H11F0.51090.11030.04170.079*
C11C0.53461 (19)0.3171 (3)0.01992 (18)0.0717 (10)
H11G0.59430.28810.0090.108*
H11H0.49620.35570.0290.108*
H11I0.5510.36990.0660.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01461 (9)0.02165 (10)0.01642 (9)0.00101 (7)0.00313 (7)0.00275 (7)
S10.0210 (2)0.01768 (19)0.0272 (2)0.00017 (15)0.00355 (16)0.00220 (16)
Cl10.0225 (2)0.0390 (2)0.0228 (2)0.00450 (18)0.00179 (16)0.00517 (18)
S20.0370 (3)0.0275 (2)0.0197 (2)0.00485 (19)0.00642 (18)0.00877 (17)
N120.0139 (6)0.0174 (6)0.0125 (6)0.0006 (5)0.0025 (5)0.0007 (5)
N210.0150 (6)0.0221 (7)0.0165 (6)0.0002 (5)0.0042 (5)0.0007 (5)
C140.0152 (7)0.0137 (7)0.0174 (7)0.0006 (6)0.0046 (6)0.0019 (6)
N220.0154 (6)0.0203 (6)0.0140 (6)0.0005 (5)0.0042 (5)0.0010 (5)
C20.0167 (8)0.0211 (8)0.0183 (7)0.0007 (6)0.0081 (6)0.0023 (6)
C120.0199 (8)0.0166 (7)0.0146 (7)0.0000 (6)0.0042 (6)0.0001 (6)
C230.0236 (8)0.0214 (8)0.0182 (7)0.0029 (6)0.0090 (6)0.0005 (6)
C210.0160 (8)0.0248 (8)0.0202 (8)0.0028 (6)0.0065 (6)0.0036 (6)
N110.0152 (6)0.0201 (6)0.0146 (6)0.0010 (5)0.0015 (5)0.0024 (5)
C220.0183 (8)0.0191 (7)0.0153 (7)0.0029 (6)0.0067 (6)0.0051 (6)
C15B0.0225 (9)0.0400 (11)0.0280 (9)0.0056 (8)0.0051 (7)0.0127 (8)
C130.0192 (8)0.0230 (8)0.0171 (7)0.0002 (6)0.0067 (6)0.0012 (6)
C150.0132 (7)0.0186 (8)0.0213 (8)0.0002 (6)0.0021 (6)0.0019 (6)
C110.0214 (8)0.0284 (9)0.0173 (7)0.0037 (7)0.0034 (6)0.0060 (7)
C21B0.0212 (9)0.0268 (9)0.0382 (10)0.0025 (7)0.0106 (8)0.0042 (8)
C240.0229 (8)0.0172 (7)0.0129 (7)0.0012 (6)0.0056 (6)0.0013 (6)
C250.0242 (8)0.0219 (8)0.0192 (8)0.0039 (6)0.0071 (7)0.0034 (6)
C15C0.0183 (8)0.0209 (8)0.0292 (9)0.0028 (6)0.0081 (7)0.0002 (7)
C25A0.0354 (10)0.0253 (9)0.0315 (9)0.0090 (8)0.0146 (8)0.0036 (8)
C30.0160 (7)0.0185 (7)0.0126 (7)0.0002 (6)0.0040 (6)0.0009 (6)
C15A0.0152 (8)0.0308 (9)0.0446 (11)0.0014 (7)0.0089 (8)0.0065 (8)
C25B0.0263 (9)0.0350 (10)0.0196 (8)0.0035 (8)0.0026 (7)0.0040 (7)
C25C0.0357 (11)0.0265 (9)0.0293 (9)0.0034 (8)0.0111 (8)0.0101 (7)
C21A0.0227 (9)0.0333 (9)0.0228 (8)0.0071 (7)0.0040 (7)0.0045 (7)
C21C0.0209 (9)0.0439 (11)0.0263 (9)0.0042 (8)0.0104 (7)0.0015 (8)
C11A0.0413 (12)0.0524 (13)0.0291 (10)0.0285 (10)0.0117 (9)0.0126 (9)
C11B0.0663 (16)0.0640 (16)0.0189 (9)0.0350 (13)0.0044 (10)0.0052 (10)
C11C0.0425 (14)0.0786 (19)0.0775 (19)0.0162 (13)0.0143 (13)0.0620 (17)
Geometric parameters (Å, º) top
Zn—N212.0490 (13)C21B—H21B0.98
Zn—N112.1338 (13)C21B—H21C0.98
Zn—Cl12.1832 (5)C24—C251.519 (2)
Zn—S12.3335 (5)C25—C25B1.540 (2)
S1—C21.7073 (17)C25—C25A1.542 (2)
S2—C21.6480 (16)C25—C25C1.543 (2)
N12—C141.3686 (19)C15C—H15D0.98
N12—N111.3766 (17)C15C—H15E0.98
N12—C31.4768 (19)C15C—H15F0.98
N21—C221.334 (2)C25A—H25A0.98
N21—N221.3784 (18)C25A—H25B0.98
C14—C131.380 (2)C25A—H25C0.98
C14—C151.525 (2)C3—H31
N22—C241.373 (2)C15A—H15G0.98
N22—C31.460 (2)C15A—H15H0.98
C2—C31.548 (2)C15A—H15I0.98
C12—N111.344 (2)C25B—H25D0.98
C12—C131.396 (2)C25B—H25E0.98
C12—C111.518 (2)C25B—H25F0.98
C23—C241.375 (2)C25C—H25G0.98
C23—C221.407 (2)C25C—H25H0.98
C23—H230.95C25C—H25I0.98
C21—C221.518 (2)C21A—H21D0.98
C21—C21B1.534 (2)C21A—H21E0.98
C21—C21C1.537 (2)C21A—H21F0.98
C21—C21A1.542 (2)C21C—H21G0.98
C15B—C151.534 (2)C21C—H21H0.98
C15B—H15A0.98C21C—H21I0.98
C15B—H15B0.98C11A—H11A0.98
C15B—H15C0.98C11A—H11B0.98
C13—H130.95C11A—H11C0.98
C15—C15A1.537 (2)C11B—H11D0.98
C15—C15C1.542 (2)C11B—H11E0.98
C11—C11A1.515 (3)C11B—H11F0.98
C11—C11C1.525 (3)C11C—H11G0.98
C11—C11B1.526 (3)C11C—H11H0.98
C21B—H21A0.98C11C—H11I0.98
N21—Zn—N1186.49 (5)C24—C25—C25A110.77 (13)
N21—Zn—S193.39 (4)C25B—C25—C25A111.53 (15)
N11—Zn—S1100.19 (4)C24—C25—C25C108.30 (14)
Cl1—Zn—S1118.76 (2)C25B—C25—C25C108.19 (14)
N21—Zn—Cl1128.32 (4)C25A—C25—C25C107.07 (14)
N11—Zn—Cl1121.78 (4)C15—C15C—H15D109.5
C2—S1—Zn96.71 (6)C15—C15C—H15E109.5
C14—N12—N11111.49 (12)H15D—C15C—H15E109.5
C14—N12—C3131.18 (13)C15—C15C—H15F109.5
N11—N12—C3117.31 (12)H15D—C15C—H15F109.5
C22—N21—N22106.31 (13)H15E—C15C—H15F109.5
C22—N21—Zn137.95 (11)C25—C25A—H25A109.5
N22—N21—Zn109.83 (9)C25—C25A—H25B109.5
N12—C14—C13105.47 (13)H25A—C25A—H25B109.5
N12—C14—C15127.54 (14)C25—C25A—H25C109.5
C13—C14—C15126.77 (14)H25A—C25A—H25C109.5
C24—N22—N21110.91 (12)H25B—C25A—H25C109.5
C24—N22—C3130.14 (13)N22—C3—N12110.81 (12)
N21—N22—C3118.43 (12)N22—C3—C2111.26 (13)
C3—C2—S2115.92 (11)N12—C3—C2112.34 (12)
C3—C2—S1117.79 (11)N22—C3—H3107.4
S2—C2—S1126.24 (10)N12—C3—H3107.4
N11—C12—C13109.86 (14)C2—C3—H3107.4
N11—C12—C11122.35 (14)C15—C15A—H15G109.5
C13—C12—C11127.62 (14)C15—C15A—H15H109.5
C24—C23—C22107.43 (14)H15G—C15A—H15H109.5
C24—C23—H23126.3C15—C15A—H15I109.5
C22—C23—H23126.3H15G—C15A—H15I109.5
C22—C21—C21B110.38 (13)H15H—C15A—H15I109.5
C22—C21—C21C108.95 (14)C25—C25B—H25D109.5
C21B—C21—C21C108.86 (14)C25—C25B—H25E109.5
C22—C21—C21A109.16 (13)H25D—C25B—H25E109.5
C21B—C21—C21A109.78 (15)C25—C25B—H25F109.5
C21C—C21—C21A109.69 (14)H25D—C25B—H25F109.5
C12—N11—N12105.50 (12)H25E—C25B—H25F109.5
C12—N11—Zn130.08 (11)C25—C25C—H25G109.5
N12—N11—Zn103.25 (9)C25—C25C—H25H109.5
N21—C22—C23109.54 (14)H25G—C25C—H25H109.5
N21—C22—C21121.76 (14)C25—C25C—H25I109.5
C23—C22—C21128.70 (14)H25G—C25C—H25I109.5
C15—C15B—H15A109.5H25H—C25C—H25I109.5
C15—C15B—H15B109.5C21—C21A—H21D109.5
H15A—C15B—H15B109.5C21—C21A—H21E109.5
C15—C15B—H15C109.5H21D—C21A—H21E109.5
H15A—C15B—H15C109.5C21—C21A—H21F109.5
H15B—C15B—H15C109.5H21D—C21A—H21F109.5
C14—C13—C12107.53 (14)H21E—C21A—H21F109.5
C14—C13—H13126.2C21—C21C—H21G109.5
C12—C13—H13126.2C21—C21C—H21H109.5
C14—C15—C15B114.06 (13)H21G—C21C—H21H109.5
C14—C15—C15A107.87 (13)C21—C21C—H21I109.5
C15B—C15—C15A108.29 (15)H21G—C21C—H21I109.5
C14—C15—C15C109.12 (13)H21H—C21C—H21I109.5
C15B—C15—C15C109.60 (14)C11—C11A—H11A109.5
C15A—C15—C15C107.70 (14)C11—C11A—H11B109.5
C11A—C11—C12110.99 (14)H11A—C11A—H11B109.5
C11A—C11—C11C110.56 (19)C11—C11A—H11C109.5
C12—C11—C11C107.44 (15)H11A—C11A—H11C109.5
C11A—C11—C11B109.36 (17)H11B—C11A—H11C109.5
C12—C11—C11B109.89 (15)C11—C11B—H11D109.5
C11C—C11—C11B108.6 (2)C11—C11B—H11E109.5
C21—C21B—H21A109.5H11D—C11B—H11E109.5
C21—C21B—H21B109.5C11—C11B—H11F109.5
H21A—C21B—H21B109.5H11D—C11B—H11F109.5
C21—C21B—H21C109.5H11E—C11B—H11F109.5
H21A—C21B—H21C109.5C11—C11C—H11G109.5
H21B—C21B—H21C109.5C11—C11C—H11H109.5
N22—C24—C23105.80 (14)H11G—C11C—H11H109.5
N22—C24—C25125.89 (14)C11—C11C—H11I109.5
C23—C24—C25128.30 (14)H11G—C11C—H11I109.5
C24—C25—C25B110.83 (14)H11H—C11C—H11I109.5
Selected geometric parameters (Å, º) for (compound1) top
S1—Li12.492 (4)Li1—O11.957 (5)
N1—Li12.085 (4)S1—C131.675 (3)
N4—Li12.060 (5)S2—C131.660 (2)
O1—Li1—N4126.2 (2)O1—Li1—S1104.01 (17)
O1—Li1—N1138.4 (2)N4—Li1—S196.71 (17)
N4—Li1—N187.65 (17)N1—Li1—S193.64 (16)
Selected geometric parameters (Å, º) for (compound2) top
Zn—N212.0490 (13)Zn—Cl12.1832 (5)
Zn—N112.1338 (13)Zn—S12.3335 (5)
N21—Zn—N1186.49 (5)Cl1—Zn—S1118.76 (2)
N21—Zn—S193.39 (4)N21—Zn—Cl1128.32 (4)
N11—Zn—S1100.19 (4)N11—Zn—Cl1121.78 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds