Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The reaction of tetra­propyl­ammonium bis­(acetyl­acetonato)gold(I) with alkyne derivatives of the tris­(pyrazol­yl)methane and 1,8-naphthalimide functional groups yielded two new compounds, both bridged by the linear C[triple bond]C-Au-C[triple bond]C spacer, namely tetra­propyl­ammonium bis­{3-[2,2,2-tris­(1H-pyrazol-1-yl)eth­oxy]prop-1-yn-1-yl}aurate(I), (C16H28N)[Au(C14H13N6O)2], and tetra­propyl­ammonium {[eta]2-[mu]-3-[2,4-dioxo-3-aza­tri­cyclo­[7.3.1.05,13]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-yl}bis­{3-[2,4-dioxo-3-aza­tricyclo­[7.3.1.05,13]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-1-yl}digold(I) deutero­chloro­form disolvate, (C16H28N)[Au2(C15H8NO2)3]·2CDCl3. The alkyne-functionalized scorpionate ligand [Au{C[triple bond]CCH2OCH2C(pz)3}2]- features two potentially tridentate tris­(pyrazol­yl)methane donor groups oriented in a `trans' position relative to the C[triple bond]C-Au-C[triple bond]C spacer. The naphthalimide-containing compound comprises a [sigma]-bonded NI-CH2-C[triple bond]C-Au-C[triple bond]C-CH2-NI unit (NI is the naphthalimide group) [pi]-coordinated to an NI-CH2-C[triple bond]C-Au neutral fragment. The crystal packing of this compound is supported by [pi]-[pi] stacking inter­actions of the NI unit, generating a three-dimensional network containing channels accommodating the tetra­propyl­ammonium cations and deuterated chloro­form solvent mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113016636/yp3034sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113016636/yp3034Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113016636/yp3034IIsup3.hkl
Contains datablock II

CCDC references: 964743; 964744

Introduction top

The inter­est in the chemistry of alkynylgold(I) complexes is driven by their important photophysical and photochemical properties (Hong et al., 1994; Yam et al., 1996; Tzeng et al., 1996; Xiao et al., 1996). In addition, some show liquid-crystalline properties (Alejos et al., 1995; Irwin et al., 1996) or nonlinear optical behavior (Whitthall et al., 1997). Further, the linearity of the CC bond, coupled with the linear coordination preference of AuI, makes these complexes attractive candidates for the design of new compounds with extended backbone electronic conjugation (Vicente et al., 1997). The majority of the alkynylgold(I) complexes reported to date have the general formula R—CC—Au—L, where R is an organic group and L is usually a phosphane. Fascinating examples, such as macrocycles and catenanes (Puddephatt, 2008), have been reported using a combination of bridging organic groups and phosphane ligands.

Compounds of the general formula [Au(CC—R)2]- are less well studied (Vicente et al., 1997), although the use of the linear R—CC—Au—CC—R spacer between two donor groups has been recently accomplished by using pyridine-based fragments as the R group. In this context, there are only a few examples linking donor groups via the linear CC—Au—CC spacer (Ferrer et al., 2003, 2008; Manbeck et al., 2010; Emeljanenko et al., 2011; Vicente et al.; 2008), or using this spacer to connect other functional groups that contain hydrogen-bonding or ππ stacking associative synthons in one molecule. We have started a project to explore the possibility of using these linear spacers between various groups. To this end, we report here the preparation of two dialkynylgold(I) compounds, (I) and (II), functionalized with either the multidentate tris­(pyrazolyl)methane scorpionate ligand or the strong ππ stacking 1,8-naphthalimide tecton.

Synthesis and crystallization top

All operations were carried out under a nitro­gen atmosphere using standard Schlenk techniques and a Vacuum Atmospheres HE-493 dry box. All solvents were dried and distilled prior to use following standard techniques. The 1H NMR spectra were recorded on a Varian AM300 spectrometer. The alkynetris(pyrazolyl)methane (Reger et al., 2005) and (Pr4N)[Au(acac)2] (Vicente & Chicote, 1998) starting materials were prepared following literature methods. All other starting materials were obtained from commercial sources (Aldrich) and were used as received.

For the preparation of (I), a Schlenk flask was charged with a stirring bar, HCC—CH2—O—CH2—C(pz)3 (0.056 g, 0.2 mmol), (Pr4N)[Au(acac)2] (0.058 g, 0.1 mmol) and di­chloro­methane (25 ml). After 1 h of stirring at room temperature, the volatiles were removed under vacuum to afford a white powder (0.076 g, 80.5%), identified as (I). 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 7.69 (d, J = 1 Hz, 6H, H3-pz), 7.44 (d, J = 2 Hz, 6H, H5-pz), 6.37 (d of d, J = 2,1 Hz, 6H, H4-pz), 5.01 [s, 4H, OCH2C (pz)3], 4.42 (s, 4H, OCH2CC). Single crystals of (I) suitable for diffraction studies were grown over the course of a few days by layering a di­chloro­methane solution of the compound with hexanes.

Complex (II) was prepared as above, using HCC—CH2—NI (0.047 g, 0.2 mmol), affording a white powder (0.042 g, 49.2% based on NI) identified as (II). Slow evaporation of a deuterated chloro­form solution of the compound afforded single crystals suitable for diffraction studies.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. For both compounds, H atoms were introduced in idealized positions and treated as riding, with pyrazole C—H = 0.95 Å, methyl­ene C—H = 0.99 Å and methyl C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C) for pyrazole and methyl­ene H, or Uiso(H) = 1.5Ueq(C) for methyl H.

Comment top

The reaction of tetra­propyl­ammonium bis­(acetyl­acetonato)gold(I) with two equivalents of the alkyne-functionalized tris­(pyrazolyl)methane ligand (see scheme) afforded tetra­propyl­ammonium bis­{3-[2,2,2-tris­(1H-pyrazol-1-yl)eth­oxy]­prop-1-yn-1-yl}aurate(I), (I) (Fig. 1). The formation of the compound is indicated in its NMR spectrum by the disappearance of the CC—H signal (a triplet in the starting material) and the collapse of the methyl­ene signal from a doublet to a singlet.

Bond lengths and angles in (I) fall within the normal range for this type of compound. The orientation of the three pyrazolyl rings is a propeller arrangement, with only one of the donor N atoms oriented toward the potential bonding `pocket' of the ligand. The two tris­(pyrazolyl)methane units are positioned in a 'trans' orientation with respect to the C C—Au—CC spacer. The CC—Au—CC group is not linear, presumably because of steric effects or crystal packing forces.

The (Pr4N)+ cations are positioned close to the [CC—Au—CC]- anions (Fig. 2). The anions are arranged within the crystal structure with the tris­(pyrazolyl)methane groups from different building blocks oriented toward each other, without significant inter­molecular inter­actions, forming a three-dimensional network containing channels accommodating the (Pr4N)+ counter-ions (Fig. 3).

The reaction of the same tetra­propyl­ammonium bis­(acetyl­acetonato)gold(I) with two equivalents of the alkyne-functionalized naphthalimide (NI) group (see scheme) afforded an unexpected gold(I) compound, tetra­propyl­ammonium {η2-µ-3-[2,4-dioxo-3-aza­tri­cyclo­[7.3.1.05,13]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-yl}bis­{3-[2,4-dioxo-3-aza­tri­cyclo­[7.3.1.05,13]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-1-yl}digold(I) deutero­chloro­form disolvate, (II) (Fig. 4), comprising a σ-bonded NI—CH2—CC—Au—CC—CH2—NI anionic unit [with (Pr4N)+ as counter-ion] that is π-coordinated to a neutral NI—CH2—CC—Au fragment. Bond lengths and angles fall within the normal range for this type of compound.

The crystal packing of (II) is based entirely on the ππ stacking inter­actions of the NI groups. The π-stacked NI units adopt two different orientations (Fig. 5). The NI fragments belonging to the σ-bonded part of the complex assume a `twisted' orientation in which the dipole vectors of the rings have a dihedral angle of approximately 120° (Fig. 5a), while the NI fragments belonging to the π-bonded part assume an anti­parallel geometry in which the dipole vectors of the naphthalimides are oriented at 180° (Fig. 5b).

The first inter­action generates chains, as pictured in Fig. 6, oriented along the ab diagonal of the unit cell. These chains are connected into two-dimensional sheets by the ππ stacking inter­action of the second NI group, as pictured in Fig. 7. The distances between the Au atoms within these sheets (also shown in Fig. 7) are 25 Å between the σ-bonded Au atoms and 13 Å between the π-bonded Au atoms. These sheets are connected in a three-dimensional network, as pictured in Fig. 8, by multiple ππ stacking inter­actions involving the other sides of the NI units. The channels of this framework are filled with the (Pr4N)+ cations and two deuterated chloro­form solvent molecules.

In conclusion, we have successfully shown that the CC—Au—CC spacer can be used in the design and synthesis of compounds containing multidentate donor groups or other functional groups that could be used in crystal engineering.

Related literature top

For related literature, see: Alejos et al. (1995); Emeljanenko et al. (2011); Ferrer et al. (2003, 2008); Hong et al. (1994); Irwin et al. (1996); Manbeck et al. (2010); Puddephatt (2008); Reger et al. (2005); Tzeng et al. (1996); Vicente & Chicote (1998); Vicente et al. (1997, 2008); Whitthall et al. (1997); Xiao et al. (1996); Yam et al. (1996).

Structure description top

The inter­est in the chemistry of alkynylgold(I) complexes is driven by their important photophysical and photochemical properties (Hong et al., 1994; Yam et al., 1996; Tzeng et al., 1996; Xiao et al., 1996). In addition, some show liquid-crystalline properties (Alejos et al., 1995; Irwin et al., 1996) or nonlinear optical behavior (Whitthall et al., 1997). Further, the linearity of the CC bond, coupled with the linear coordination preference of AuI, makes these complexes attractive candidates for the design of new compounds with extended backbone electronic conjugation (Vicente et al., 1997). The majority of the alkynylgold(I) complexes reported to date have the general formula R—CC—Au—L, where R is an organic group and L is usually a phosphane. Fascinating examples, such as macrocycles and catenanes (Puddephatt, 2008), have been reported using a combination of bridging organic groups and phosphane ligands.

Compounds of the general formula [Au(CC—R)2]- are less well studied (Vicente et al., 1997), although the use of the linear R—CC—Au—CC—R spacer between two donor groups has been recently accomplished by using pyridine-based fragments as the R group. In this context, there are only a few examples linking donor groups via the linear CC—Au—CC spacer (Ferrer et al., 2003, 2008; Manbeck et al., 2010; Emeljanenko et al., 2011; Vicente et al.; 2008), or using this spacer to connect other functional groups that contain hydrogen-bonding or ππ stacking associative synthons in one molecule. We have started a project to explore the possibility of using these linear spacers between various groups. To this end, we report here the preparation of two dialkynylgold(I) compounds, (I) and (II), functionalized with either the multidentate tris­(pyrazolyl)methane scorpionate ligand or the strong ππ stacking 1,8-naphthalimide tecton.

The reaction of tetra­propyl­ammonium bis­(acetyl­acetonato)gold(I) with two equivalents of the alkyne-functionalized tris­(pyrazolyl)methane ligand (see scheme) afforded tetra­propyl­ammonium bis­{3-[2,2,2-tris­(1H-pyrazol-1-yl)eth­oxy]­prop-1-yn-1-yl}aurate(I), (I) (Fig. 1). The formation of the compound is indicated in its NMR spectrum by the disappearance of the CC—H signal (a triplet in the starting material) and the collapse of the methyl­ene signal from a doublet to a singlet.

Bond lengths and angles in (I) fall within the normal range for this type of compound. The orientation of the three pyrazolyl rings is a propeller arrangement, with only one of the donor N atoms oriented toward the potential bonding `pocket' of the ligand. The two tris­(pyrazolyl)methane units are positioned in a 'trans' orientation with respect to the C C—Au—CC spacer. The CC—Au—CC group is not linear, presumably because of steric effects or crystal packing forces.

The (Pr4N)+ cations are positioned close to the [CC—Au—CC]- anions (Fig. 2). The anions are arranged within the crystal structure with the tris­(pyrazolyl)methane groups from different building blocks oriented toward each other, without significant inter­molecular inter­actions, forming a three-dimensional network containing channels accommodating the (Pr4N)+ counter-ions (Fig. 3).

The reaction of the same tetra­propyl­ammonium bis­(acetyl­acetonato)gold(I) with two equivalents of the alkyne-functionalized naphthalimide (NI) group (see scheme) afforded an unexpected gold(I) compound, tetra­propyl­ammonium {η2-µ-3-[2,4-dioxo-3-aza­tri­cyclo­[7.3.1.05,13]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-yl}bis­{3-[2,4-dioxo-3-aza­tri­cyclo­[7.3.1.05,13]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-1-yl}digold(I) deutero­chloro­form disolvate, (II) (Fig. 4), comprising a σ-bonded NI—CH2—CC—Au—CC—CH2—NI anionic unit [with (Pr4N)+ as counter-ion] that is π-coordinated to a neutral NI—CH2—CC—Au fragment. Bond lengths and angles fall within the normal range for this type of compound.

The crystal packing of (II) is based entirely on the ππ stacking inter­actions of the NI groups. The π-stacked NI units adopt two different orientations (Fig. 5). The NI fragments belonging to the σ-bonded part of the complex assume a `twisted' orientation in which the dipole vectors of the rings have a dihedral angle of approximately 120° (Fig. 5a), while the NI fragments belonging to the π-bonded part assume an anti­parallel geometry in which the dipole vectors of the naphthalimides are oriented at 180° (Fig. 5b).

The first inter­action generates chains, as pictured in Fig. 6, oriented along the ab diagonal of the unit cell. These chains are connected into two-dimensional sheets by the ππ stacking inter­action of the second NI group, as pictured in Fig. 7. The distances between the Au atoms within these sheets (also shown in Fig. 7) are 25 Å between the σ-bonded Au atoms and 13 Å between the π-bonded Au atoms. These sheets are connected in a three-dimensional network, as pictured in Fig. 8, by multiple ππ stacking inter­actions involving the other sides of the NI units. The channels of this framework are filled with the (Pr4N)+ cations and two deuterated chloro­form solvent molecules.

In conclusion, we have successfully shown that the CC—Au—CC spacer can be used in the design and synthesis of compounds containing multidentate donor groups or other functional groups that could be used in crystal engineering.

For related literature, see: Alejos et al. (1995); Emeljanenko et al. (2011); Ferrer et al. (2003, 2008); Hong et al. (1994); Irwin et al. (1996); Manbeck et al. (2010); Puddephatt (2008); Reger et al. (2005); Tzeng et al. (1996); Vicente & Chicote (1998); Vicente et al. (1997, 2008); Whitthall et al. (1997); Xiao et al. (1996); Yam et al. (1996).

Synthesis and crystallization top

All operations were carried out under a nitro­gen atmosphere using standard Schlenk techniques and a Vacuum Atmospheres HE-493 dry box. All solvents were dried and distilled prior to use following standard techniques. The 1H NMR spectra were recorded on a Varian AM300 spectrometer. The alkynetris(pyrazolyl)methane (Reger et al., 2005) and (Pr4N)[Au(acac)2] (Vicente & Chicote, 1998) starting materials were prepared following literature methods. All other starting materials were obtained from commercial sources (Aldrich) and were used as received.

For the preparation of (I), a Schlenk flask was charged with a stirring bar, HCC—CH2—O—CH2—C(pz)3 (0.056 g, 0.2 mmol), (Pr4N)[Au(acac)2] (0.058 g, 0.1 mmol) and di­chloro­methane (25 ml). After 1 h of stirring at room temperature, the volatiles were removed under vacuum to afford a white powder (0.076 g, 80.5%), identified as (I). 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 7.69 (d, J = 1 Hz, 6H, H3-pz), 7.44 (d, J = 2 Hz, 6H, H5-pz), 6.37 (d of d, J = 2,1 Hz, 6H, H4-pz), 5.01 [s, 4H, OCH2C (pz)3], 4.42 (s, 4H, OCH2CC). Single crystals of (I) suitable for diffraction studies were grown over the course of a few days by layering a di­chloro­methane solution of the compound with hexanes.

Complex (II) was prepared as above, using HCC—CH2—NI (0.047 g, 0.2 mmol), affording a white powder (0.042 g, 49.2% based on NI) identified as (II). Slow evaporation of a deuterated chloro­form solution of the compound afforded single crystals suitable for diffraction studies.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. For both compounds, H atoms were introduced in idealized positions and treated as riding, with pyrazole C—H = 0.95 Å, methyl­ene C—H = 0.99 Å and methyl C—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(C) for pyrazole and methyl­ene H, or Uiso(H) = 1.5Ueq(C) for methyl H.

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
Fig. 1. The asymmetric unit of (I), with the atom-numbering scheme; some atom labels have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The alternating arrangement of the cationic and anionic units in (I).

Fig. 3. The three-dimensional network formed by the anionic [Au{C CCH2OCH2C(pz)3}2]- fragments of (I), showing the channels containing the (Pr4N)+ counter-ions.

Fig. 4. The [Au2(C15H8NO2)3]- anion of the naphthalimide gold(I) σ,π-complex, (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 5. The two orientations of the π-stacked naphthalimide units in (II) (see text for discussion).

Fig. 6. The chains formed by the `twisted' ππ stacking of the naphthalimide groups in (II).

Fig. 7. The two-dimensional sheets formed by the association of two symmetry-related chains, based on the antiparallel arrangement of the ππ stacking of the naphthalimide groups.

Fig. 8. The three-dimensional network of (II), showing the channels which contain the (Pr4N)+ counter-ions and the two deuterated chloroform solvent molecules (not shown).
(I) Bis{3-[2,2,2-tris(1H-pyrazol-1-yl)ethoxy]prop-1-yn-1-yl}aurate(I) top
Crystal data top
(C16H28N)[Au(C14H13N6O)2]F(000) = 1920
Mr = 945.93Dx = 1.472 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4064 (5) ÅCell parameters from 9288 reflections
b = 13.3301 (7) Åθ = 2.2–26.5°
c = 38.100 (2) ŵ = 3.50 mm1
β = 90.651 (1)°T = 150 K
V = 4269.2 (4) Å3Plate, colourless
Z = 40.44 × 0.40 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
8791 independent reflections
Radiation source: fine-focus sealed tube8217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.308, Tmax = 0.572k = 1616
37378 measured reflectionsl = 4747
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0199P)2 + 7.2785P]
where P = (Fo2 + 2Fc2)/3
8791 reflections(Δ/σ)max = 0.001
509 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 1.96 e Å3
Crystal data top
(C16H28N)[Au(C14H13N6O)2]V = 4269.2 (4) Å3
Mr = 945.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4064 (5) ŵ = 3.50 mm1
b = 13.3301 (7) ÅT = 150 K
c = 38.100 (2) Å0.44 × 0.40 × 0.18 mm
β = 90.651 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
8791 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
8217 reflections with I > 2σ(I)
Tmin = 0.308, Tmax = 0.572Rint = 0.027
37378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.19Δρmax = 0.91 e Å3
8791 reflectionsΔρmin = 1.96 e Å3
509 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.447078 (13)0.419306 (9)0.237321 (3)0.02415 (4)
C10.7504 (3)0.4255 (2)0.08082 (8)0.0215 (6)
C20.6891 (3)0.3546 (2)0.10910 (8)0.0251 (6)
H2A0.74620.28970.10820.030*
H2B0.70580.38430.13270.030*
C30.4563 (4)0.2721 (2)0.12674 (8)0.0275 (7)
H3A0.51630.20830.12640.033*
H3B0.34530.25760.11940.033*
C40.4571 (4)0.3126 (2)0.16263 (9)0.0275 (7)
C50.4638 (4)0.3508 (2)0.19135 (8)0.0269 (7)
C60.2252 (3)0.4578 (2)0.41144 (8)0.0217 (6)
C70.2529 (4)0.4608 (2)0.37161 (8)0.0283 (7)
H7A0.36800.45380.36690.034*
H7B0.19680.40390.36020.034*
C80.3141 (4)0.6029 (3)0.33643 (9)0.0319 (7)
H8A0.40840.61780.35130.038*
H8B0.27000.66750.32800.038*
C90.3639 (4)0.5432 (3)0.30614 (9)0.0284 (7)
C100.4061 (4)0.4937 (2)0.28144 (8)0.0264 (7)
C110.5649 (4)0.5576 (3)0.10564 (10)0.0321 (8)
H110.50210.51740.12070.039*
C120.5496 (4)0.6583 (3)0.09991 (10)0.0372 (8)
H120.47390.70250.10990.045*
C130.6685 (4)0.6820 (3)0.07642 (10)0.0390 (9)
H130.68690.74790.06780.047*
C211.0316 (4)0.4334 (2)0.05716 (9)0.0292 (7)
H211.01020.43010.03270.035*
C221.1777 (4)0.4432 (3)0.07306 (10)0.0356 (8)
H221.27830.44720.06200.043*
C231.1472 (4)0.4460 (3)0.10855 (11)0.0378 (8)
H231.22730.45240.12620.045*
C310.6559 (5)0.4366 (3)0.01729 (10)0.0476 (10)
H310.64510.50710.01450.057*
C320.6247 (6)0.3647 (4)0.00733 (11)0.0598 (13)
H320.58720.37480.03070.072*
C330.6587 (4)0.2744 (3)0.00874 (10)0.0382 (8)
H330.64590.21080.00220.046*
C410.0703 (4)0.4807 (2)0.40154 (8)0.0260 (6)
H410.07110.50420.37800.031*
C420.1979 (4)0.4761 (3)0.42362 (10)0.0321 (7)
H420.30500.49430.41860.039*
C430.1353 (4)0.4386 (3)0.45502 (9)0.0318 (7)
H430.19710.42700.47540.038*
C510.4077 (4)0.3695 (3)0.45518 (9)0.0334 (7)
H510.42610.42170.47170.040*
C520.4683 (4)0.2750 (3)0.45638 (10)0.0398 (9)
H520.53850.24790.47360.048*
C530.4061 (4)0.2265 (3)0.42706 (11)0.0381 (8)
H530.42780.15850.42130.046*
C610.1934 (4)0.6179 (2)0.44654 (9)0.0286 (7)
H610.08420.61340.45240.034*
C620.2950 (5)0.6937 (3)0.45502 (10)0.0381 (8)
H620.27180.75260.46800.046*
C630.4403 (5)0.6667 (3)0.44053 (11)0.0422 (9)
H630.53440.70570.44260.051*
N110.7534 (4)0.6033 (2)0.06725 (8)0.0347 (7)
N120.6875 (3)0.52639 (19)0.08553 (7)0.0245 (5)
N210.9933 (3)0.4387 (2)0.11523 (8)0.0365 (7)
N220.9240 (3)0.42953 (19)0.08314 (7)0.0241 (5)
N310.7110 (3)0.2870 (2)0.04102 (8)0.0310 (6)
N320.7051 (3)0.38739 (19)0.04632 (7)0.0227 (5)
N410.0193 (3)0.4209 (2)0.45347 (7)0.0272 (6)
N420.0573 (3)0.44506 (18)0.41988 (7)0.0208 (5)
N510.3130 (3)0.2859 (2)0.40806 (8)0.0322 (6)
N520.3158 (3)0.37429 (19)0.42580 (7)0.0244 (5)
N610.4317 (3)0.5800 (2)0.42347 (9)0.0365 (7)
N620.2782 (3)0.55023 (19)0.42807 (7)0.0249 (5)
O10.5253 (2)0.34036 (16)0.10230 (5)0.0244 (4)
O20.1963 (3)0.55245 (18)0.35732 (6)0.0328 (5)
N710.0066 (3)0.60395 (19)0.21635 (7)0.0229 (5)
C710.0170 (4)0.6042 (2)0.25654 (8)0.0271 (7)
H71A0.05760.55340.26610.033*
H71B0.01770.67060.26540.033*
C720.1833 (4)0.5823 (3)0.27032 (9)0.0363 (8)
H72A0.25800.63540.26250.044*
H72B0.22180.51730.26090.044*
C730.1771 (5)0.5786 (3)0.30996 (9)0.0429 (9)
H73A0.10260.52610.31760.064*
H73B0.28330.56360.31890.064*
H73C0.14140.64360.31910.064*
C740.1678 (4)0.6122 (2)0.20648 (9)0.0278 (7)
H74A0.22570.55480.21710.033*
H74B0.17560.60550.18070.033*
C750.2514 (4)0.7081 (3)0.21747 (10)0.0359 (8)
H75A0.25220.71400.24340.043*
H75B0.19430.76680.20760.043*
C760.4212 (4)0.7060 (3)0.20409 (12)0.0488 (10)
H76A0.47580.64640.21320.073*
H76B0.47750.76640.21200.073*
H76C0.41960.70390.17840.073*
C770.0725 (4)0.5068 (2)0.20094 (8)0.0261 (6)
H77A0.18900.50560.20450.031*
H77B0.05400.50700.17530.031*
C780.0018 (4)0.4111 (3)0.21632 (10)0.0370 (8)
H78A0.11450.41050.21260.044*
H78B0.02060.40930.24190.044*
C790.0754 (5)0.3199 (3)0.19937 (11)0.0403 (9)
H79A0.19070.32080.20290.060*
H79B0.03020.25920.21000.060*
H79C0.05320.32030.17420.060*
C800.1013 (4)0.6923 (2)0.20175 (9)0.0272 (7)
H80A0.21530.68050.20650.033*
H80B0.06920.75330.21490.033*
C810.0841 (4)0.7133 (3)0.16298 (9)0.0345 (8)
H81A0.12880.65700.14910.041*
H81B0.02990.72020.15720.041*
C820.1720 (5)0.8099 (3)0.15386 (10)0.0394 (8)
H82A0.28490.80230.15940.059*
H82B0.16090.82400.12880.059*
H82C0.12680.86540.16750.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02221 (7)0.02898 (7)0.02129 (7)0.00289 (5)0.00172 (4)0.00015 (5)
C10.0173 (14)0.0237 (15)0.0234 (15)0.0011 (11)0.0017 (11)0.0025 (12)
C20.0200 (14)0.0297 (16)0.0256 (16)0.0004 (12)0.0026 (12)0.0022 (13)
C30.0301 (16)0.0274 (16)0.0252 (16)0.0050 (13)0.0011 (13)0.0004 (13)
C40.0250 (16)0.0266 (16)0.0309 (17)0.0025 (12)0.0028 (13)0.0029 (13)
C50.0267 (16)0.0287 (16)0.0252 (16)0.0009 (13)0.0030 (12)0.0004 (13)
C60.0173 (14)0.0204 (14)0.0275 (16)0.0001 (11)0.0028 (12)0.0013 (12)
C70.0309 (17)0.0261 (16)0.0282 (17)0.0080 (13)0.0085 (13)0.0007 (13)
C80.0374 (19)0.0289 (17)0.0296 (17)0.0058 (14)0.0103 (14)0.0048 (13)
C90.0243 (16)0.0337 (17)0.0273 (17)0.0019 (13)0.0025 (13)0.0058 (14)
C100.0246 (15)0.0343 (17)0.0204 (15)0.0027 (13)0.0029 (12)0.0010 (13)
C110.0203 (15)0.0349 (18)0.0412 (19)0.0010 (13)0.0001 (14)0.0139 (15)
C120.0300 (18)0.0338 (19)0.048 (2)0.0103 (15)0.0126 (16)0.0166 (16)
C130.042 (2)0.0239 (17)0.051 (2)0.0001 (15)0.0110 (17)0.0017 (16)
C210.0235 (15)0.0293 (17)0.0350 (18)0.0007 (13)0.0047 (13)0.0034 (14)
C220.0197 (16)0.0345 (19)0.053 (2)0.0014 (13)0.0054 (15)0.0044 (16)
C230.0213 (16)0.043 (2)0.049 (2)0.0003 (14)0.0092 (15)0.0066 (17)
C310.063 (3)0.044 (2)0.035 (2)0.0136 (19)0.0163 (19)0.0008 (17)
C320.077 (3)0.068 (3)0.033 (2)0.019 (3)0.025 (2)0.012 (2)
C330.0303 (18)0.046 (2)0.039 (2)0.0020 (15)0.0026 (15)0.0192 (17)
C410.0223 (15)0.0305 (16)0.0251 (16)0.0018 (12)0.0067 (12)0.0023 (13)
C420.0181 (15)0.0353 (18)0.043 (2)0.0007 (13)0.0013 (14)0.0024 (15)
C430.0279 (17)0.0333 (18)0.0344 (18)0.0041 (13)0.0083 (14)0.0007 (14)
C510.0291 (17)0.041 (2)0.0302 (18)0.0009 (15)0.0021 (14)0.0049 (15)
C520.0294 (18)0.043 (2)0.047 (2)0.0084 (15)0.0007 (16)0.0160 (17)
C530.0310 (18)0.0274 (18)0.056 (2)0.0078 (14)0.0056 (16)0.0071 (16)
C610.0295 (17)0.0248 (15)0.0315 (17)0.0010 (13)0.0001 (13)0.0016 (13)
C620.048 (2)0.0277 (18)0.039 (2)0.0077 (15)0.0014 (16)0.0041 (15)
C630.038 (2)0.036 (2)0.052 (2)0.0160 (16)0.0058 (17)0.0017 (17)
N110.0341 (16)0.0255 (15)0.0445 (18)0.0023 (12)0.0008 (13)0.0014 (12)
N120.0208 (12)0.0219 (13)0.0307 (14)0.0009 (10)0.0014 (10)0.0043 (11)
N210.0233 (14)0.056 (2)0.0301 (15)0.0013 (13)0.0080 (12)0.0055 (14)
N220.0168 (12)0.0300 (14)0.0256 (13)0.0013 (10)0.0021 (10)0.0032 (11)
N310.0320 (15)0.0272 (14)0.0338 (15)0.0026 (11)0.0003 (12)0.0077 (12)
N320.0205 (12)0.0241 (13)0.0236 (13)0.0017 (10)0.0026 (10)0.0020 (10)
N410.0256 (13)0.0300 (14)0.0259 (13)0.0038 (11)0.0032 (11)0.0056 (11)
N420.0162 (12)0.0235 (12)0.0228 (13)0.0005 (9)0.0002 (10)0.0016 (10)
N510.0291 (14)0.0209 (13)0.0467 (18)0.0016 (11)0.0010 (13)0.0005 (12)
N520.0200 (12)0.0222 (13)0.0310 (14)0.0024 (10)0.0012 (10)0.0021 (11)
N610.0204 (13)0.0367 (16)0.0522 (19)0.0063 (12)0.0009 (13)0.0024 (14)
N620.0171 (12)0.0236 (13)0.0340 (15)0.0030 (10)0.0000 (11)0.0004 (11)
O10.0207 (10)0.0318 (12)0.0208 (10)0.0053 (9)0.0020 (8)0.0036 (9)
O20.0340 (13)0.0331 (12)0.0314 (12)0.0116 (10)0.0125 (10)0.0090 (10)
N710.0188 (12)0.0255 (13)0.0242 (13)0.0011 (10)0.0032 (10)0.0008 (10)
C710.0356 (18)0.0239 (16)0.0219 (15)0.0026 (13)0.0033 (13)0.0001 (12)
C720.0291 (17)0.051 (2)0.0284 (17)0.0045 (16)0.0002 (14)0.0043 (16)
C730.041 (2)0.059 (2)0.0290 (18)0.0102 (18)0.0010 (15)0.0050 (18)
C740.0193 (15)0.0313 (17)0.0327 (17)0.0023 (12)0.0007 (13)0.0014 (13)
C750.0268 (17)0.0390 (19)0.042 (2)0.0049 (14)0.0049 (15)0.0064 (16)
C760.0295 (19)0.051 (2)0.067 (3)0.0088 (17)0.0082 (18)0.004 (2)
C770.0239 (15)0.0275 (16)0.0267 (16)0.0016 (12)0.0046 (12)0.0031 (13)
C780.0382 (19)0.0284 (18)0.044 (2)0.0018 (15)0.0141 (16)0.0013 (15)
C790.042 (2)0.0282 (18)0.050 (2)0.0004 (15)0.0081 (17)0.0013 (16)
C800.0229 (15)0.0272 (16)0.0314 (17)0.0058 (12)0.0040 (13)0.0001 (13)
C810.0379 (19)0.0337 (18)0.0318 (18)0.0028 (15)0.0043 (15)0.0053 (14)
C820.044 (2)0.0337 (19)0.040 (2)0.0028 (16)0.0104 (17)0.0095 (16)
Geometric parameters (Å, º) top
Au1—C51.982 (3)C52—H520.9500
Au1—C101.985 (3)C52—C531.388 (6)
C1—C21.527 (4)C53—H530.9500
C1—N121.456 (4)C53—N511.324 (4)
C1—N221.462 (4)C61—H610.9500
C1—N321.456 (4)C61—C621.359 (5)
C2—H2A0.9900C61—N621.352 (4)
C2—H2B0.9900C62—H620.9500
C2—O11.412 (3)C62—C631.393 (6)
C3—H3A0.9900C63—H630.9500
C3—H3B0.9900C63—N611.328 (5)
C3—C41.470 (4)N11—N121.361 (4)
C3—O11.429 (4)N21—N221.354 (4)
C4—C51.208 (5)N31—N321.355 (4)
C6—C71.538 (4)N41—N421.361 (4)
C6—N421.461 (4)N51—N521.358 (4)
C6—N521.452 (4)N61—N621.363 (4)
C6—N621.453 (4)N71—C711.535 (4)
C7—H7A0.9900N71—C741.522 (4)
C7—H7B0.9900N71—C771.524 (4)
C7—O21.418 (4)N71—C801.523 (4)
C8—H8A0.9900C71—H71A0.9900
C8—H8B0.9900C71—H71B0.9900
C8—C91.466 (5)C71—C721.527 (5)
C8—O21.444 (4)C72—H72A0.9900
C9—C101.206 (5)C72—H72B0.9900
C11—H110.9500C72—C731.512 (5)
C11—C121.366 (5)C73—H73A0.9800
C11—N121.357 (4)C73—H73B0.9800
C12—H120.9500C73—H73C0.9800
C12—C131.386 (6)C74—H74A0.9900
C13—H130.9500C74—H74B0.9900
C13—N111.318 (5)C74—C751.516 (5)
C21—H210.9500C75—H75A0.9900
C21—C221.370 (5)C75—H75B0.9900
C21—N221.349 (4)C75—C761.521 (5)
C22—H220.9500C76—H76A0.9800
C22—C231.380 (5)C76—H76B0.9800
C23—H230.9500C76—H76C0.9800
C23—N211.324 (4)C77—H77A0.9900
C31—H310.9500C77—H77B0.9900
C31—C321.365 (6)C77—C781.522 (4)
C31—N321.347 (5)C78—H78A0.9900
C32—H320.9500C78—H78B0.9900
C32—C331.380 (6)C78—C791.506 (5)
C33—H330.9500C79—H79A0.9800
C33—N311.312 (4)C79—H79B0.9800
C41—H410.9500C79—H79C0.9800
C41—C421.372 (5)C80—H80A0.9900
C41—N421.359 (4)C80—H80B0.9900
C42—H420.9500C80—C811.512 (5)
C42—C431.394 (5)C81—H81A0.9900
C43—H430.9500C81—H81B0.9900
C43—N411.323 (4)C81—C821.522 (5)
C51—H510.9500C82—H82A0.9800
C51—C521.359 (5)C82—H82B0.9800
C51—N521.354 (4)C82—H82C0.9800
C5—Au1—C10173.38 (13)C21—N22—C1129.3 (3)
N12—C1—C2111.0 (2)C21—N22—N21111.9 (3)
N12—C1—N22108.8 (2)N21—N22—C1118.5 (2)
N22—C1—C2108.9 (2)C33—N31—N32104.7 (3)
N32—C1—C2109.5 (2)C31—N32—C1130.2 (3)
N32—C1—N12110.0 (2)C31—N32—N31111.7 (3)
N32—C1—N22108.5 (2)N31—N32—C1118.0 (2)
C1—C2—H2A110.3C43—N41—N42103.9 (3)
C1—C2—H2B110.3C41—N42—C6127.2 (3)
H2A—C2—H2B108.6C41—N42—N41111.9 (2)
O1—C2—C1106.9 (2)N41—N42—C6118.1 (2)
O1—C2—H2A110.3C53—N51—N52103.9 (3)
O1—C2—H2B110.3C51—N52—C6129.7 (3)
H3A—C3—H3B107.9C51—N52—N51112.1 (3)
C4—C3—H3A109.2N51—N52—C6118.1 (3)
C4—C3—H3B109.2C63—N61—N62103.7 (3)
O1—C3—H3A109.2C61—N62—C6129.2 (3)
O1—C3—H3B109.2C61—N62—N61112.2 (3)
O1—C3—C4112.0 (3)N61—N62—C6118.5 (3)
C5—C4—C3175.8 (3)C2—O1—C3111.6 (2)
C4—C5—Au1172.8 (3)C7—O2—C8112.6 (2)
N42—C6—C7112.2 (3)C74—N71—C71108.2 (2)
N52—C6—C7107.9 (2)C74—N71—C77108.2 (2)
N52—C6—N42109.4 (2)C74—N71—C80110.8 (2)
N52—C6—N62109.2 (2)C77—N71—C71111.2 (2)
N62—C6—C7111.0 (3)C80—N71—C71109.1 (2)
N62—C6—N42107.2 (2)C80—N71—C77109.3 (2)
C6—C7—H7A109.6N71—C71—H71A108.8
C6—C7—H7B109.6N71—C71—H71B108.8
H7A—C7—H7B108.1H71A—C71—H71B107.7
O2—C7—C6110.3 (2)C72—C71—N71113.9 (3)
O2—C7—H7A109.6C72—C71—H71A108.8
O2—C7—H7B109.6C72—C71—H71B108.8
H8A—C8—H8B107.8C71—C72—H72A109.8
C9—C8—H8A109.1C71—C72—H72B109.8
C9—C8—H8B109.1H72A—C72—H72B108.3
O2—C8—H8A109.1C73—C72—C71109.2 (3)
O2—C8—H8B109.1C73—C72—H72A109.8
O2—C8—C9112.6 (3)C73—C72—H72B109.8
C10—C9—C8179.3 (4)C72—C73—H73A109.5
C9—C10—Au1171.7 (3)C72—C73—H73B109.5
C12—C11—H11126.8C72—C73—H73C109.5
N12—C11—H11126.8H73A—C73—H73B109.5
N12—C11—C12106.4 (3)H73A—C73—H73C109.5
C11—C12—H12127.4H73B—C73—H73C109.5
C11—C12—C13105.1 (3)N71—C74—H74A108.3
C13—C12—H12127.4N71—C74—H74B108.3
C12—C13—H13123.7H74A—C74—H74B107.4
N11—C13—C12112.7 (3)C75—C74—N71115.9 (3)
N11—C13—H13123.7C75—C74—H74A108.3
C22—C21—H21126.7C75—C74—H74B108.3
N22—C21—H21126.7C74—C75—H75A109.9
N22—C21—C22106.5 (3)C74—C75—H75B109.9
C21—C22—H22127.5C74—C75—C76109.0 (3)
C21—C22—C23105.1 (3)H75A—C75—H75B108.3
C23—C22—H22127.5C76—C75—H75A109.9
C22—C23—H23123.9C76—C75—H75B109.9
N21—C23—C22112.3 (3)C75—C76—H76A109.5
N21—C23—H23123.9C75—C76—H76B109.5
C32—C31—H31127.0C75—C76—H76C109.5
N32—C31—H31127.0H76A—C76—H76B109.5
N32—C31—C32106.1 (4)H76A—C76—H76C109.5
C31—C32—H32127.1H76B—C76—H76C109.5
C31—C32—C33105.7 (4)N71—C77—H77A108.5
C33—C32—H32127.1N71—C77—H77B108.5
C32—C33—H33124.1H77A—C77—H77B107.5
N31—C33—C32111.7 (3)C78—C77—N71115.2 (2)
N31—C33—H33124.1C78—C77—H77A108.5
C42—C41—H41126.7C78—C77—H77B108.5
N42—C41—H41126.7C77—C78—H78A109.5
N42—C41—C42106.7 (3)C77—C78—H78B109.5
C41—C42—H42127.7H78A—C78—H78B108.1
C41—C42—C43104.6 (3)C79—C78—C77110.8 (3)
C43—C42—H42127.7C79—C78—H78A109.5
C42—C43—H43123.6C79—C78—H78B109.5
N41—C43—C42112.8 (3)C78—C79—H79A109.5
N41—C43—H43123.6C78—C79—H79B109.5
C52—C51—H51126.8C78—C79—H79C109.5
N52—C51—H51126.8H79A—C79—H79B109.5
N52—C51—C52106.4 (3)H79A—C79—H79C109.5
C51—C52—H52127.3H79B—C79—H79C109.5
C51—C52—C53105.5 (3)N71—C80—H80A108.2
C53—C52—H52127.3N71—C80—H80B108.2
C52—C53—H53124.0H80A—C80—H80B107.3
N51—C53—C52112.1 (3)C81—C80—N71116.4 (3)
N51—C53—H53124.0C81—C80—H80A108.2
C62—C61—H61126.7C81—C80—H80B108.2
N62—C61—H61126.7C80—C81—H81A109.9
N62—C61—C62106.6 (3)C80—C81—H81B109.9
C61—C62—H62127.3C80—C81—C82109.1 (3)
C61—C62—C63105.3 (3)H81A—C81—H81B108.3
C63—C62—H62127.3C82—C81—H81A109.9
C62—C63—H63123.9C82—C81—H81B109.9
N61—C63—C62112.1 (3)C81—C82—H82A109.5
N61—C63—H63123.9C81—C82—H82B109.5
C13—N11—N12103.9 (3)C81—C82—H82C109.5
C11—N12—C1129.2 (3)H82A—C82—H82B109.5
C11—N12—N11112.0 (3)H82A—C82—H82C109.5
N11—N12—C1118.8 (3)H82B—C82—H82C109.5
C23—N21—N22104.2 (3)
C1—C2—O1—C3178.1 (2)N12—C1—C2—O169.6 (3)
C2—C1—N12—C1114.8 (4)N12—C1—N22—C2197.7 (4)
C2—C1—N12—N11167.0 (3)N12—C1—N22—N2176.4 (3)
C2—C1—N22—C21141.2 (3)N12—C1—N32—C3119.0 (5)
C2—C1—N22—N2144.7 (4)N12—C1—N32—N31160.9 (3)
C2—C1—N32—C31141.4 (4)N12—C11—C12—C130.7 (4)
C2—C1—N32—N3138.6 (3)N22—C1—C2—O1170.7 (2)
C4—C3—O1—C265.8 (3)N22—C1—N12—C11134.6 (3)
C6—C7—O2—C8128.2 (3)N22—C1—N12—N1147.2 (4)
C7—C6—N42—C4133.2 (4)N22—C1—N32—C3199.9 (4)
C7—C6—N42—N41166.9 (3)N22—C1—N32—N3180.2 (3)
C7—C6—N52—C51136.3 (3)N22—C21—C22—C230.8 (4)
C7—C6—N52—N5143.3 (3)N32—C1—C2—O152.1 (3)
C7—C6—N62—C61119.5 (3)N32—C1—N12—C11106.6 (4)
C7—C6—N62—N6155.9 (4)N32—C1—N12—N1171.5 (3)
C9—C8—O2—C761.2 (4)N32—C1—N22—C2122.0 (4)
C11—C12—C13—N110.6 (4)N32—C1—N22—N21163.9 (3)
C12—C11—N12—C1177.6 (3)N32—C31—C32—C330.3 (5)
C12—C11—N12—N110.6 (4)N42—C6—C7—O272.1 (3)
C12—C13—N11—N120.2 (4)N42—C6—N52—C51101.4 (4)
C13—N11—N12—C1178.2 (3)N42—C6—N52—N5179.0 (3)
C13—N11—N12—C110.3 (4)N42—C6—N62—C613.4 (4)
C21—C22—C23—N210.0 (4)N42—C6—N62—N61178.7 (3)
C22—C21—N22—C1175.9 (3)N42—C41—C42—C431.2 (4)
C22—C21—N22—N211.5 (4)N52—C6—C7—O2167.4 (3)
C22—C23—N21—N220.9 (4)N52—C6—N42—C41152.8 (3)
C23—N21—N22—C1176.5 (3)N52—C6—N42—N4147.3 (3)
C23—N21—N22—C211.4 (4)N52—C6—N62—C61121.7 (3)
C31—C32—C33—N311.2 (5)N52—C6—N62—N6162.9 (3)
C32—C31—N32—C1178.2 (3)N52—C51—C52—C530.8 (4)
C32—C31—N32—N311.7 (5)N62—C6—C7—O247.8 (3)
C32—C33—N31—N322.2 (4)N62—C6—N42—C4188.9 (3)
C33—N31—N32—C1177.5 (3)N62—C6—N42—N4171.0 (3)
C33—N31—N32—C312.4 (4)N62—C6—N52—C5115.5 (4)
C41—C42—C43—N410.3 (4)N62—C6—N52—N51164.0 (3)
C42—C41—N42—C6163.2 (3)N62—C61—C62—C630.3 (4)
C42—C41—N42—N412.3 (4)N71—C71—C72—C73176.7 (3)
C42—C43—N41—N421.6 (4)N71—C74—C75—C76177.3 (3)
C43—N41—N42—C6165.2 (3)N71—C77—C78—C79179.8 (3)
C43—N41—N42—C412.4 (3)N71—C80—C81—C82174.0 (3)
C51—C52—C53—N510.6 (4)C71—N71—C74—C7563.4 (3)
C52—C51—N52—C6178.9 (3)C71—N71—C77—C7852.8 (4)
C52—C51—N52—N510.7 (4)C71—N71—C80—C81171.0 (3)
C52—C53—N51—N520.2 (4)C74—N71—C71—C72172.2 (3)
C53—N51—N52—C6179.3 (3)C74—N71—C77—C7865.9 (3)
C53—N51—N52—C510.3 (4)C74—N71—C80—C8152.0 (4)
C61—C62—C63—N610.9 (5)C77—N71—C71—C7253.5 (3)
C62—C61—N62—C6176.9 (3)C77—N71—C74—C75176.0 (3)
C62—C61—N62—N611.3 (4)C77—N71—C80—C8167.2 (3)
C62—C63—N61—N621.6 (4)C80—N71—C71—C7267.2 (3)
C63—N61—N62—C6177.9 (3)C80—N71—C74—C7556.2 (4)
C63—N61—N62—C611.8 (4)C80—N71—C77—C78173.3 (3)
(II) {η2-µ-3-[2,4-Dioxo-3-azatricyclo[7.3.1.05,13]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-yl}bis{3-[2,4-dioxo-3-azatricyclo[7.3.1.05,13]trideca-1(12),5,7,9(13),10-pentaen-3-yl]prop-1-yn-1-yl}digold(I) deuterochloroform disolvate top
Crystal data top
(C12H28N)[Au2(C15H8NO2)3]·2CDCl3Z = 2
Mr = 1523.71F(000) = 1488
Triclinic, P1Dx = 1.795 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3493 (5) ÅCell parameters from 3344 reflections
b = 13.1970 (7) Åθ = 2.4–20.4°
c = 25.8732 (14) ŵ = 5.54 mm1
α = 85.084 (1)°T = 150 K
β = 89.936 (1)°Needle, colourless
γ = 82.957 (1)°0.20 × 0.04 × 0.02 mm
V = 2818.8 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7339 independent reflections
Radiation source: fine-focus sealed tube5638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 22.5°, θmin = 0.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.750, Tmax = 1.000k = 1414
20651 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0571P)2 + 5.2206P]
where P = (Fo2 + 2Fc2)/3
7339 reflections(Δ/σ)max = 0.001
698 parametersΔρmax = 2.21 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
(C12H28N)[Au2(C15H8NO2)3]·2CDCl3γ = 82.957 (1)°
Mr = 1523.71V = 2818.8 (3) Å3
Triclinic, P1Z = 2
a = 8.3493 (5) ÅMo Kα radiation
b = 13.1970 (7) ŵ = 5.54 mm1
c = 25.8732 (14) ÅT = 150 K
α = 85.084 (1)°0.20 × 0.04 × 0.02 mm
β = 89.936 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5638 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 1.000Rint = 0.064
20651 measured reflectionsθmax = 22.5°
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 2.21 e Å3
7339 reflectionsΔρmin = 1.07 e Å3
698 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Compound crystallized from CDCl3. Deuterium atoms of CDCl3 solvent added to .INS file for correct FW and d(calc), as recommended (SHELXL97 manual).

Weakly scattering tiny crystal, no diffraction above 2theta ca 45 degrees.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.44506 (5)0.17401 (3)0.229084 (16)0.03058 (16)
Au20.39533 (6)0.27653 (3)0.347183 (17)0.03517 (16)
C10.5252 (14)0.1650 (10)0.3118 (4)0.037 (3)
C20.6028 (13)0.0964 (9)0.2922 (4)0.031 (3)
C30.7190 (14)0.0047 (9)0.2847 (4)0.042 (3)
H3A0.70210.01800.24980.050*
H3B0.83030.02280.28640.050*
C40.3395 (13)0.2105 (8)0.1602 (5)0.030 (3)
C50.2737 (13)0.2285 (8)0.1190 (5)0.031 (3)
C60.1905 (14)0.2442 (8)0.0691 (4)0.036 (3)
H6A0.07420.23930.07460.043*
H6B0.23300.18880.04740.043*
C70.2570 (15)0.3879 (9)0.3805 (4)0.037 (3)
C80.1580 (16)0.4525 (10)0.3953 (5)0.043 (3)
C90.0323 (14)0.5332 (8)0.4125 (5)0.039 (3)
H9A0.06320.54010.38920.046*
H9B0.00240.51290.44810.046*
C110.6158 (14)0.1591 (9)0.3090 (4)0.034 (3)
C120.6017 (13)0.2426 (9)0.3477 (5)0.036 (3)
C130.6677 (14)0.2429 (9)0.3976 (4)0.036 (3)
C140.7446 (13)0.1608 (9)0.4113 (4)0.035 (3)
C150.7598 (14)0.0722 (9)0.3727 (4)0.035 (3)
C160.5264 (15)0.3234 (10)0.3345 (5)0.050 (4)
H160.48390.32300.30040.060*
C170.5116 (16)0.4062 (11)0.3707 (6)0.054 (4)
H170.45810.46150.36120.065*
C180.5735 (16)0.4086 (10)0.4199 (6)0.054 (4)
H180.56300.46550.44420.065*
C190.6524 (16)0.3274 (9)0.4345 (5)0.046 (3)
C200.7201 (17)0.3247 (11)0.4844 (5)0.057 (4)
H200.71340.38080.50960.068*
C210.7939 (17)0.2447 (10)0.4974 (5)0.052 (4)
H210.83670.24480.53140.062*
C220.8079 (16)0.1601 (10)0.4601 (5)0.052 (4)
H220.86050.10400.46900.062*
C230.3065 (13)0.3433 (8)0.0031 (4)0.028 (3)
C240.3293 (13)0.4456 (8)0.0287 (4)0.026 (3)
C250.2586 (12)0.5368 (8)0.0094 (4)0.028 (3)
C260.1611 (13)0.5315 (8)0.0346 (4)0.033 (3)
C270.1298 (13)0.4311 (9)0.0604 (4)0.029 (3)
C280.4294 (16)0.4527 (10)0.0717 (5)0.048 (3)
H280.47800.39210.08550.057*
C290.4586 (13)0.5484 (10)0.0946 (4)0.037 (3)
H290.52640.55230.12400.045*
C300.3912 (15)0.6357 (10)0.0752 (5)0.045 (3)
H300.41460.70000.09080.054*
C310.2868 (14)0.6327 (9)0.0323 (4)0.038 (3)
C320.2127 (16)0.7209 (10)0.0108 (5)0.048 (3)
H320.23130.78640.02610.058*
C330.1164 (16)0.7152 (10)0.0308 (6)0.052 (4)
H330.06790.77610.04450.063*
C340.0875 (15)0.6188 (9)0.0542 (5)0.041 (3)
H340.01790.61420.08310.049*
C350.0854 (14)0.6949 (9)0.3646 (4)0.034 (3)
C360.1447 (15)0.7941 (10)0.3643 (5)0.050 (4)
C370.2148 (15)0.8225 (10)0.4097 (5)0.047 (3)
C380.2327 (14)0.7556 (10)0.4551 (5)0.041 (3)
C390.1762 (15)0.6566 (9)0.4570 (5)0.038 (3)
C400.1352 (17)0.8589 (12)0.3191 (6)0.066 (4)
H400.09100.83890.28830.080*
C410.193 (2)0.9567 (13)0.3196 (8)0.079 (6)
H410.18571.00240.28910.095*
C420.259 (2)0.9846 (13)0.3636 (9)0.093 (7)
H420.29781.04950.36310.111*
C430.2719 (18)0.9198 (12)0.4095 (7)0.067 (5)
C440.338 (2)0.9462 (14)0.4554 (10)0.097 (7)
H440.37741.01070.45600.116*
C450.347 (2)0.8822 (17)0.4981 (8)0.102 (8)
H450.38860.90370.52900.123*
C460.2971 (19)0.7845 (13)0.4997 (6)0.074 (5)
H460.30750.73950.53050.089*
C471.1097 (13)0.4317 (9)0.2545 (5)0.041 (3)
H47A1.09250.48460.27950.049*
H47B1.17540.37150.27250.049*
C481.2075 (14)0.4720 (10)0.2117 (5)0.046 (3)
H48A1.14590.53330.19320.056*
H48B1.23120.41950.18660.056*
C491.3647 (15)0.5002 (11)0.2325 (5)0.057 (4)
H49A1.34130.54730.25960.086*
H49B1.42280.53360.20430.086*
H49C1.43140.43810.24710.086*
C500.9753 (14)0.3055 (9)0.2120 (4)0.040 (3)
H50A1.03200.32450.17960.048*
H50B1.04890.25270.23260.048*
C510.8301 (15)0.2586 (10)0.1978 (5)0.050 (4)
H51A0.76420.24800.22920.060*
H51B0.76420.30660.17240.060*
C520.8703 (14)0.1590 (9)0.1752 (5)0.043 (3)
H52A0.94170.16790.14550.064*
H52B0.77090.13480.16370.064*
H52C0.92500.10870.20150.064*
C530.8620 (16)0.3746 (11)0.2938 (5)0.055 (4)
H53A0.86740.43190.31570.066*
H53B0.74660.37160.28610.066*
C540.9255 (18)0.2791 (11)0.3240 (5)0.062 (4)
H54A1.04430.27500.32720.074*
H54B0.89990.21970.30610.074*
C550.8498 (18)0.2755 (12)0.3786 (5)0.068 (5)
H55A0.88750.32870.39810.103*
H55B0.88200.20810.39710.103*
H55C0.73190.28730.37530.103*
C560.8437 (14)0.4829 (9)0.2098 (5)0.045 (3)
H56A0.89270.49010.17500.054*
H56B0.73620.46040.20530.054*
C570.8208 (16)0.5858 (11)0.2304 (6)0.063 (4)
H57A0.92690.60530.23980.075*
H57B0.75430.58290.26200.075*
C580.7370 (17)0.6671 (10)0.1895 (5)0.058 (4)
H58A0.81010.67760.16040.086*
H58B0.70920.73180.20530.086*
H58C0.63850.64350.17690.086*
N10.7007 (11)0.0794 (7)0.3238 (3)0.034 (2)
N20.2092 (10)0.3442 (6)0.0410 (3)0.026 (2)
N30.0984 (11)0.6332 (7)0.4115 (4)0.038 (2)
N40.9467 (9)0.3998 (7)0.2425 (3)0.029 (2)
O10.5616 (10)0.1524 (7)0.2649 (3)0.057 (2)
O20.8241 (10)0.0028 (7)0.3822 (3)0.052 (2)
O30.3647 (10)0.2645 (6)0.0194 (3)0.044 (2)
O40.0420 (9)0.4228 (6)0.0977 (3)0.044 (2)
O50.0258 (11)0.6650 (7)0.3267 (3)0.058 (3)
O60.1929 (11)0.5924 (7)0.4929 (4)0.058 (2)
C590.3083 (17)0.8385 (10)0.1729 (5)0.057 (4)
D590.39310.82440.20070.068*
Cl10.2370 (6)0.9668 (3)0.16862 (18)0.0853 (13)
Cl20.3958 (5)0.8048 (3)0.11355 (14)0.0670 (10)
Cl30.1562 (7)0.7629 (3)0.1883 (2)0.1041 (17)
C600.6985 (15)0.9561 (10)0.0572 (5)0.053 (4)
D600.63590.89890.05000.064*
Cl40.8450 (7)0.9094 (4)0.1027 (2)0.118 (2)
Cl50.5647 (4)1.0526 (3)0.08359 (18)0.0742 (12)
Cl60.7771 (7)1.0014 (3)0.00006 (18)0.1005 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0275 (3)0.0295 (3)0.0336 (3)0.0033 (2)0.0002 (2)0.0036 (2)
Au20.0422 (3)0.0298 (3)0.0332 (3)0.0041 (2)0.0039 (2)0.0017 (2)
C10.028 (7)0.053 (9)0.028 (7)0.011 (6)0.009 (6)0.010 (6)
C20.030 (7)0.041 (8)0.019 (6)0.001 (6)0.004 (5)0.010 (5)
C30.036 (7)0.046 (8)0.038 (7)0.001 (6)0.010 (6)0.012 (6)
C40.016 (6)0.029 (7)0.046 (8)0.003 (5)0.006 (6)0.006 (6)
C50.026 (7)0.030 (7)0.035 (7)0.002 (5)0.007 (6)0.003 (5)
C60.043 (8)0.034 (7)0.031 (7)0.011 (6)0.009 (6)0.007 (5)
C70.043 (8)0.038 (8)0.032 (7)0.012 (6)0.005 (6)0.001 (6)
C80.050 (9)0.037 (8)0.048 (8)0.021 (7)0.009 (7)0.008 (6)
C90.044 (8)0.027 (7)0.049 (8)0.015 (6)0.005 (6)0.014 (6)
C110.033 (7)0.042 (8)0.027 (7)0.003 (6)0.007 (6)0.008 (6)
C120.029 (7)0.037 (8)0.043 (8)0.003 (6)0.001 (6)0.018 (6)
C130.041 (7)0.036 (8)0.031 (7)0.005 (6)0.005 (6)0.006 (6)
C140.028 (7)0.041 (8)0.035 (7)0.006 (6)0.006 (6)0.006 (6)
C150.031 (7)0.038 (8)0.033 (7)0.006 (6)0.002 (6)0.003 (6)
C160.038 (8)0.047 (9)0.064 (9)0.001 (7)0.013 (7)0.010 (7)
C170.044 (9)0.060 (10)0.064 (10)0.025 (7)0.022 (8)0.017 (8)
C180.051 (9)0.031 (8)0.075 (11)0.007 (7)0.023 (8)0.013 (7)
C190.055 (9)0.033 (8)0.047 (9)0.001 (6)0.016 (7)0.002 (6)
C200.066 (10)0.051 (10)0.047 (9)0.006 (8)0.012 (8)0.011 (7)
C210.065 (10)0.043 (9)0.045 (8)0.009 (7)0.003 (7)0.009 (7)
C220.051 (9)0.054 (9)0.048 (9)0.002 (7)0.001 (7)0.004 (7)
C230.025 (6)0.028 (7)0.032 (7)0.010 (5)0.005 (5)0.002 (5)
C240.032 (7)0.032 (7)0.013 (6)0.012 (5)0.002 (5)0.004 (5)
C250.023 (6)0.038 (7)0.023 (6)0.010 (5)0.005 (5)0.003 (5)
C260.028 (7)0.031 (7)0.039 (7)0.002 (5)0.013 (6)0.007 (5)
C270.019 (6)0.041 (8)0.029 (7)0.007 (5)0.012 (5)0.002 (5)
C280.052 (9)0.058 (9)0.034 (7)0.009 (7)0.014 (6)0.006 (6)
C290.027 (7)0.056 (9)0.031 (7)0.018 (6)0.005 (5)0.009 (6)
C300.051 (8)0.039 (8)0.045 (8)0.023 (7)0.010 (7)0.015 (6)
C310.040 (8)0.038 (8)0.033 (7)0.001 (6)0.018 (6)0.010 (6)
C320.046 (8)0.041 (9)0.059 (9)0.015 (7)0.025 (7)0.003 (7)
C330.050 (9)0.033 (8)0.075 (10)0.003 (6)0.014 (8)0.025 (7)
C340.048 (8)0.032 (8)0.043 (8)0.002 (6)0.007 (6)0.011 (6)
C350.032 (7)0.036 (8)0.031 (7)0.008 (6)0.007 (6)0.001 (6)
C360.046 (8)0.048 (9)0.051 (9)0.010 (7)0.032 (7)0.007 (7)
C370.043 (8)0.040 (8)0.060 (10)0.009 (6)0.027 (7)0.020 (7)
C380.038 (8)0.052 (9)0.036 (8)0.010 (6)0.010 (6)0.019 (6)
C390.057 (9)0.025 (7)0.031 (7)0.001 (6)0.010 (6)0.001 (6)
C400.051 (9)0.064 (11)0.074 (11)0.017 (8)0.027 (8)0.014 (8)
C410.073 (12)0.061 (12)0.095 (14)0.008 (9)0.054 (11)0.024 (10)
C420.090 (15)0.051 (11)0.140 (19)0.019 (10)0.072 (14)0.011 (13)
C430.056 (10)0.051 (10)0.100 (13)0.014 (8)0.048 (10)0.023 (10)
C440.089 (14)0.072 (13)0.15 (2)0.066 (11)0.046 (14)0.060 (14)
C450.111 (16)0.124 (18)0.101 (16)0.086 (14)0.058 (13)0.071 (14)
C460.081 (12)0.104 (14)0.049 (10)0.041 (10)0.018 (8)0.034 (9)
C470.021 (7)0.049 (8)0.052 (8)0.005 (6)0.002 (6)0.002 (6)
C480.039 (8)0.048 (8)0.052 (8)0.007 (6)0.003 (6)0.003 (6)
C490.040 (8)0.083 (11)0.054 (9)0.034 (7)0.001 (7)0.000 (7)
C500.043 (8)0.040 (8)0.040 (7)0.015 (6)0.003 (6)0.004 (6)
C510.041 (8)0.070 (10)0.039 (8)0.009 (7)0.007 (6)0.003 (7)
C520.043 (8)0.047 (8)0.043 (8)0.012 (6)0.009 (6)0.013 (6)
C530.049 (9)0.066 (10)0.050 (9)0.004 (7)0.002 (7)0.014 (7)
C540.076 (11)0.083 (11)0.032 (8)0.035 (9)0.007 (7)0.004 (7)
C550.089 (12)0.102 (13)0.031 (8)0.068 (10)0.017 (8)0.017 (7)
C560.021 (7)0.054 (9)0.062 (9)0.009 (6)0.006 (6)0.006 (7)
C570.035 (8)0.078 (11)0.079 (11)0.001 (7)0.003 (7)0.034 (9)
C580.067 (10)0.038 (8)0.069 (10)0.008 (7)0.001 (8)0.014 (7)
N10.034 (6)0.036 (6)0.028 (6)0.005 (5)0.007 (5)0.001 (4)
N20.030 (5)0.027 (5)0.023 (5)0.004 (4)0.005 (4)0.004 (4)
N30.039 (6)0.030 (6)0.045 (6)0.004 (5)0.011 (5)0.010 (5)
N40.011 (5)0.047 (6)0.030 (5)0.006 (4)0.001 (4)0.002 (4)
O10.047 (6)0.070 (7)0.051 (6)0.003 (5)0.005 (5)0.009 (5)
O20.050 (6)0.038 (6)0.068 (6)0.005 (5)0.005 (5)0.008 (5)
O30.058 (6)0.027 (5)0.047 (5)0.006 (4)0.008 (4)0.009 (4)
O40.037 (5)0.059 (6)0.035 (5)0.007 (4)0.005 (4)0.004 (4)
O50.066 (7)0.066 (7)0.045 (6)0.008 (5)0.014 (5)0.012 (5)
O60.062 (6)0.057 (6)0.057 (6)0.001 (5)0.001 (5)0.013 (5)
C590.060 (10)0.059 (10)0.049 (9)0.008 (7)0.019 (7)0.008 (7)
Cl10.109 (4)0.040 (2)0.105 (3)0.002 (2)0.020 (3)0.008 (2)
Cl20.079 (3)0.056 (2)0.067 (2)0.008 (2)0.005 (2)0.0153 (18)
Cl30.139 (4)0.071 (3)0.113 (4)0.055 (3)0.029 (3)0.014 (3)
C600.046 (8)0.039 (8)0.078 (10)0.012 (6)0.013 (7)0.018 (7)
Cl40.121 (4)0.111 (4)0.110 (4)0.060 (3)0.046 (3)0.041 (3)
Cl50.047 (2)0.044 (2)0.133 (4)0.0038 (17)0.009 (2)0.020 (2)
Cl60.157 (5)0.059 (3)0.097 (3)0.046 (3)0.042 (3)0.028 (2)
Geometric parameters (Å, º) top
Au1—C41.985 (13)C35—C361.455 (18)
Au1—C22.200 (10)C36—C401.383 (17)
Au1—C12.232 (11)C36—C371.412 (18)
Au1—Au23.4507 (6)C37—C381.404 (17)
Au2—C12.005 (13)C37—C431.423 (19)
Au2—C72.009 (13)C38—C461.376 (17)
C1—C21.195 (15)C38—C391.440 (16)
C2—C31.482 (16)C39—O61.198 (13)
C3—N11.458 (13)C39—N31.419 (15)
C3—H3A0.9900C40—C411.43 (2)
C3—H3B0.9900C40—H400.9500
C4—C51.192 (15)C41—C421.36 (2)
C5—C61.455 (16)C41—H410.9500
C6—N21.477 (13)C42—C431.40 (2)
C6—H6A0.9900C42—H420.9500
C6—H6B0.9900C43—C441.40 (2)
C7—C81.199 (16)C44—C451.33 (3)
C8—C91.497 (17)C44—H440.9500
C9—N31.490 (14)C45—C461.40 (2)
C9—H9A0.9900C45—H450.9500
C9—H9B0.9900C46—H460.9500
C11—O11.220 (12)C47—C481.476 (15)
C11—N11.416 (15)C47—N41.513 (13)
C11—C121.439 (16)C47—H47A0.9900
C12—C161.370 (17)C47—H47B0.9900
C12—C131.406 (16)C48—C491.519 (16)
C13—C141.395 (16)C48—H48A0.9900
C13—C191.423 (16)C48—H48B0.9900
C14—C221.369 (16)C49—H49A0.9800
C14—C151.490 (16)C49—H49B0.9800
C15—O21.225 (14)C49—H49C0.9800
C15—N11.374 (14)C50—C511.487 (16)
C16—C171.396 (18)C50—N41.524 (14)
C16—H160.9500C50—H50A0.9900
C17—C181.371 (18)C50—H50B0.9900
C17—H170.9500C51—C521.484 (16)
C18—C191.402 (18)C51—H51A0.9900
C18—H180.9500C51—H51B0.9900
C19—C201.415 (18)C52—H52A0.9800
C20—C211.352 (18)C52—H52B0.9800
C20—H200.9500C52—H52C0.9800
C21—C221.428 (17)C53—C541.467 (18)
C21—H210.9500C53—N41.533 (15)
C22—H220.9500C53—H53A0.9900
C23—O31.204 (12)C53—H53B0.9900
C23—N21.401 (13)C54—C551.547 (17)
C23—C241.486 (14)C54—H54A0.9900
C24—C281.395 (15)C54—H54B0.9900
C24—C251.405 (14)C55—H55A0.9800
C25—C311.398 (15)C55—H55B0.9800
C25—C261.400 (15)C55—H55C0.9800
C26—C341.374 (15)C56—C571.490 (17)
C26—C271.484 (15)C56—N41.506 (14)
C27—O41.217 (12)C56—H56A0.9900
C27—N21.384 (13)C56—H56B0.9900
C28—C291.398 (16)C57—C581.543 (18)
C28—H280.9500C57—H57A0.9900
C29—C301.354 (16)C57—H57B0.9900
C29—H290.9500C58—H58A0.9800
C30—C311.412 (16)C58—H58B0.9800
C30—H300.9500C58—H58C0.9800
C31—C321.407 (17)C59—Cl11.719 (13)
C32—C331.346 (17)C59—Cl31.734 (15)
C32—H320.9500C59—Cl21.767 (13)
C33—C341.409 (17)C59—D591.0000
C33—H330.9500C60—Cl61.711 (14)
C34—H340.9500C60—Cl41.720 (13)
C35—O51.215 (13)C60—Cl51.769 (13)
C35—N31.400 (14)C60—D601.0000
C4—Au1—C2162.3 (4)O6—C39—C38125.7 (12)
C4—Au1—C1166.5 (4)N3—C39—C38116.2 (10)
C2—Au1—C131.3 (4)C36—C40—C41118.9 (16)
C4—Au1—Au2133.1 (3)C36—C40—H40120.5
C2—Au1—Au264.6 (3)C41—C40—H40120.5
C1—Au1—Au233.3 (3)C42—C41—C40120.5 (16)
C1—Au2—C7177.5 (5)C42—C41—H41119.7
C1—Au2—Au137.7 (3)C40—C41—H41119.7
C7—Au2—Au1140.1 (3)C41—C42—C43121.5 (17)
C2—C1—Au2177.8 (10)C41—C42—H42119.3
C2—C1—Au172.8 (7)C43—C42—H42119.3
Au2—C1—Au1108.9 (5)C44—C43—C42122.9 (18)
C1—C2—C3162.0 (11)C44—C43—C37118.4 (16)
C1—C2—Au175.9 (7)C42—C43—C37118.7 (17)
C3—C2—Au1122.1 (8)C45—C44—C43120.8 (16)
N1—C3—C2111.9 (9)C45—C44—H44119.6
N1—C3—H3A109.2C43—C44—H44119.6
C2—C3—H3A109.2C44—C45—C46122.8 (18)
N1—C3—H3B109.2C44—C45—H45118.6
C2—C3—H3B109.2C46—C45—H45118.6
H3A—C3—H3B107.9C38—C46—C45117.9 (16)
C5—C4—Au1177.2 (10)C38—C46—H46121.1
C4—C5—C6176.5 (12)C45—C46—H46121.1
C5—C6—N2112.9 (9)C48—C47—N4119.4 (10)
C5—C6—H6A109.0C48—C47—H47A107.5
N2—C6—H6A109.0N4—C47—H47A107.5
C5—C6—H6B109.0C48—C47—H47B107.5
N2—C6—H6B109.0N4—C47—H47B107.5
H6A—C6—H6B107.8H47A—C47—H47B107.0
C8—C7—Au2170.6 (11)C47—C48—C49110.5 (10)
C7—C8—C9178.6 (14)C47—C48—H48A109.6
N3—C9—C8110.1 (9)C49—C48—H48A109.6
N3—C9—H9A109.6C47—C48—H48B109.6
C8—C9—H9A109.6C49—C48—H48B109.6
N3—C9—H9B109.6H48A—C48—H48B108.1
C8—C9—H9B109.6C48—C49—H49A109.5
H9A—C9—H9B108.2C48—C49—H49B109.5
O1—C11—N1118.2 (11)H49A—C49—H49B109.5
O1—C11—C12125.1 (11)C48—C49—H49C109.5
N1—C11—C12116.7 (10)H49A—C49—H49C109.5
C16—C12—C13120.4 (12)H49B—C49—H49C109.5
C16—C12—C11118.7 (11)C51—C50—N4116.7 (10)
C13—C12—C11120.8 (11)C51—C50—H50A108.1
C14—C13—C12120.7 (11)N4—C50—H50A108.1
C14—C13—C19120.3 (11)C51—C50—H50B108.1
C12—C13—C19119.0 (12)N4—C50—H50B108.1
C22—C14—C13121.1 (11)H50A—C50—H50B107.3
C22—C14—C15118.7 (11)C52—C51—C50113.0 (10)
C13—C14—C15120.2 (11)C52—C51—H51A109.0
O2—C15—N1120.2 (11)C50—C51—H51A109.0
O2—C15—C14123.7 (11)C52—C51—H51B109.0
N1—C15—C14116.1 (11)C50—C51—H51B109.0
C12—C16—C17120.5 (13)H51A—C51—H51B107.8
C12—C16—H16119.8C51—C52—H52A109.5
C17—C16—H16119.8C51—C52—H52B109.5
C18—C17—C16120.6 (13)H52A—C52—H52B109.5
C18—C17—H17119.7C51—C52—H52C109.5
C16—C17—H17119.7H52A—C52—H52C109.5
C17—C18—C19120.4 (12)H52B—C52—H52C109.5
C17—C18—H18119.8C54—C53—N4116.6 (11)
C19—C18—H18119.8C54—C53—H53A108.1
C18—C19—C20123.6 (12)N4—C53—H53A108.1
C18—C19—C13119.2 (12)C54—C53—H53B108.1
C20—C19—C13117.3 (12)N4—C53—H53B108.1
C21—C20—C19122.0 (12)H53A—C53—H53B107.3
C21—C20—H20119.0C53—C54—C55109.9 (13)
C19—C20—H20119.0C53—C54—H54A109.7
C20—C21—C22120.3 (13)C55—C54—H54A109.7
C20—C21—H21119.9C53—C54—H54B109.7
C22—C21—H21119.9C55—C54—H54B109.7
C14—C22—C21119.1 (13)H54A—C54—H54B108.2
C14—C22—H22120.4C54—C55—H55A109.5
C21—C22—H22120.4C54—C55—H55B109.5
O3—C23—N2121.8 (10)H55A—C55—H55B109.5
O3—C23—C24122.7 (10)C54—C55—H55C109.5
N2—C23—C24115.5 (9)H55A—C55—H55C109.5
C28—C24—C25118.3 (10)H55B—C55—H55C109.5
C28—C24—C23119.8 (10)C57—C56—N4116.1 (11)
C25—C24—C23121.9 (9)C57—C56—H56A108.3
C31—C25—C26119.2 (10)N4—C56—H56A108.3
C31—C25—C24121.5 (10)C57—C56—H56B108.3
C26—C25—C24119.3 (10)N4—C56—H56B108.3
C34—C26—C25121.1 (11)H56A—C56—H56B107.4
C34—C26—C27118.0 (11)C56—C57—C58110.7 (11)
C25—C26—C27120.8 (10)C56—C57—H57A109.5
O4—C27—N2119.9 (10)C58—C57—H57A109.5
O4—C27—C26123.1 (10)C56—C57—H57B109.5
N2—C27—C26117.0 (10)C58—C57—H57B109.5
C24—C28—C29120.5 (12)H57A—C57—H57B108.1
C24—C28—H28119.8C57—C58—H58A109.5
C29—C28—H28119.8C57—C58—H58B109.5
C30—C29—C28120.6 (11)H58A—C58—H58B109.5
C30—C29—H29119.7C57—C58—H58C109.5
C28—C29—H29119.7H58A—C58—H58C109.5
C29—C30—C31121.1 (11)H58B—C58—H58C109.5
C29—C30—H30119.4C15—N1—C11125.3 (10)
C31—C30—H30119.4C15—N1—C3117.3 (10)
C25—C31—C32118.4 (11)C11—N1—C3117.3 (10)
C25—C31—C30118.0 (11)C27—N2—C23125.3 (9)
C32—C31—C30123.6 (11)C27—N2—C6117.6 (9)
C33—C32—C31122.0 (12)C23—N2—C6117.0 (9)
C33—C32—H32119.0C35—N3—C39125.0 (10)
C31—C32—H32119.0C35—N3—C9116.8 (10)
C32—C33—C34119.9 (12)C39—N3—C9118.1 (9)
C32—C33—H33120.1C56—N4—C47111.5 (9)
C34—C33—H33120.1C56—N4—C50108.3 (9)
C26—C34—C33119.3 (12)C47—N4—C50107.7 (8)
C26—C34—H34120.4C56—N4—C53110.0 (9)
C33—C34—H34120.4C47—N4—C53108.7 (9)
O5—C35—N3120.0 (12)C50—N4—C53110.6 (9)
O5—C35—C36123.2 (11)Cl1—C59—Cl3111.7 (8)
N3—C35—C36116.7 (11)Cl1—C59—Cl2110.3 (7)
C40—C36—C37120.6 (14)Cl3—C59—Cl2109.0 (8)
C40—C36—C35119.7 (14)Cl1—C59—D59108.6
C37—C36—C35119.7 (11)Cl3—C59—D59108.6
C38—C37—C36121.3 (12)Cl2—C59—D59108.6
C38—C37—C43118.9 (14)Cl6—C60—Cl4112.6 (8)
C36—C37—C43119.8 (14)Cl6—C60—Cl5111.1 (7)
C46—C38—C37121.2 (13)Cl4—C60—Cl5108.8 (7)
C46—C38—C39118.0 (13)Cl6—C60—D60108.1
C37—C38—C39120.8 (11)Cl4—C60—D60108.1
O6—C39—N3118.1 (11)Cl5—C60—D60108.1
C4—Au1—Au2—C1179.4 (7)C25—C26—C34—C332.7 (17)
C2—Au1—Au2—C10.7 (6)C27—C26—C34—C33179.3 (10)
C4—Au1—Au2—C72.6 (7)C32—C33—C34—C261.3 (18)
C2—Au1—Au2—C7177.3 (6)O5—C35—C36—C400.4 (18)
C1—Au1—Au2—C7178.0 (7)N3—C35—C36—C40179.9 (10)
C4—Au1—C1—C2179.3 (16)O5—C35—C36—C37179.0 (11)
Au2—Au1—C1—C2178.7 (11)N3—C35—C36—C371.6 (16)
C2—Au1—C1—Au2178.7 (11)C40—C36—C37—C38176.8 (11)
C4—Au1—C2—C1179.5 (12)C35—C36—C37—C381.7 (17)
Au2—Au1—C2—C10.8 (7)C40—C36—C37—C431.9 (18)
C1—Au1—C2—C3179.1 (14)C35—C36—C37—C43179.6 (11)
Au2—Au1—C2—C3178.3 (10)C36—C37—C38—C46178.3 (12)
Au1—C2—C3—N1127.9 (9)C43—C37—C38—C463.1 (18)
O1—C11—C12—C162.1 (18)C36—C37—C38—C391.5 (18)
N1—C11—C12—C16177.3 (10)C43—C37—C38—C39179.8 (11)
O1—C11—C12—C13179.7 (11)C46—C38—C39—O67.0 (19)
N1—C11—C12—C130.9 (15)C37—C38—C39—O6176.1 (12)
C16—C12—C13—C14180.0 (11)C46—C38—C39—N3174.9 (11)
C11—C12—C13—C141.8 (17)C37—C38—C39—N31.9 (16)
C16—C12—C13—C191.2 (17)C37—C36—C40—C411.9 (18)
C11—C12—C13—C19179.4 (10)C35—C36—C40—C41179.6 (11)
C12—C13—C14—C22179.4 (11)C41—C42—C43—C44179.7 (16)
C19—C13—C14—C220.6 (17)C38—C37—C43—C442.4 (19)
C12—C13—C14—C150.9 (17)C36—C37—C43—C44178.9 (13)
C19—C13—C14—C15179.7 (10)C38—C37—C43—C42177.6 (12)
C22—C14—C15—O21.1 (17)C36—C37—C43—C421.1 (19)
C13—C14—C15—O2179.2 (11)C42—C43—C44—C45179.7 (17)
C22—C14—C15—N1177.1 (10)C39—C38—C46—C45177.9 (14)
C13—C14—C15—N12.6 (15)N4—C47—C48—C49179.3 (10)
C13—C12—C16—C171.2 (18)N4—C50—C51—C52171.5 (10)
C11—C12—C16—C17179.4 (11)N4—C53—C54—C55169.1 (11)
C12—C16—C17—C180.7 (19)N4—C56—C57—C58170.9 (10)
C16—C17—C18—C190.2 (19)O2—C15—N1—C11176.0 (10)
C17—C18—C19—C20179.6 (12)C14—C15—N1—C115.7 (15)
C17—C18—C19—C130.2 (18)O2—C15—N1—C30.3 (15)
C14—C13—C19—C18179.5 (11)C14—C15—N1—C3178.0 (9)
C12—C13—C19—C180.7 (17)O1—C11—N1—C15175.6 (10)
C14—C13—C19—C201.0 (17)C12—C11—N1—C154.9 (15)
C12—C13—C19—C20179.8 (11)O1—C11—N1—C30.8 (15)
C18—C19—C20—C21179.3 (13)C12—C11—N1—C3178.7 (9)
C13—C19—C20—C211.2 (19)C2—C3—N1—C1575.4 (13)
C19—C20—C21—C221 (2)C2—C3—N1—C11101.3 (12)
C13—C14—C22—C210.3 (18)O4—C27—N2—C23176.6 (10)
C15—C14—C22—C21180.0 (11)C26—C27—N2—C235.0 (14)
C20—C21—C22—C140.5 (19)O4—C27—N2—C63.5 (14)
O3—C23—C24—C283.9 (16)C26—C27—N2—C6174.8 (9)
N2—C23—C24—C28177.5 (10)O3—C23—N2—C27175.7 (10)
O3—C23—C24—C25179.1 (10)C24—C23—N2—C272.9 (14)
N2—C23—C24—C250.5 (14)O3—C23—N2—C64.4 (15)
C28—C24—C25—C310.1 (16)C24—C23—N2—C6177.0 (9)
C23—C24—C25—C31177.0 (10)C5—C6—N2—C2770.7 (12)
C28—C24—C25—C26178.4 (10)C5—C6—N2—C23109.2 (11)
C23—C24—C25—C261.3 (15)O5—C35—N3—C39175.1 (11)
C31—C25—C26—C342.7 (16)C36—C35—N3—C395.4 (15)
C24—C25—C26—C34178.9 (10)O5—C35—N3—C91.7 (15)
C31—C25—C26—C27179.3 (10)C36—C35—N3—C9177.8 (9)
C24—C25—C26—C271.0 (15)O6—C39—N3—C35172.6 (10)
C34—C26—C27—O40.3 (16)C38—C39—N3—C355.6 (16)
C25—C26—C27—O4177.7 (10)O6—C39—N3—C94.1 (16)
C34—C26—C27—N2178.0 (10)C38—C39—N3—C9177.7 (10)
C25—C26—C27—N24.0 (15)C8—C9—N3—C3587.3 (12)
C25—C24—C28—C290.4 (16)C8—C9—N3—C3989.7 (12)
C23—C24—C28—C29176.7 (10)C57—C56—N4—C4753.9 (13)
C24—C28—C29—C300.4 (18)C57—C56—N4—C50172.2 (10)
C28—C29—C30—C311.5 (18)C57—C56—N4—C5366.7 (13)
C26—C25—C31—C321.3 (16)C48—C47—N4—C5651.2 (14)
C24—C25—C31—C32179.6 (10)C48—C47—N4—C5067.5 (13)
C26—C25—C31—C30177.3 (10)C48—C47—N4—C53172.7 (11)
C24—C25—C31—C301.0 (16)C51—C50—N4—C5661.6 (12)
C29—C30—C31—C251.8 (17)C51—C50—N4—C47177.7 (10)
C29—C30—C31—C32179.6 (11)C51—C50—N4—C5359.1 (13)
C25—C31—C32—C330.0 (18)C54—C53—N4—C56165.1 (11)
C30—C31—C32—C33178.6 (12)C54—C53—N4—C4772.5 (14)
C31—C32—C33—C340.1 (19)C54—C53—N4—C5045.5 (14)

Experimental details

(I)(II)
Crystal data
Chemical formula(C16H28N)[Au(C14H13N6O)2](C12H28N)[Au2(C15H8NO2)3]·2CDCl3
Mr945.931523.71
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)150150
a, b, c (Å)8.4064 (5), 13.3301 (7), 38.100 (2)8.3493 (5), 13.1970 (7), 25.8732 (14)
α, β, γ (°)90, 90.651 (1), 9085.084 (1), 89.936 (1), 82.957 (1)
V3)4269.2 (4)2818.8 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)3.505.54
Crystal size (mm)0.44 × 0.40 × 0.180.20 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD area-detectorBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Multi-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.308, 0.5720.750, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
37378, 8791, 8217 20651, 7339, 5638
Rint0.0270.064
θmax (°)26.522.5
(sin θ/λ)max1)0.6270.538
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.065, 1.19 0.050, 0.121, 1.03
No. of reflections87917339
No. of parameters509698
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 1.962.21, 1.07

Computer programs: SMART-NT (Bruker, 2001), SAINT-Plus-NT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds