Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the solid state, 4-meth­oxy-N'-(2,2,2-trichloro­ethanimido­yl)benzene-1-carboximidamide, C10H10Cl3N3O, (I), N'-(2,2,2-trichloro­ethanimido­yl)benzene-1-carboximidamide, C9H8Cl3N3, (II), 4-chloro-N'-(2,2,2-trichloro­ethanimido­yl)ben­zene-1-car­box­imidamide, C9H7Cl4N3, (III), 4-bromo-N'-(2,2,2-tri­chloro­ethanimido­yl)benzene-1-carboximidamide, C9H7BrCl3N3, (IV), and 4-trifluoro­methyl-N'-(2,2,2-trichloro­ethanimido­yl)ben­zene-1-carboximidamide, C10H7Cl3F3N3, (V), display strong intra­molecular N-H...N hydrogen bonding across the chelate ring and also intra­molecular N-H...Cl contacts. Additional inter­molecular hydrogen bonds link the mol­ecules into chains, double chains or sheets in all cases except for compound (V). For compound (II), there are three independent mol­ecules per asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111023985/yp3005sup1.cif
Contains datablocks I, II, III, IV, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111023985/yp3005Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111023985/yp3005IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111023985/yp3005IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111023985/yp3005IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111023985/yp3005Vsup6.hkl
Contains datablock V

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111023985/yp3005Isup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111023985/yp3005IIsup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111023985/yp3005IIIsup9.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111023985/yp3005IVsup10.cml
Supplementary material

CCDC references: 842129; 842130; 842131; 842132; 842133

Comment top

N-Imidoylamidines are trinitrogen analogues of pentadienes containing unsaturated NCNCN chains which may have different degrees of substitution at N. If the substituents at C are further N groups, the familiar biguanides are obtained; imidoylamidines have C substituents on the backbone C atoms. Primary N-imidoylamidines have three ionizable H atoms on N with the possibility of several tautomeric structures. Tertiary exemplars retain a single ionizable H atom. Both primary and, more commonly, tertiary imidoylamidines are potent chelating ligands as deprotonated monoanions. Applications for metal complexes of this ligand type include the development of molecular magnets (Zheng et al., 2007) and switches (Atkinson et al., 2002), and π-activation agents for alkynes (Dias et al., 2009), as well as in catalysis (Flores et al., 2009). Both the chemistry of the neutral molecules and the coordination chemistry of the deprotonated anions have recently been comprehensively reviewed (Kopylovich & Pombeiro, 2011). Crystal structures of the neutral primary N-imidoylamidines are virtually non-existent. We recently reported the synthesis and crystal structures of a number of aryl-trifluoromethyl N-imidoylamidines (Boeré et al., 2011). Herein, we report the crystal structures of five new trichloromethyl analogues, (I)–(V), bearing push and pull substituents on the aryl rings.

The molecular structures of (I)–(V) are remarkably similar and a displacement ellipsoid plot of a representative example is shown in Fig. 1. The same atom-numbering scheme is used for all five structures [modified in the case of (II) by suffixes `A', `B' and `C' to identify the three crystallographically independent molecules in the asymetric unit]. Average bond lengths and angles for the NCNCN cores have been compiled along with s.u.s and are listed in Table 6.

The average bond lengths show that C1N1 and C1N2 are of an intermediate length between single and double bonds, as is characteristic of delocalized amidines, and are identical within their s.u.s. The C2N3 bonds are short and more characteristic of imines, while the N2—C2 bonds are longer and approximate single bonds. By contrast, the two C—N bonds to which the CCl3 group is attached in (Z)-2,2,2-trichloro-N2-cyanoacetamidine differ in length by only 0.008 Å (Baker & Boeré, 2009). The averaged bond lengths are nearly identical, within their s.u.s, to the recently reported trifluoromethyl series (Boeré et al., 2011). Other known structures of primary imidoylamidines include an unusual chloro-imidoylamidinium salt (Privett et al., 1987) and two biguanides (Pinkerton & Schwarzenbach, 1978; Ernst & Cagle, 1977; Zheng et al., 2007) [Cambridge Structural Database ( Allen, 2002) refcodes HDCADPZ, BIGUAN, BIGUAN01 and NIWCAY, respectively]. The molecular structure of the new compounds (I)–(V) is reminiscent of diiminoisoindoline (Zhang, Njus et al., 2004), including the observation of the amino tautomer in the solid state. Furthermore, the hydrogen-bonding pattern in the new compounds is similar to that in diiminoisoindoline and 1-amino-3-phenyliminoisoindoline (Zhang, Uth et al., 2004).

The pentaazadiene cores of (I)–(V) are close to planar and form pseudo six-membered rings through N1—H2···N3 hydrogen bonding (labelled I in Fig. 2), with donor–acceptor N···N distances in the range 2.616 (2)–2.657 (4) Å. The average distance in all seven independent molecules is 2.638 (14) Å. The related trifluoromethyl series displays a very similar N···N distance of 2.658 (22) Å (Boeré et al., 2011). Each example also shows short N3—H3···Cl2 contacts (II in Fig. 2), with an average donor–acceptor distance of 2.984 (18) Å. This weak contact is sufficient to orient atom Cl2 close to coplanar with the pentaazadiene core for all seven independent molecules.

The intermolecular hydrogen bonding is also very noteworthy. Within the crystal structure, molecules of (I) are linked by N1—H1···O1i,iii hydrogen bonds that form a twofold helix along the [010] direction (Fig. 3). More significantly, the three independent molecules of (II) form threefold helices along the [100] direction, defining a non-crystallographic threefold screw axis through N1—H1···N2i,iii contacts (Fig. 4). In both (III) and isostructural (IV), there are twofold helices in the [100] direction (Fig. 5), also through N1—H1···N2i,iii contacts. Only (V) does not display intermolecular hydrogen bonding, presumably a consequence of the rather bulky CF3 group on the aryl ring. In (II), (III) and (IV), the main hydrogen bonds are of the type N1—H1···N2i,iii, thus linking a terminal NH2 group on one molecule with the central (backbone) N atom of a neighbouring molecule (III in Fig. 2). The average donor–acceptor distance for this interaction is 3.115 (25) Å, which is also, within the s.u.s, equal to such bonds in the trifluoromethyl series at 3.088 (90) Å. While complete atom transfer would generate a diimine tautomer, all seven examples here and from the trifluoromethyl series (Boeré et al., 2011) show the single tautomeric form in the solid-state structure, which is clearly shown in Fig. 1. The terminal NH2 group is typically involved in ring-forming (H2) and chain-forming (H1) interactions, while the terminal NH group has contacts to atom Cl2 and often [in (I)–(IV)] displays additional intermolecular interactions with other Cl or Br atoms (V in Fig. 2). In molecule C of (II), there is an additional intermolecular hydrogen bond between N1C—H1C and atom Cl1B of a neighbouring CCl3 group (IV in Fig. 2).

Related literature top

For related literature, see: Allen (2002); Atkinson et al. (2002); Baker & Boeré (2009); Boeré et al. (2011); Dias et al. (2009); Ernst & Cagle (1977); Flores et al. (2009); Kopylovich & Pombeiro (2011); Peters & Schaefer (1964); Pinkerton & Schwarzenbach (1978); Privett et al. (1987); Zhang, Njus, Sandman, Guo, Foxman, Erk & van Gelder (2004); Zhang, Uth, Sandman & Foxman (2004); Zheng et al. (2007).

Experimental top

Compounds (I)–(V) were prepared using a modification of a literature procedure (Peters & Schaefer, 1964) by addition of trichloroacetonitrile to the corresponding para-substituted benzamidines in acetonitrile. Crystals suitable for X-ray diffraction were grown by vacuum sublimation in a three-zone tube furnace, or by slow cooling of acetonitrile solutions [m.p. for (I) 377–379 K, for (II) 341–342 K, for (III) 384–386 K, for (IV) 371–372 K, and for (V) 369–370 K]. A full hemisphere of data was collected for all five structures at low temperature (173 K) using molybdenum radiation.

Refinement top

C-bound H atoms were treated as riding, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H, and with C—H = 0.95–0.96 Å and Uiso(H) = 1.2Ueq(C) for all others. [Please check added text] The three N-bound H-atom positions were refined using a distance restraint of 0.88 Å and with Uiso(H) = 1.2Ueq(N).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (drawn at the 30% probability level) of (I) at 173 (2) K. The same atom-numbering scheme is used for (I)–(V), except that in (II) the three independent molecules in the asymmetric unit have suffixes A, B and C. All seven independent molecules display intramolecular N1···N3 and N3···Cl2 hydrogen bonding within the crystal structure, indicated by dotted lines.
[Figure 2] Fig. 2. The intermolecular N1—H1···O1 hydrogen bonds in (I) (dotted lines), linking the molecules into a twofold helix in the [010] direction. The two (equivalent) linked molecules are viewed approximately down the b axis; extension of the chain to the N1—H1 unit above and to atom O1 below is also shown. [Symmetry codes: (i) -x, y + 1/2, -z - 1/2; (iii) x, y + 1, z; (iv) -x, y + 1/2, z - 1/2.]
[Figure 3] Fig. 3. Displacement ellipsoids plot (drawn at the 30% probability level) of molecule A (II), as found in the crystal at 173 (2) K. The atom-numbering scheme used is the same as in Fig. 1, with the addition of A suffixes.
[Figure 4] Fig. 4. The intermolecular N1—H1···N2 hydrogen bonds in (II) (dotted lines), linking the three unique molecules into a threefold helix in the [100] direction with a noncrystallographic threefold screw axis. The three unique molecules A, B and C are shown, along with the adjacent triazapenta-1,3-diene cores at either end. The view is approximately perpendicular to the bc diagonal. [Symmetry codes: (i) x + 1, y, z; (iii) x - 1, y, z.]
[Figure 5] Fig. 5. Displacement ellipsoids plot (drawn at the 30% probability level) of (III), as found in the crystal at 173 (2) K. The atom-numbering scheme used is the same as in Fig. 1.
[Figure 6] Fig. 6. The intermolecular N1—H1···N2 hydrogen bonds in (III) (dotted lines), forming chains of equivalent molecules aligned exactly with the ac diagonal of the unit cell, resulting in a twofold helix along the [101] direction. Compound (IV) is isostructural with (III). [Symmetry codes: (i) x - 1/2, -y + 1/2, z - 1/2; (iii) x + 1/2, -y + 1/2, z + 1/2; (iv) x + 1, y, z + 1.]
[Figure 7] Fig. 7. Displacement ellipsoids plot (drawn at the 30% probability level) of (IV), as found in the crystal at 173 (2) K. The atom-numbering scheme used is the same as in Fig. 1.
[Figure 8] Fig. 8. Displacement ellipsoids plot (drawn at the 30% probability level) of (V), as found in the crystal at 173 (2) K. The atom-numbering scheme used is the same as in Fig. 1.
(I) 4-methoxy-N'-(2,2,2-trichloroethanimidoyl)benzene-1-carboximidamide top
Crystal data top
C10H10Cl3N3OF(000) = 600
Mr = 294.56Dx = 1.607 Mg m3
Monoclinic, P21/cMelting point: 379 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.0988 (10) ÅCell parameters from 5637 reflections
b = 8.6425 (7) Åθ = 2.9–27.6°
c = 12.2023 (10) ŵ = 0.74 mm1
β = 107.445 (1)°T = 173 K
V = 1217.23 (17) Å3Plate, colourless
Z = 40.21 × 0.19 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2812 independent reflections
Radiation source: fine-focus sealed tube, Bruker D82448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1515
Tmin = 0.697, Tmax = 0.746k = 1111
17246 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0268P)2 + 0.5682P]
where P = (Fo2 + 2Fc2)/3
2812 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H10Cl3N3OV = 1217.23 (17) Å3
Mr = 294.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0988 (10) ŵ = 0.74 mm1
b = 8.6425 (7) ÅT = 173 K
c = 12.2023 (10) Å0.21 × 0.19 × 0.07 mm
β = 107.445 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2812 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2448 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.746Rint = 0.026
17246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0263 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
2812 reflectionsΔρmin = 0.25 e Å3
164 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22219 (3)1.12498 (4)0.29453 (3)0.02805 (10)
Cl20.45878 (3)1.21630 (5)0.34343 (3)0.03239 (10)
Cl30.40231 (4)0.89667 (4)0.36966 (3)0.03220 (10)
O10.16574 (9)0.52503 (12)0.16730 (9)0.0268 (2)
N10.27253 (13)0.97377 (17)0.07690 (11)0.0295 (3)
H10.2362 (15)0.973 (2)0.1487 (13)0.035*
H20.3350 (14)1.027 (2)0.0493 (16)0.035*
N20.25961 (11)0.93385 (14)0.11013 (10)0.0232 (3)
N30.42567 (13)1.07952 (18)0.11169 (12)0.0355 (3)
H30.4757 (15)1.138 (2)0.1582 (15)0.043*
C10.22335 (13)0.91356 (16)0.00248 (12)0.0220 (3)
C20.35160 (13)1.02903 (17)0.15842 (12)0.0228 (3)
C30.35881 (12)1.06573 (16)0.28524 (12)0.0217 (3)
C40.11884 (12)0.81590 (16)0.04816 (12)0.0211 (3)
C50.09763 (12)0.73382 (17)0.15131 (12)0.0229 (3)
H50.14870.74480.19670.027*
C60.00272 (13)0.63683 (17)0.18750 (12)0.0238 (3)
H60.01010.57970.25670.029*
C70.07419 (12)0.62242 (16)0.12296 (12)0.0215 (3)
C80.05565 (13)0.70580 (17)0.02167 (12)0.0246 (3)
H80.10870.69830.02190.029*
C90.04093 (13)0.79985 (17)0.01500 (12)0.0244 (3)
H90.05440.85500.08520.029*
C100.25077 (14)0.5113 (2)0.10765 (14)0.0320 (4)
H10A0.21330.47690.02870.048*
H10B0.30960.43550.14700.048*
H10C0.28760.61200.10650.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02641 (18)0.03102 (19)0.02742 (19)0.00546 (15)0.00913 (15)0.00012 (15)
Cl20.0339 (2)0.0366 (2)0.02458 (19)0.01100 (16)0.00560 (16)0.00661 (16)
Cl30.0414 (2)0.0292 (2)0.02365 (19)0.01073 (16)0.00628 (16)0.00784 (15)
O10.0279 (5)0.0322 (6)0.0203 (5)0.0050 (4)0.0071 (4)0.0013 (4)
N10.0351 (7)0.0366 (7)0.0168 (6)0.0086 (6)0.0076 (6)0.0009 (6)
N20.0273 (6)0.0247 (6)0.0170 (6)0.0024 (5)0.0054 (5)0.0004 (5)
N30.0378 (8)0.0443 (8)0.0272 (7)0.0161 (7)0.0140 (6)0.0069 (6)
C10.0268 (7)0.0197 (6)0.0198 (7)0.0025 (6)0.0071 (6)0.0012 (5)
C20.0279 (7)0.0223 (7)0.0176 (7)0.0004 (6)0.0062 (6)0.0007 (5)
C30.0228 (7)0.0218 (7)0.0188 (7)0.0009 (5)0.0038 (6)0.0023 (5)
C40.0245 (7)0.0211 (7)0.0167 (7)0.0032 (5)0.0045 (6)0.0016 (5)
C50.0253 (7)0.0269 (7)0.0174 (7)0.0026 (6)0.0077 (6)0.0004 (6)
C60.0271 (7)0.0273 (7)0.0163 (7)0.0025 (6)0.0053 (6)0.0032 (6)
C70.0219 (7)0.0224 (7)0.0181 (7)0.0025 (5)0.0026 (6)0.0035 (5)
C80.0287 (7)0.0283 (7)0.0190 (7)0.0019 (6)0.0105 (6)0.0008 (6)
C90.0308 (8)0.0258 (7)0.0168 (7)0.0012 (6)0.0076 (6)0.0017 (6)
C100.0293 (8)0.0378 (9)0.0310 (8)0.0043 (7)0.0120 (7)0.0030 (7)
Geometric parameters (Å, º) top
Cl1—C31.7663 (15)C4—C91.392 (2)
Cl2—C31.7736 (15)C4—C51.400 (2)
Cl3—C31.7742 (14)C5—C61.383 (2)
O1—C71.3671 (17)C5—H50.9500
O1—C101.4321 (18)C6—C71.393 (2)
N1—C11.3318 (19)C6—H60.9500
N1—H10.854 (14)C7—C81.390 (2)
N1—H20.861 (14)C8—C91.383 (2)
N2—C11.3228 (18)C8—H80.9500
N2—C21.3672 (19)C9—H90.9500
N3—C21.2747 (19)C10—H10A0.9800
N3—H30.858 (15)C10—H10B0.9800
C1—C41.483 (2)C10—H10C0.9800
C2—C31.5563 (19)
C7—O1—C10118.05 (12)C6—C5—C4120.34 (14)
C1—N1—H1119.8 (13)C6—C5—H5119.8
C1—N1—H2117.4 (13)C4—C5—H5119.8
H1—N1—H2121.9 (18)C5—C6—C7120.34 (13)
C1—N2—C2120.07 (12)C5—C6—H6119.8
C2—N3—H3110.9 (13)C7—C6—H6119.8
N2—C1—N1125.42 (14)O1—C7—C8124.54 (13)
N2—C1—C4116.48 (12)O1—C7—C6115.50 (12)
N1—C1—C4118.10 (13)C8—C7—C6119.96 (13)
N3—C2—N2127.14 (14)C9—C8—C7119.21 (13)
N3—C2—C3122.53 (13)C9—C8—H8120.4
N2—C2—C3110.30 (12)C7—C8—H8120.4
C2—C3—Cl1110.38 (10)C8—C9—C4121.75 (13)
C2—C3—Cl2112.08 (10)C8—C9—H9119.1
Cl1—C3—Cl2107.49 (8)C4—C9—H9119.1
C2—C3—Cl3109.15 (10)O1—C10—H10A109.5
Cl1—C3—Cl3108.78 (8)O1—C10—H10B109.5
Cl2—C3—Cl3108.89 (8)H10A—C10—H10B109.5
C9—C4—C5118.38 (13)O1—C10—H10C109.5
C9—C4—C1119.43 (13)H10A—C10—H10C109.5
C5—C4—C1122.15 (13)H10B—C10—H10C109.5
C2—N2—C1—N13.2 (2)N1—C1—C4—C526.8 (2)
C2—N2—C1—C4176.48 (13)C9—C4—C5—C61.4 (2)
C1—N2—C2—N316.0 (2)C1—C4—C5—C6176.14 (13)
C1—N2—C2—C3166.24 (12)C4—C5—C6—C71.4 (2)
N3—C2—C3—Cl1133.01 (14)C10—O1—C7—C82.1 (2)
N2—C2—C3—Cl149.13 (14)C10—O1—C7—C6177.03 (13)
N3—C2—C3—Cl213.23 (19)C5—C6—C7—O1179.21 (13)
N2—C2—C3—Cl2168.91 (10)C5—C6—C7—C80.0 (2)
N3—C2—C3—Cl3107.48 (15)O1—C7—C8—C9179.46 (13)
N2—C2—C3—Cl370.38 (13)C6—C7—C8—C91.4 (2)
N2—C1—C4—C924.02 (19)C7—C8—C9—C41.4 (2)
N1—C1—C4—C9155.71 (14)C5—C4—C9—C80.0 (2)
N2—C1—C4—C5153.50 (14)C1—C4—C9—C8177.64 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N30.86 (1)2.00 (2)2.647 (2)132 (2)
N3—H3···Cl20.86 (2)2.43 (2)2.9791 (15)123 (2)
N1—H1···O1i0.85 (1)2.20 (2)3.0315 (17)166 (2)
N3—H3···Cl3ii0.86 (2)2.76 (2)3.4077 (15)134 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
(II) N'-(2,2,2-trichloroethanimidoyl)benzene-1-carboximidamide top
Crystal data top
C9H8Cl3N3Z = 6
Mr = 264.53F(000) = 804
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Melting point: 342 K
a = 10.2999 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9423 (3) ÅCell parameters from 14588 reflections
c = 15.6902 (4) Åθ = 1.3–27.7°
α = 85.5518 (12)°µ = 0.76 mm1
β = 86.5092 (12)°T = 173 K
γ = 81.5436 (11)°Prism, colourless
V = 1741.67 (8) Å30.18 × 0.15 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
7908 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD4900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 27.7°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1313
Tmin = 0.876, Tmax = 0.928k = 1414
14588 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0773P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
7908 reflectionsΔρmax = 0.47 e Å3
434 parametersΔρmin = 0.49 e Å3
9 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0229 (19)
Crystal data top
C9H8Cl3N3γ = 81.5436 (11)°
Mr = 264.53V = 1741.67 (8) Å3
Triclinic, P1Z = 6
a = 10.2999 (3) ÅMo Kα radiation
b = 10.9423 (3) ŵ = 0.76 mm1
c = 15.6902 (4) ÅT = 173 K
α = 85.5518 (12)°0.18 × 0.15 × 0.10 mm
β = 86.5092 (12)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
7908 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4900 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.928Rint = 0.076
14588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0559 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.47 e Å3
7908 reflectionsΔρmin = 0.49 e Å3
434 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Oxford Cryostream device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The three N—H hydrogen atom positions were refined using a distance constraint (0.88 Å) with isotropic thermal parameters constrained to 1.2 × that of the attached nitrogen atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.60376 (8)0.68696 (8)0.05980 (5)0.0382 (2)
Cl3A0.85852 (10)0.64967 (10)0.02951 (6)0.0512 (3)
Cl2A0.74929 (10)0.44303 (8)0.05492 (6)0.0475 (3)
N1A0.9712 (3)0.7141 (3)0.26620 (17)0.0335 (6)
H1A1.023 (3)0.746 (3)0.2982 (19)0.040*
H2A0.962 (3)0.6344 (19)0.271 (2)0.040*
N2A0.8396 (2)0.7473 (2)0.14600 (16)0.0270 (6)
N3A0.8634 (3)0.5374 (3)0.2018 (2)0.0457 (8)
H3A0.844 (4)0.467 (2)0.186 (2)0.055*
C1A0.9100 (3)0.7853 (3)0.20468 (18)0.0258 (7)
C2A0.8291 (3)0.6245 (3)0.1447 (2)0.0305 (7)
C3A0.7639 (3)0.6011 (3)0.06152 (19)0.0304 (7)
C4A0.9202 (3)0.9191 (3)0.20026 (19)0.0263 (7)
C5A0.9272 (3)0.9789 (3)0.2751 (2)0.0314 (7)
H5A0.92480.93230.32950.038*
C6A0.9389 (3)1.1043 (3)0.2696 (2)0.0402 (9)
H6A0.94311.14520.32110.048*
C7A0.9429 (3)1.1703 (3)0.1912 (2)0.0411 (9)
H7A0.95191.25670.18810.049*
C8A0.9352 (3)1.1110 (3)0.1164 (2)0.0400 (8)
H8A0.93831.15600.06150.048*
C9A0.9233 (3)0.9864 (3)0.1210 (2)0.0298 (7)
H9A0.91680.94640.06940.036*
Cl2B0.42045 (11)1.45466 (8)0.18858 (6)0.0554 (3)
Cl3B0.54312 (11)1.33750 (8)0.33855 (6)0.0543 (3)
Cl1B0.27927 (9)1.30194 (8)0.30614 (6)0.0453 (3)
N1B0.6096 (3)0.9670 (3)0.16516 (16)0.0273 (6)
H1B0.666 (3)0.901 (2)0.158 (2)0.033*
H2B0.596 (3)1.032 (2)0.1268 (17)0.033*
N2B0.5067 (2)1.1002 (2)0.26857 (15)0.0233 (5)
N3B0.5213 (3)1.2041 (3)0.13037 (17)0.0379 (7)
H3B0.510 (4)1.281 (2)0.107 (2)0.045*
C1B0.5677 (3)0.9918 (3)0.24448 (18)0.0228 (6)
C2B0.4927 (3)1.2012 (3)0.21114 (18)0.0251 (6)
C3B0.4360 (3)1.3185 (3)0.25786 (19)0.0306 (7)
C4B0.5870 (3)0.8898 (3)0.31318 (19)0.0242 (6)
C5B0.5848 (3)0.7677 (3)0.2950 (2)0.0294 (7)
H5B0.57300.74900.23740.035*
C6B0.5980 (4)0.6743 (3)0.3600 (2)0.0388 (8)
H6B0.59850.58980.34750.047*
C7B0.6124 (4)0.7022 (3)0.4429 (2)0.0388 (8)
H7B0.61980.63740.48800.047*
C8B0.6152 (3)0.8226 (3)0.4614 (2)0.0353 (8)
H8B0.62710.84120.51900.042*
C9B0.6019 (3)0.9176 (3)0.39690 (19)0.0291 (7)
H9B0.60241.00190.40960.035*
Cl2C0.14101 (9)0.62248 (8)0.59828 (5)0.0385 (2)
Cl3C0.15617 (9)0.55349 (7)0.42581 (5)0.0407 (2)
Cl1C0.06225 (8)0.73018 (9)0.48515 (6)0.0427 (2)
N1C0.2826 (3)0.9864 (2)0.36848 (17)0.0291 (6)
H1C0.331 (3)1.035 (3)0.3381 (18)0.035*
H2C0.281 (3)0.974 (3)0.4253 (12)0.035*
N2C0.1782 (2)0.8084 (2)0.37308 (15)0.0248 (6)
N3C0.2278 (3)0.8556 (3)0.51154 (17)0.0384 (7)
H3C0.221 (4)0.823 (3)0.5640 (14)0.046*
C1C0.2373 (3)0.8974 (3)0.33215 (18)0.0230 (6)
C2C0.1797 (3)0.7900 (3)0.46059 (18)0.0254 (7)
C3C0.1096 (3)0.6786 (3)0.49120 (19)0.0282 (7)
C4C0.2535 (3)0.8944 (3)0.23692 (18)0.0237 (6)
C5C0.2589 (3)1.0003 (3)0.18363 (19)0.0275 (7)
H5C0.25091.07910.20800.033*
C6C0.2776 (3)0.9933 (3)0.0957 (2)0.0346 (8)
H6C0.28181.06670.05860.042*
C7C0.2902 (3)0.8789 (3)0.0612 (2)0.0371 (8)
H7C0.30250.87380.00030.045*
C8C0.2842 (3)0.7729 (3)0.1142 (2)0.0347 (8)
H8C0.29190.69390.09020.042*
C9C0.2669 (3)0.7795 (3)0.20168 (19)0.0293 (7)
H9C0.26460.70560.23870.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0350 (5)0.0441 (5)0.0359 (5)0.0005 (4)0.0128 (3)0.0091 (4)
Cl3A0.0554 (6)0.0666 (7)0.0346 (5)0.0196 (5)0.0094 (4)0.0114 (4)
Cl2A0.0612 (6)0.0318 (5)0.0534 (6)0.0077 (4)0.0166 (5)0.0153 (4)
N1A0.0406 (17)0.0282 (15)0.0338 (16)0.0091 (13)0.0137 (13)0.0015 (12)
N2A0.0287 (14)0.0246 (13)0.0283 (14)0.0032 (11)0.0068 (11)0.0029 (11)
N3A0.069 (2)0.0248 (15)0.0459 (18)0.0077 (15)0.0264 (16)0.0020 (13)
C1A0.0247 (16)0.0270 (16)0.0258 (16)0.0044 (13)0.0023 (13)0.0001 (13)
C2A0.0295 (17)0.0308 (17)0.0314 (17)0.0002 (14)0.0043 (14)0.0086 (14)
C3A0.0337 (18)0.0299 (17)0.0287 (17)0.0046 (14)0.0060 (13)0.0062 (13)
C4A0.0198 (15)0.0292 (16)0.0303 (16)0.0042 (13)0.0030 (12)0.0016 (13)
C5A0.0298 (17)0.0327 (17)0.0318 (17)0.0027 (14)0.0002 (14)0.0075 (14)
C6A0.039 (2)0.0340 (19)0.048 (2)0.0022 (16)0.0053 (16)0.0175 (16)
C7A0.037 (2)0.0255 (17)0.060 (2)0.0030 (15)0.0026 (17)0.0050 (16)
C8A0.0327 (19)0.0328 (19)0.053 (2)0.0030 (15)0.0047 (16)0.0071 (16)
C9A0.0276 (17)0.0316 (17)0.0303 (17)0.0050 (14)0.0023 (13)0.0014 (14)
Cl2B0.0897 (8)0.0239 (4)0.0457 (6)0.0033 (5)0.0094 (5)0.0100 (4)
Cl3B0.0752 (7)0.0362 (5)0.0572 (6)0.0127 (5)0.0250 (5)0.0127 (4)
Cl1B0.0461 (5)0.0318 (5)0.0553 (6)0.0007 (4)0.0154 (4)0.0095 (4)
N1B0.0279 (14)0.0278 (14)0.0241 (14)0.0038 (12)0.0003 (11)0.0035 (11)
N2B0.0282 (14)0.0204 (13)0.0217 (12)0.0048 (11)0.0024 (10)0.0000 (10)
N3B0.0545 (19)0.0321 (16)0.0236 (15)0.0007 (14)0.0024 (13)0.0039 (12)
C1B0.0216 (15)0.0242 (15)0.0234 (15)0.0065 (13)0.0023 (12)0.0009 (12)
C2B0.0258 (16)0.0243 (15)0.0245 (16)0.0025 (13)0.0017 (12)0.0010 (12)
C3B0.0426 (19)0.0221 (15)0.0269 (16)0.0059 (14)0.0003 (14)0.0017 (13)
C4B0.0217 (15)0.0208 (15)0.0294 (16)0.0007 (12)0.0027 (12)0.0014 (12)
C5B0.0335 (18)0.0275 (16)0.0274 (16)0.0035 (14)0.0011 (13)0.0052 (13)
C6B0.052 (2)0.0197 (16)0.045 (2)0.0040 (15)0.0018 (17)0.0014 (14)
C7B0.048 (2)0.0315 (18)0.0346 (19)0.0011 (16)0.0072 (16)0.0082 (15)
C8B0.045 (2)0.0345 (18)0.0269 (17)0.0061 (16)0.0084 (15)0.0020 (14)
C9B0.0349 (18)0.0257 (16)0.0279 (16)0.0067 (14)0.0062 (13)0.0017 (13)
Cl2C0.0556 (6)0.0360 (5)0.0256 (4)0.0133 (4)0.0079 (4)0.0044 (3)
Cl3C0.0673 (6)0.0234 (4)0.0329 (4)0.0079 (4)0.0094 (4)0.0034 (3)
Cl1C0.0319 (5)0.0477 (5)0.0479 (5)0.0127 (4)0.0007 (4)0.0134 (4)
N1C0.0362 (16)0.0314 (15)0.0231 (13)0.0151 (12)0.0031 (12)0.0060 (11)
N2C0.0293 (14)0.0257 (13)0.0212 (13)0.0086 (11)0.0023 (10)0.0029 (10)
N3C0.0555 (19)0.0456 (18)0.0204 (14)0.0267 (15)0.0001 (13)0.0063 (13)
C1C0.0219 (15)0.0251 (15)0.0223 (15)0.0042 (13)0.0010 (12)0.0026 (12)
C2C0.0291 (16)0.0257 (16)0.0222 (15)0.0061 (13)0.0001 (12)0.0027 (12)
C3C0.0344 (18)0.0275 (16)0.0247 (16)0.0096 (14)0.0044 (13)0.0016 (12)
C4C0.0195 (15)0.0275 (16)0.0248 (15)0.0050 (12)0.0024 (12)0.0032 (12)
C5C0.0230 (16)0.0318 (17)0.0279 (16)0.0051 (13)0.0026 (12)0.0011 (13)
C6C0.0286 (17)0.046 (2)0.0286 (17)0.0084 (16)0.0043 (14)0.0071 (15)
C7C0.0337 (19)0.056 (2)0.0210 (16)0.0023 (17)0.0007 (14)0.0068 (16)
C8C0.0366 (19)0.0384 (19)0.0283 (17)0.0032 (15)0.0055 (14)0.0112 (15)
C9C0.0327 (18)0.0280 (17)0.0267 (16)0.0016 (14)0.0037 (13)0.0022 (13)
Geometric parameters (Å, º) top
Cl1A—C3A1.775 (3)C4B—C5B1.392 (4)
Cl3A—C3A1.771 (3)C4B—C9B1.393 (4)
Cl2A—C3A1.770 (3)C5B—C6B1.385 (5)
N1A—C1A1.322 (4)C5B—H5B0.9600
N1A—H1A0.878 (18)C6B—C7B1.380 (5)
N1A—H2A0.888 (18)C6B—H6B0.9600
N2A—C1A1.332 (4)C7B—C8B1.376 (5)
N2A—C2A1.366 (4)C7B—H7B0.9600
N3A—C2A1.281 (4)C8B—C9B1.391 (4)
N3A—H3A0.883 (18)C8B—H8B0.9600
C1A—C4A1.479 (4)C9B—H9B0.9600
C2A—C3A1.559 (4)Cl2C—C3C1.775 (3)
C4A—C9A1.396 (4)Cl3C—C3C1.766 (3)
C4A—C5A1.399 (4)Cl1C—C3C1.783 (3)
C5A—C6A1.391 (5)N1C—C1C1.321 (4)
C5A—H5A0.9600N1C—H1C0.873 (18)
C6A—C7A1.379 (5)N1C—H2C0.892 (18)
C6A—H6A0.9600N2C—C1C1.327 (4)
C7A—C8A1.396 (5)N2C—C2C1.373 (4)
C7A—H7A0.9600N3C—C2C1.281 (4)
C8A—C9A1.383 (4)N3C—H3C0.872 (18)
C8A—H8A0.9600C1C—C4C1.496 (4)
C9A—H9A0.9600C2C—C3C1.538 (4)
Cl2B—C3B1.768 (3)C4C—C5C1.381 (4)
Cl3B—C3B1.772 (3)C4C—C9C1.398 (4)
Cl1B—C3B1.769 (3)C5C—C6C1.388 (4)
N1B—C1B1.327 (4)C5C—H5C0.9601
N1B—H1B0.866 (18)C6C—C7C1.387 (5)
N1B—H2B0.893 (18)C6C—H6C0.9601
N2B—C1B1.328 (4)C7C—C8C1.381 (5)
N2B—C2B1.367 (4)C7C—H7C0.9600
N3B—C2B1.283 (4)C8C—C9C1.380 (4)
N3B—H3B0.882 (18)C8C—H8C0.9600
C1B—C4B1.491 (4)C9C—H9C0.9601
C2B—C3B1.549 (4)
C1A—N1A—H1A119 (2)C5B—C4B—C1B120.5 (3)
C1A—N1A—H2A118 (2)C9B—C4B—C1B119.7 (3)
H1A—N1A—H2A123 (3)C6B—C5B—C4B119.9 (3)
C1A—N2A—C2A119.9 (3)C6B—C5B—H5B120.6
C2A—N3A—H3A109 (3)C4B—C5B—H5B119.6
N1A—C1A—N2A125.8 (3)C7B—C6B—C5B120.2 (3)
N1A—C1A—C4A117.4 (3)C7B—C6B—H6B119.7
N2A—C1A—C4A116.8 (3)C5B—C6B—H6B120.1
N3A—C2A—N2A127.7 (3)C8B—C7B—C6B120.3 (3)
N3A—C2A—C3A122.3 (3)C8B—C7B—H7B119.8
N2A—C2A—C3A109.9 (3)C6B—C7B—H7B119.9
C2A—C3A—Cl2A112.3 (2)C7B—C8B—C9B120.3 (3)
C2A—C3A—Cl3A110.0 (2)C7B—C8B—H8B119.9
Cl2A—C3A—Cl3A108.29 (16)C9B—C8B—H8B119.8
C2A—C3A—Cl1A109.2 (2)C8B—C9B—C4B119.6 (3)
Cl2A—C3A—Cl1A107.94 (16)C8B—C9B—H9B120.7
Cl3A—C3A—Cl1A109.06 (18)C4B—C9B—H9B119.8
C9A—C4A—C5A119.6 (3)C1C—N1C—H1C120 (2)
C9A—C4A—C1A120.0 (3)C1C—N1C—H2C112 (2)
C5A—C4A—C1A120.4 (3)H1C—N1C—H2C125 (3)
C6A—C5A—C4A119.6 (3)C1C—N2C—C2C120.3 (2)
C6A—C5A—H5A121.1C2C—N3C—H3C110 (2)
C4A—C5A—H5A119.3N1C—C1C—N2C125.5 (3)
C7A—C6A—C5A120.7 (3)N1C—C1C—C4C118.2 (3)
C7A—C6A—H6A120.0N2C—C1C—C4C116.3 (2)
C5A—C6A—H6A119.3N3C—C2C—N2C126.9 (3)
C6A—C7A—C8A119.9 (3)N3C—C2C—C3C123.3 (3)
C6A—C7A—H7A120.0N2C—C2C—C3C109.8 (2)
C8A—C7A—H7A120.2C2C—C3C—Cl3C111.5 (2)
C9A—C8A—C7A120.0 (3)C2C—C3C—Cl2C113.4 (2)
C9A—C8A—H8A119.5Cl3C—C3C—Cl2C107.40 (17)
C7A—C8A—H8A120.5C2C—C3C—Cl1C106.6 (2)
C8A—C9A—C4A120.3 (3)Cl3C—C3C—Cl1C109.57 (16)
C8A—C9A—H9A119.6Cl2C—C3C—Cl1C108.35 (17)
C4A—C9A—H9A120.1C5C—C4C—C9C119.5 (3)
C1B—N1B—H1B118 (2)C5C—C4C—C1C122.3 (3)
C1B—N1B—H2B114 (2)C9C—C4C—C1C118.2 (3)
H1B—N1B—H2B125 (3)C4C—C5C—C6C120.5 (3)
C1B—N2B—C2B120.2 (2)C4C—C5C—H5C119.4
C2B—N3B—H3B111 (2)C6C—C5C—H5C120.1
N1B—C1B—N2B125.7 (3)C7C—C6C—C5C119.7 (3)
N1B—C1B—C4B118.1 (3)C7C—C6C—H6C119.7
N2B—C1B—C4B116.2 (2)C5C—C6C—H6C120.6
N3B—C2B—N2B127.4 (3)C8C—C7C—C6C120.0 (3)
N3B—C2B—C3B122.7 (3)C8C—C7C—H7C120.1
N2B—C2B—C3B109.9 (2)C6C—C7C—H7C119.8
C2B—C3B—Cl2B112.8 (2)C9C—C8C—C7C120.4 (3)
C2B—C3B—Cl1B110.1 (2)C9C—C8C—H8C119.6
Cl2B—C3B—Cl1B108.29 (18)C7C—C8C—H8C120.0
C2B—C3B—Cl3B108.8 (2)C8C—C9C—C4C119.9 (3)
Cl2B—C3B—Cl3B107.92 (16)C8C—C9C—H9C120.5
Cl1B—C3B—Cl3B108.94 (17)C4C—C9C—H9C119.7
C5B—C4B—C9B119.8 (3)
C2A—N2A—C1A—N1A1.9 (5)N2B—C1B—C4B—C5B147.1 (3)
C2A—N2A—C1A—C4A178.2 (3)N1B—C1B—C4B—C9B151.1 (3)
C1A—N2A—C2A—N3A11.2 (5)N2B—C1B—C4B—C9B30.3 (4)
C1A—N2A—C2A—C3A169.9 (3)C9B—C4B—C5B—C6B0.3 (5)
N3A—C2A—C3A—Cl2A1.9 (4)C1B—C4B—C5B—C6B177.6 (3)
N2A—C2A—C3A—Cl2A179.2 (2)C4B—C5B—C6B—C7B0.5 (5)
N3A—C2A—C3A—Cl3A122.6 (3)C5B—C6B—C7B—C8B0.8 (5)
N2A—C2A—C3A—Cl3A58.5 (3)C6B—C7B—C8B—C9B0.9 (5)
N3A—C2A—C3A—Cl1A117.8 (3)C7B—C8B—C9B—C4B0.7 (5)
N2A—C2A—C3A—Cl1A61.1 (3)C5B—C4B—C9B—C8B0.3 (5)
N1A—C1A—C4A—C9A146.2 (3)C1B—C4B—C9B—C8B177.7 (3)
N2A—C1A—C4A—C9A33.8 (4)C2C—N2C—C1C—N1C11.3 (5)
N1A—C1A—C4A—C5A33.6 (4)C2C—N2C—C1C—C4C168.3 (3)
N2A—C1A—C4A—C5A146.4 (3)C1C—N2C—C2C—N3C4.1 (5)
C9A—C4A—C5A—C6A0.9 (5)C1C—N2C—C2C—C3C177.7 (3)
C1A—C4A—C5A—C6A178.9 (3)N3C—C2C—C3C—Cl3C138.0 (3)
C4A—C5A—C6A—C7A0.5 (5)N2C—C2C—C3C—Cl3C43.7 (3)
C5A—C6A—C7A—C8A0.1 (5)N3C—C2C—C3C—Cl2C16.7 (4)
C6A—C7A—C8A—C9A0.2 (5)N2C—C2C—C3C—Cl2C165.0 (2)
C7A—C8A—C9A—C4A0.6 (5)N3C—C2C—C3C—Cl1C102.4 (3)
C5A—C4A—C9A—C8A1.0 (5)N2C—C2C—C3C—Cl1C75.8 (3)
C1A—C4A—C9A—C8A178.8 (3)N1C—C1C—C4C—C5C28.6 (4)
C2B—N2B—C1B—N1B5.9 (4)N2C—C1C—C4C—C5C151.8 (3)
C2B—N2B—C1B—C4B175.5 (2)N1C—C1C—C4C—C9C149.7 (3)
C1B—N2B—C2B—N3B7.2 (5)N2C—C1C—C4C—C9C29.9 (4)
C1B—N2B—C2B—C3B172.3 (2)C9C—C4C—C5C—C6C0.0 (4)
N3B—C2B—C3B—Cl2B1.7 (4)C1C—C4C—C5C—C6C178.3 (3)
N2B—C2B—C3B—Cl2B177.8 (2)C4C—C5C—C6C—C7C0.3 (5)
N3B—C2B—C3B—Cl1B119.3 (3)C5C—C6C—C7C—C8C0.0 (5)
N2B—C2B—C3B—Cl1B61.2 (3)C6C—C7C—C8C—C9C0.6 (5)
N3B—C2B—C3B—Cl3B121.4 (3)C7C—C8C—C9C—C4C0.9 (5)
N2B—C2B—C3B—Cl3B58.1 (3)C5C—C4C—C9C—C8C0.6 (5)
N1B—C1B—C4B—C5B31.5 (4)C1C—C4C—C9C—C8C178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H2A···N3A0.89 (2)1.99 (3)2.657 (4)130 (3)
N3A—H3A···Cl2A0.88 (2)2.38 (3)2.969 (3)125 (3)
N1A—H1A···N2Ci0.88 (2)2.26 (2)3.126 (4)172 (3)
N1B—H1B···N2A0.87 (2)2.28 (2)3.136 (4)171 (3)
N3B—H3B···Cl2B0.88 (2)2.41 (3)2.978 (3)122 (3)
N1B—H2B···N3B0.89 (2)1.94 (3)2.646 (4)135 (3)
N3B—H3B···Cl1Aii0.88 (2)2.91 (3)3.383 (3)115 (3)
N1C—H2C···N3C0.89 (2)1.91 (3)2.644 (4)138 (3)
N3C—H3C···Cl2C0.87 (2)2.47 (3)3.023 (3)122 (3)
N1C—H1C···N2B0.87 (2)2.24 (2)3.072 (3)160 (3)
N1C—H1C···Cl1B0.87 (2)2.90 (3)3.511 (3)128 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z.
(III) 4-chloro-N'-(2,2,2-trichloroethanimidoyl)benzene-1-carboximidamide top
Crystal data top
C9H7Cl4N3F(000) = 600
Mr = 298.98Dx = 1.625 Mg m3
Monoclinic, P21/nMelting point: 386 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.762 (2) ÅCell parameters from 9122 reflections
b = 22.711 (8) Åθ = 2.4–27.6°
c = 9.713 (4) ŵ = 0.94 mm1
β = 106.031 (4)°T = 173 K
V = 1221.7 (8) Å3Plate, colourless
Z = 40.32 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2803 independent reflections
Radiation source: fine-focus sealed tube, Bruker D82248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 77
Tmin = 0.613, Tmax = 0.746k = 2929
16666 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.21 w = 1/[σ2(Fo2) + (0.0382P)2 + 2.1126P]
where P = (Fo2 + 2Fc2)/3
2803 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = 0.35 e Å3
Crystal data top
C9H7Cl4N3V = 1221.7 (8) Å3
Mr = 298.98Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.762 (2) ŵ = 0.94 mm1
b = 22.711 (8) ÅT = 173 K
c = 9.713 (4) Å0.32 × 0.10 × 0.08 mm
β = 106.031 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2248 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.746Rint = 0.041
16666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.50 e Å3
2803 reflectionsΔρmin = 0.35 e Å3
154 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The three N—H hydrogen atom positions were refined using a distance constraint (0.88 Å) with isotropic thermal parameters constrained to 1.2 × that of the attached nitrogen atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00475 (17)0.38480 (4)0.54834 (9)0.0350 (2)
Cl20.09542 (18)0.46198 (4)0.30420 (10)0.0411 (2)
Cl30.37047 (16)0.40846 (4)0.41173 (11)0.0407 (2)
Cl40.81260 (16)0.05682 (4)0.50241 (10)0.0352 (2)
N10.1001 (5)0.23304 (13)0.1498 (3)0.0300 (6)
H10.102 (7)0.1998 (11)0.104 (4)0.036*
H20.205 (6)0.2618 (13)0.128 (4)0.036*
N20.1227 (5)0.29573 (12)0.3323 (3)0.0240 (6)
N30.2290 (5)0.34175 (14)0.1853 (3)0.0357 (7)
H30.297 (7)0.3767 (11)0.176 (4)0.043*
C10.0864 (5)0.24533 (14)0.2625 (3)0.0226 (6)
C20.0325 (6)0.34201 (14)0.2862 (3)0.0242 (6)
C30.0567 (6)0.39702 (14)0.3809 (3)0.0250 (7)
C40.2664 (6)0.19779 (14)0.3160 (3)0.0234 (6)
C50.1988 (6)0.13896 (14)0.3090 (3)0.0262 (7)
H50.03560.12860.26430.031*
C60.3645 (6)0.09515 (14)0.3659 (3)0.0270 (7)
H60.31690.05500.36160.032*
C70.6016 (6)0.11147 (14)0.4294 (3)0.0264 (7)
C80.6766 (6)0.16943 (14)0.4368 (4)0.0269 (7)
H80.84050.17940.48050.032*
C90.5075 (6)0.21290 (14)0.3790 (3)0.0249 (7)
H90.55610.25300.38250.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0420 (5)0.0424 (5)0.0212 (4)0.0063 (4)0.0094 (3)0.0002 (3)
Cl20.0457 (5)0.0287 (4)0.0415 (5)0.0059 (4)0.0003 (4)0.0092 (4)
Cl30.0262 (4)0.0468 (5)0.0476 (5)0.0059 (4)0.0076 (4)0.0035 (4)
Cl40.0322 (4)0.0271 (4)0.0426 (5)0.0049 (3)0.0040 (4)0.0001 (3)
N10.0322 (15)0.0332 (15)0.0189 (13)0.0013 (12)0.0025 (11)0.0018 (11)
N20.0228 (13)0.0310 (14)0.0155 (12)0.0057 (11)0.0007 (10)0.0009 (10)
N30.0342 (16)0.0374 (17)0.0267 (15)0.0093 (13)0.0063 (13)0.0015 (13)
C10.0200 (14)0.0312 (16)0.0164 (14)0.0002 (12)0.0046 (11)0.0019 (12)
C20.0238 (15)0.0318 (17)0.0160 (14)0.0027 (12)0.0039 (12)0.0028 (12)
C30.0225 (15)0.0282 (16)0.0227 (15)0.0033 (12)0.0034 (12)0.0042 (12)
C40.0248 (15)0.0311 (16)0.0143 (14)0.0022 (12)0.0053 (12)0.0025 (12)
C50.0253 (16)0.0321 (17)0.0201 (15)0.0020 (13)0.0045 (13)0.0046 (13)
C60.0279 (16)0.0258 (16)0.0285 (16)0.0046 (13)0.0099 (13)0.0048 (13)
C70.0287 (16)0.0275 (16)0.0232 (15)0.0048 (13)0.0076 (13)0.0011 (13)
C80.0204 (15)0.0314 (17)0.0285 (16)0.0023 (12)0.0061 (13)0.0054 (13)
C90.0238 (15)0.0261 (16)0.0239 (16)0.0020 (12)0.0049 (12)0.0022 (12)
Geometric parameters (Å, º) top
Cl1—C31.779 (3)C2—C31.553 (4)
Cl2—C31.772 (3)C4—C51.388 (5)
Cl3—C31.768 (3)C4—C91.397 (4)
Cl4—C71.745 (3)C5—C61.384 (5)
N1—C11.335 (4)C5—H50.9500
N1—H10.873 (18)C6—C71.386 (4)
N1—H20.874 (18)C6—H60.9500
N2—C11.317 (4)C7—C81.381 (5)
N2—C21.373 (4)C8—C91.392 (4)
N3—C21.276 (4)C8—H80.9500
N3—H30.878 (19)C9—H90.9500
C1—C41.488 (4)
C1—N1—H1119 (3)C5—C4—C1121.5 (3)
C1—N1—H2113 (3)C9—C4—C1119.2 (3)
H1—N1—H2128 (4)C6—C5—C4121.3 (3)
C1—N2—C2120.0 (3)C6—C5—H5119.4
C2—N3—H3110 (3)C4—C5—H5119.4
N2—C1—N1125.6 (3)C5—C6—C7118.2 (3)
N2—C1—C4117.0 (3)C5—C6—H6120.9
N1—C1—C4117.4 (3)C7—C6—H6120.9
N3—C2—N2127.4 (3)C8—C7—C6122.3 (3)
N3—C2—C3122.5 (3)C8—C7—Cl4118.9 (3)
N2—C2—C3110.1 (2)C6—C7—Cl4118.8 (3)
C2—C3—Cl3112.0 (2)C7—C8—C9118.7 (3)
C2—C3—Cl2112.1 (2)C7—C8—H8120.6
Cl3—C3—Cl2108.23 (18)C9—C8—H8120.6
C2—C3—Cl1107.4 (2)C8—C9—C4120.2 (3)
Cl3—C3—Cl1108.70 (17)C8—C9—H9119.9
Cl2—C3—Cl1108.31 (18)C4—C9—H9119.9
C5—C4—C9119.3 (3)
C2—N2—C1—N13.1 (5)N2—C1—C4—C932.2 (4)
C2—N2—C1—C4178.1 (3)N1—C1—C4—C9148.9 (3)
C1—N2—C2—N35.9 (5)C9—C4—C5—C61.4 (5)
C1—N2—C2—C3177.0 (3)C1—C4—C5—C6176.4 (3)
N3—C2—C3—Cl3137.6 (3)C4—C5—C6—C70.6 (5)
N2—C2—C3—Cl345.1 (3)C5—C6—C7—C80.3 (5)
N3—C2—C3—Cl215.8 (4)C5—C6—C7—Cl4179.7 (2)
N2—C2—C3—Cl2167.0 (2)C6—C7—C8—C90.3 (5)
N3—C2—C3—Cl1103.1 (3)Cl4—C7—C8—C9179.7 (2)
N2—C2—C3—Cl174.2 (3)C7—C8—C9—C40.5 (5)
N2—C1—C4—C5145.6 (3)C5—C4—C9—C81.4 (5)
N1—C1—C4—C533.3 (4)C1—C4—C9—C8176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N30.87 (2)1.92 (3)2.628 (4)137 (3)
N3—H3···Cl20.88 (2)2.42 (4)2.982 (3)122 (3)
N1—H1···N2i0.87 (2)2.68 (4)3.125 (4)113 (3)
N1—H1···Cl1i0.87 (2)2.95 (3)3.507 (3)124 (3)
N3—H3···Cl4ii0.88 (2)2.85 (3)3.585 (3)143 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x3/2, y+1/2, z1/2.
(IV) 4-bromo-N'-(2,2,2-trichloroethanimidoyl)benzene-1-carboximidamide top
Crystal data top
C9H7BrCl3N3F(000) = 672
Mr = 343.44Dx = 1.811 Mg m3
Monoclinic, P21/nMelting point: 372 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.8124 (17) ÅCell parameters from 9949 reflections
b = 23.379 (7) Åθ = 2.4–27.5°
c = 9.715 (3) ŵ = 3.87 mm1
β = 107.407 (3)°T = 173 K
V = 1259.7 (6) Å3Block, colourless
Z = 40.22 × 0.20 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2898 independent reflections
Radiation source: fine-focus sealed tube, Bruker D82563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 77
Tmin = 0.483, Tmax = 0.684k = 3030
17762 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.032P)2 + 0.0355P]
where P = (Fo2 + 2Fc2)/3
2898 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C9H7BrCl3N3V = 1259.7 (6) Å3
Mr = 343.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8124 (17) ŵ = 3.87 mm1
b = 23.379 (7) ÅT = 173 K
c = 9.715 (3) Å0.22 × 0.20 × 0.11 mm
β = 107.407 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2898 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2563 reflections with I > 2σ(I)
Tmin = 0.483, Tmax = 0.684Rint = 0.068
17762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.61 e Å3
2898 reflectionsΔρmin = 0.36 e Å3
157 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The three N—H hydrogen atom positions were refined using a distance constraint (0.88 Å) with isotropic thermal parameters constrained to 1.2 × that of the attached nitrogen atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.31061 (3)0.055482 (7)0.00590 (2)0.03134 (8)
Cl30.10682 (9)0.40490 (2)0.07715 (6)0.03762 (13)
Cl10.48116 (9)0.38658 (2)0.05926 (5)0.03232 (12)
Cl20.56396 (10)0.46071 (2)0.18824 (6)0.03954 (13)
N10.6083 (3)0.23809 (7)0.34129 (17)0.0293 (3)
H10.618 (4)0.2086 (7)0.393 (2)0.035*
H20.705 (3)0.2673 (8)0.372 (2)0.035*
N20.3693 (3)0.29746 (6)0.15879 (15)0.0240 (3)
N30.7189 (3)0.34433 (7)0.30475 (19)0.0359 (4)
H30.777 (4)0.3780 (7)0.313 (3)0.043*
C10.4163 (3)0.24862 (7)0.23064 (18)0.0227 (4)
C20.5193 (3)0.34356 (7)0.20405 (18)0.0244 (4)
C30.4206 (3)0.39678 (7)0.1098 (2)0.0250 (4)
C40.2394 (3)0.20153 (7)0.17975 (18)0.0225 (4)
C50.3140 (3)0.14443 (7)0.19087 (19)0.0241 (4)
H50.47860.13540.23630.029*
C60.1504 (3)0.10101 (7)0.1363 (2)0.0252 (4)
H60.20110.06220.14370.030*
C70.0875 (3)0.11519 (7)0.07086 (19)0.0237 (4)
C80.1686 (3)0.17124 (7)0.0598 (2)0.0265 (4)
H80.33380.18000.01520.032*
C90.0020 (3)0.21445 (7)0.1156 (2)0.0257 (4)
H90.05410.25310.10970.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02543 (11)0.02462 (11)0.04149 (14)0.00413 (7)0.00622 (9)0.00085 (7)
Cl30.0244 (2)0.0431 (3)0.0454 (3)0.00339 (19)0.0105 (2)0.0013 (2)
Cl10.0348 (3)0.0404 (3)0.0232 (2)0.00569 (19)0.0109 (2)0.00028 (19)
Cl20.0436 (3)0.0277 (2)0.0408 (3)0.0082 (2)0.0027 (2)0.0075 (2)
N10.0303 (9)0.0304 (8)0.0212 (8)0.0007 (7)0.0015 (7)0.0015 (6)
N20.0228 (7)0.0278 (8)0.0187 (8)0.0055 (6)0.0019 (6)0.0004 (6)
N30.0312 (9)0.0346 (9)0.0317 (10)0.0094 (7)0.0060 (7)0.0006 (7)
C10.0224 (9)0.0286 (9)0.0173 (9)0.0012 (7)0.0061 (7)0.0029 (7)
C20.0240 (9)0.0308 (9)0.0175 (9)0.0034 (7)0.0050 (7)0.0018 (7)
C30.0226 (9)0.0289 (9)0.0225 (9)0.0055 (7)0.0051 (7)0.0044 (7)
C40.0232 (9)0.0277 (9)0.0179 (9)0.0015 (7)0.0081 (7)0.0006 (7)
C50.0212 (8)0.0283 (9)0.0221 (9)0.0021 (7)0.0054 (7)0.0029 (7)
C60.0251 (9)0.0230 (8)0.0292 (10)0.0034 (7)0.0108 (8)0.0038 (7)
C70.0236 (9)0.0237 (8)0.0251 (10)0.0054 (7)0.0095 (8)0.0007 (7)
C80.0193 (8)0.0282 (9)0.0319 (10)0.0009 (7)0.0077 (7)0.0045 (8)
C90.0247 (9)0.0226 (8)0.0310 (10)0.0012 (7)0.0101 (8)0.0028 (7)
Geometric parameters (Å, º) top
Br1—C71.8996 (17)C2—C31.550 (2)
Cl3—C31.7657 (19)C4—C91.387 (2)
Cl1—C31.7953 (19)C4—C51.398 (2)
Cl2—C31.7690 (18)C5—C61.383 (2)
N1—C11.321 (2)C5—H50.9500
N1—H10.846 (15)C6—C71.379 (2)
N1—H20.876 (15)C6—H60.9500
N2—C11.323 (2)C7—C81.386 (3)
N2—C21.373 (2)C8—C91.392 (2)
N3—C21.275 (2)C8—H80.9500
N3—H30.851 (16)C9—H90.9500
C1—C41.487 (2)
C1—N1—H1121.7 (15)C9—C4—C1119.61 (15)
C1—N1—H2115.4 (15)C5—C4—C1120.92 (15)
H1—N1—H2121 (2)C6—C5—C4120.63 (16)
C1—N2—C2119.82 (15)C6—C5—H5119.7
C2—N3—H3109.4 (16)C4—C5—H5119.7
N1—C1—N2125.51 (16)C7—C6—C5118.66 (16)
N1—C1—C4117.70 (15)C7—C6—H6120.7
N2—C1—C4116.78 (15)C5—C6—H6120.7
N3—C2—N2126.99 (17)C6—C7—C8122.29 (16)
N3—C2—C3122.23 (16)C6—C7—Br1118.50 (13)
N2—C2—C3110.72 (15)C8—C7—Br1119.21 (14)
C2—C3—Cl3111.85 (12)C7—C8—C9118.37 (17)
C2—C3—Cl2112.36 (12)C7—C8—H8120.8
Cl3—C3—Cl2108.33 (9)C9—C8—H8120.8
C2—C3—Cl1107.15 (12)C4—C9—C8120.60 (16)
Cl3—C3—Cl1108.95 (10)C4—C9—H9119.7
Cl2—C3—Cl1108.09 (9)C8—C9—H9119.7
C9—C4—C5119.43 (16)
C2—N2—C1—N14.3 (3)N1—C1—C4—C531.6 (2)
C2—N2—C1—C4177.01 (14)N2—C1—C4—C5147.16 (16)
C1—N2—C2—N36.3 (3)C9—C4—C5—C61.2 (3)
C1—N2—C2—C3176.51 (15)C1—C4—C5—C6176.50 (15)
N3—C2—C3—Cl3138.95 (16)C4—C5—C6—C70.1 (3)
N2—C2—C3—Cl343.72 (18)C5—C6—C7—C80.9 (3)
N3—C2—C3—Cl216.9 (2)C5—C6—C7—Br1179.29 (12)
N2—C2—C3—Cl2165.81 (11)C6—C7—C8—C90.7 (3)
N3—C2—C3—Cl1101.71 (18)Br1—C7—C8—C9179.47 (13)
N2—C2—C3—Cl175.61 (15)C5—C4—C9—C81.4 (3)
N1—C1—C4—C9150.74 (17)C1—C4—C9—C8176.35 (15)
N2—C1—C4—C930.5 (2)C7—C8—C9—C40.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N30.88 (2)1.93 (2)2.616 (2)135 (2)
N3—H3···Cl20.85 (2)2.42 (2)2.9809 (19)124 (2)
N1—H1···N2i0.85 (2)2.56 (2)3.116 (2)124 (2)
N3—H3···Br1ii0.85 (2)2.95 (2)3.6523 (18)141 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
(V) 4-trifluoromethyl-N'-(2,2,2-trichloroethanimidoyl)benzene- 1-carboximidamide top
Crystal data top
C10H7Cl3F3N3F(000) = 664
Mr = 332.54Dx = 1.734 Mg m3
Monoclinic, P21/nMelting point: 370 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.2939 (17) ÅCell parameters from 8858 reflections
b = 8.3914 (13) Åθ = 2.5–28.7°
c = 13.505 (2) ŵ = 0.74 mm1
β = 95.505 (2)°T = 173 K
V = 1274.0 (3) Å3Block, colourless
Z = 40.25 × 0.25 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3191 independent reflections
Radiation source: fine-focus sealed tube, Bruker D82862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1514
Tmin = 0.699, Tmax = 0.746k = 1111
18460 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0459P)2 + 1.189P]
where P = (Fo2 + 2Fc2)/3
3191 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.90 e Å3
3 restraintsΔρmin = 0.58 e Å3
Crystal data top
C10H7Cl3F3N3V = 1274.0 (3) Å3
Mr = 332.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2939 (17) ŵ = 0.74 mm1
b = 8.3914 (13) ÅT = 173 K
c = 13.505 (2) Å0.25 × 0.25 × 0.12 mm
β = 95.505 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3191 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2862 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.746Rint = 0.018
18460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.90 e Å3
3191 reflectionsΔρmin = 0.58 e Å3
181 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The three N—H hydrogen atom positions were refined using a distance constraint (0.88 Å) with isotropic thermal parameters constrained to 1.2 × that of the attached nitrogen atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07598 (4)0.17549 (6)0.34650 (4)0.03310 (13)
Cl20.05810 (4)0.15293 (6)0.40281 (4)0.03458 (13)
Cl30.24053 (4)0.05899 (6)0.28148 (3)0.03334 (13)
N10.43487 (16)0.1229 (2)0.61038 (12)0.0332 (4)
H10.5042 (17)0.132 (3)0.6434 (17)0.040*
H20.3764 (19)0.068 (3)0.6300 (19)0.040*
N20.33288 (13)0.13981 (19)0.45102 (11)0.0257 (3)
N30.22810 (15)0.0136 (2)0.56173 (12)0.0294 (3)
H30.1668 (18)0.077 (3)0.5618 (18)0.035*
C10.42252 (15)0.1734 (2)0.51656 (13)0.0222 (3)
C20.24428 (15)0.0396 (2)0.47579 (13)0.0233 (3)
C30.15932 (15)0.0009 (2)0.38128 (13)0.0249 (3)
C40.51996 (14)0.2725 (2)0.48188 (12)0.0215 (3)
C50.60362 (16)0.3475 (2)0.54866 (13)0.0249 (3)
H50.59680.34010.61810.030*
C60.69674 (16)0.4330 (2)0.51476 (14)0.0266 (4)
H60.75390.48360.56060.032*
C70.70557 (16)0.4440 (2)0.41340 (14)0.0248 (3)
C80.62103 (17)0.3739 (2)0.34570 (13)0.0263 (4)
H80.62670.38480.27630.032*
C90.52848 (16)0.2882 (2)0.37967 (13)0.0252 (3)
H90.47060.23990.33350.030*
C100.80815 (18)0.5304 (2)0.37550 (15)0.0330 (4)
F10.87562 (15)0.4359 (2)0.32727 (16)0.0705 (5)
F20.77309 (17)0.6395 (3)0.30794 (18)0.0899 (7)
F30.87537 (18)0.6042 (3)0.44403 (13)0.0922 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0291 (2)0.0379 (3)0.0319 (2)0.00576 (18)0.00042 (17)0.00676 (18)
Cl20.0298 (2)0.0392 (3)0.0342 (2)0.01267 (19)0.00013 (18)0.00240 (19)
Cl30.0291 (2)0.0469 (3)0.0243 (2)0.00111 (19)0.00397 (17)0.00443 (18)
N10.0298 (8)0.0453 (10)0.0236 (8)0.0116 (7)0.0027 (6)0.0075 (7)
N20.0233 (7)0.0311 (8)0.0224 (7)0.0041 (6)0.0006 (6)0.0029 (6)
N30.0265 (8)0.0363 (9)0.0257 (7)0.0052 (7)0.0033 (6)0.0041 (6)
C10.0228 (8)0.0226 (8)0.0214 (8)0.0019 (6)0.0034 (6)0.0001 (6)
C20.0208 (8)0.0259 (8)0.0230 (8)0.0005 (6)0.0016 (6)0.0007 (6)
C30.0207 (8)0.0297 (9)0.0244 (8)0.0014 (7)0.0027 (6)0.0024 (7)
C40.0208 (7)0.0213 (8)0.0224 (8)0.0018 (6)0.0021 (6)0.0003 (6)
C50.0269 (8)0.0274 (8)0.0205 (8)0.0005 (7)0.0024 (6)0.0009 (6)
C60.0262 (8)0.0268 (9)0.0264 (9)0.0034 (7)0.0011 (7)0.0038 (7)
C70.0251 (8)0.0221 (8)0.0281 (8)0.0009 (6)0.0064 (7)0.0015 (6)
C80.0295 (9)0.0274 (9)0.0223 (8)0.0007 (7)0.0044 (7)0.0002 (7)
C90.0260 (8)0.0270 (8)0.0221 (8)0.0013 (7)0.0004 (6)0.0005 (7)
C100.0347 (10)0.0321 (10)0.0340 (10)0.0076 (8)0.0121 (8)0.0048 (8)
F10.0537 (9)0.0596 (10)0.1066 (14)0.0099 (8)0.0514 (10)0.0237 (9)
F20.0653 (11)0.0827 (14)0.1254 (18)0.0073 (10)0.0275 (11)0.0643 (13)
F30.0891 (13)0.1373 (18)0.0550 (10)0.0879 (14)0.0317 (9)0.0372 (11)
Geometric parameters (Å, º) top
Cl1—C31.7799 (19)C4—C91.399 (2)
Cl2—C31.7669 (18)C5—C61.387 (3)
Cl3—C31.7742 (18)C5—H50.9500
N1—C11.331 (2)C6—C71.385 (3)
N1—H10.867 (16)C6—H60.9500
N1—H20.866 (17)C7—C81.388 (3)
N2—C11.310 (2)C7—C101.498 (3)
N2—C21.373 (2)C8—C91.383 (3)
N3—C21.273 (2)C8—H80.9500
N3—H30.872 (16)C9—H90.9500
C1—C41.490 (2)C10—F31.297 (3)
C2—C31.556 (2)C10—F11.315 (2)
C4—C51.393 (2)C10—F21.326 (3)
C1—N1—H1117.9 (17)C6—C5—H5119.7
C1—N1—H2116.5 (17)C4—C5—H5119.7
H1—N1—H2125 (2)C7—C6—C5119.30 (16)
C1—N2—C2120.08 (15)C7—C6—H6120.3
C2—N3—H3113.4 (17)C5—C6—H6120.3
N2—C1—N1125.35 (17)C6—C7—C8120.84 (16)
N2—C1—C4116.99 (15)C6—C7—C10120.09 (17)
N1—C1—C4117.63 (15)C8—C7—C10119.07 (16)
N3—C2—N2127.51 (16)C9—C8—C7119.74 (16)
N3—C2—C3122.93 (16)C9—C8—H8120.1
N2—C2—C3109.54 (14)C7—C8—H8120.1
C2—C3—Cl2112.04 (12)C8—C9—C4120.13 (16)
C2—C3—Cl3111.06 (12)C8—C9—H9119.9
Cl2—C3—Cl3107.93 (10)C4—C9—H9119.9
C2—C3—Cl1108.29 (12)F3—C10—F1108.3 (2)
Cl2—C3—Cl1108.10 (9)F3—C10—F2106.1 (2)
Cl3—C3—Cl1109.36 (9)F1—C10—F2103.0 (2)
C5—C4—C9119.32 (16)F3—C10—C7113.97 (17)
C5—C4—C1121.63 (15)F1—C10—C7112.43 (17)
C9—C4—C1119.04 (15)F2—C10—C7112.30 (18)
C6—C5—C4120.62 (16)
C2—N2—C1—N12.9 (3)C1—C4—C5—C6176.99 (16)
C2—N2—C1—C4175.25 (15)C4—C5—C6—C70.4 (3)
C1—N2—C2—N39.7 (3)C5—C6—C7—C81.6 (3)
C1—N2—C2—C3171.99 (16)C5—C6—C7—C10177.59 (17)
N3—C2—C3—Cl211.6 (2)C6—C7—C8—C91.8 (3)
N2—C2—C3—Cl2170.06 (12)C10—C7—C8—C9177.35 (17)
N3—C2—C3—Cl3132.36 (17)C7—C8—C9—C40.1 (3)
N2—C2—C3—Cl349.28 (18)C5—C4—C9—C81.7 (3)
N3—C2—C3—Cl1107.55 (18)C1—C4—C9—C8177.27 (16)
N2—C2—C3—Cl170.81 (16)C6—C7—C10—F37.1 (3)
N2—C1—C4—C5163.99 (17)C8—C7—C10—F3173.7 (2)
N1—C1—C4—C517.7 (3)C6—C7—C10—F1116.6 (2)
N2—C1—C4—C917.0 (2)C8—C7—C10—F162.5 (3)
N1—C1—C4—C9161.27 (17)C6—C7—C10—F2127.8 (2)
C9—C4—C5—C62.0 (3)C8—C7—C10—F253.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N30.87 (2)1.96 (2)2.628 (2)133 (2)
N3—H3···Cl20.87 (2)2.45 (2)2.9779 (17)119 (2)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC10H10Cl3N3OC9H8Cl3N3C9H7Cl4N3C9H7BrCl3N3
Mr294.56264.53298.98343.44
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Monoclinic, P21/nMonoclinic, P21/n
Temperature (K)173173173173
a, b, c (Å)12.0988 (10), 8.6425 (7), 12.2023 (10)10.2999 (3), 10.9423 (3), 15.6902 (4)5.762 (2), 22.711 (8), 9.713 (4)5.8124 (17), 23.379 (7), 9.715 (3)
α, β, γ (°)90, 107.445 (1), 9085.5518 (12), 86.5092 (12), 81.5436 (11)90, 106.031 (4), 9090, 107.407 (3), 90
V3)1217.23 (17)1741.67 (8)1221.7 (8)1259.7 (6)
Z4644
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.740.760.943.87
Crystal size (mm)0.21 × 0.19 × 0.070.18 × 0.15 × 0.100.32 × 0.10 × 0.080.22 × 0.20 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Multi-scan
(SADABS; Bruker, 2006)
Multi-scan
(SADABS; Bruker, 2006)
Multi-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.697, 0.7460.876, 0.9280.613, 0.7460.483, 0.684
No. of measured, independent and
observed [I > 2σ(I)] reflections
17246, 2812, 2448 14588, 7908, 4900 16666, 2803, 2248 17762, 2898, 2563
Rint0.0260.0760.0410.068
(sin θ/λ)max1)0.6510.6540.6510.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.05 0.055, 0.151, 0.97 0.050, 0.122, 1.21 0.024, 0.062, 1.08
No. of reflections2812790828032898
No. of parameters164434154157
No. of restraints3930
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.250.47, 0.490.50, 0.350.61, 0.36


(V)
Crystal data
Chemical formulaC10H7Cl3F3N3
Mr332.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.2939 (17), 8.3914 (13), 13.505 (2)
α, β, γ (°)90, 95.505 (2), 90
V3)1274.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.25 × 0.25 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.699, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
18460, 3191, 2862
Rint0.018
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.06
No. of reflections3191
No. of parameters181
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 0.58

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N30.861 (14)1.995 (17)2.647 (2)131.7 (17)
N3—H3···Cl20.858 (15)2.426 (18)2.9791 (15)122.7 (16)
N1—H1···O1i0.854 (14)2.197 (15)3.0315 (17)165.6 (17)
N3—H3···Cl3ii0.858 (15)2.757 (18)3.4077 (15)133.8 (16)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1A—H2A···N3A0.888 (18)1.99 (3)2.657 (4)130 (3)
N3A—H3A···Cl2A0.883 (18)2.38 (3)2.969 (3)125 (3)
N1A—H1A···N2Ci0.878 (18)2.255 (19)3.126 (4)172 (3)
N1B—H1B···N2A0.866 (18)2.278 (19)3.136 (4)171 (3)
N3B—H3B···Cl2B0.882 (18)2.41 (3)2.978 (3)122 (3)
N1B—H2B···N3B0.893 (18)1.94 (3)2.646 (4)135 (3)
N3B—H3B···Cl1Aii0.882 (18)2.91 (3)3.383 (3)115 (3)
N1C—H2C···N3C0.892 (18)1.91 (3)2.644 (4)138 (3)
N3C—H3C···Cl2C0.872 (18)2.47 (3)3.023 (3)122 (3)
N1C—H1C···N2B0.873 (18)2.24 (2)3.072 (3)160 (3)
N1C—H1C···Cl1B0.873 (18)2.90 (3)3.511 (3)128 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N30.874 (18)1.92 (3)2.628 (4)137 (3)
N3—H3···Cl20.878 (19)2.42 (4)2.982 (3)122 (3)
N1—H1···N2i0.873 (18)2.68 (4)3.125 (4)113 (3)
N1—H1···Cl1i0.873 (18)2.95 (3)3.507 (3)124 (3)
N3—H3···Cl4ii0.878 (19)2.85 (3)3.585 (3)143 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x3/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N30.876 (15)1.925 (19)2.616 (2)135 (2)
N3—H3···Cl20.851 (16)2.42 (2)2.9809 (19)124 (2)
N1—H1···N2i0.846 (15)2.56 (2)3.116 (2)124.2 (18)
N3—H3···Br1ii0.851 (16)2.95 (2)3.6523 (18)141 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N30.866 (17)1.96 (2)2.628 (2)133 (2)
N3—H3···Cl20.872 (16)2.45 (2)2.9779 (17)119 (2)
Average bond lengths (Å) and angles (°) for compounds (I)–(V), and comparison with the averages in two biguanides (CSD refcodes BIGUAN01 and NIWCAY) top
BondAverage (I)–(V)BiguanidesAngleAverage (I)–(V)Biguanides
N1—C11.327 (5)1.325 (2)N1–C1–N2125.6 (2)128.6 (2)
C1—N21.323 (7)1.329 (2)N1–C1–C4117.8 (4)
N2—C21.370 (3)1.382 (2)C4–C1–N2116.7 (3)
C2—N31.278 (3)1.295 (2)C1–N2–C2120.1 (2)118.1 (2)
C2—C31.552 (7)N2–C2–N3127.3 (3)128.1 (2)
C1—C41.488 (5)N2–C2–C3110.0 (4)
N3–C2–C3122.7 (4)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds