Download citation
Download citation
link to html
The crystal structures of diphenyl (cyclo­heptyl­amido)­phosphate, C19H24NO3P or (C6H5O)2P(O)(NHC7H13), (I), and diphenyl (di­benzyl­amido)­phosphate, C26H24NO3P or (C6H5O)2P(O)[N(CH2C6H5)2], (II), are reported. The NHC7H13 group in (I) provides two significant hydrogen-donor sites in N—H...O and C—H...O hydrogen bonds, needed for a one-dimensional hydrogen-bond pattern along [100] in the crystal, while (II), with a (C6H5CH2)2N moiety, lacks these hydrogen bonds, but its three-dimensional supra­molecular structure is mediated by C—H...π inter­actions. The conformational behaviour of the phenyl rings in (I), (II) and analogous structures from the Cambridge Structural Database (CSD) were studied in terms of flexibility, volume of the other group attached to phospho­rus and packing forces. From this study, synclinal (±sc), anti­clinal (±ac) and anti­periplanar (±ap) conformations were found to occur. In the structure of (II), there is an intra­molecular Cortho—H...O inter­action that imposes a +sc conformation for the phenyl ring involved. For the structures from the CSD, the +sc and ±ap conformations appear to be mainly imposed by similar Cortho—H...O intra­molecular inter­actions. The large contribution of the C...H/H...C contacts (32.3%) in the two-dimensional fingerprint plots of (II) is a result of the C—H...π inter­actions. The differential scanning calorimetry (DSC) analyses exhibit peak temperatures (Tm) at 109 and 81 °C for (I) and (II), respectively, which agree with the strengths of the inter­molecular contacts and the melting points.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619016619/yo3071sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619016619/yo3071Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619016619/yo3071IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619016619/yo3071sup4.pdf
Details and results of the CSD search

CCDC references: 1971119; 1895358

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for (I); Rigaku CrystalClear-SM Expert (Rigaku, 2011) for (II). For both structures, cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015). Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) for (I); SHELXT2014 (Sheldrick, 2015a) for (II). Program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003) for (I); SHELXL2018 (Sheldrick, 2015b) for (II). For both structures, molecular graphics: CAMERON (Watkin et al., 1996) and pyMOL (Schrödinger, 2015). Software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) for (I); SHELXL2018 (Sheldrick, 2015b) for (II).

Diphenyl (cycloheptylamido)phosphate (I) top
Crystal data top
C19H24NO3PF(000) = 736
Mr = 345.36Dx = 1.295 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3874 reflections
a = 9.3538 (2) Åθ = 2.1–27.1°
b = 9.7899 (3) ŵ = 0.17 mm1
c = 19.3432 (5) ÅT = 175 K
V = 1771.31 (5) Å3Prism, colourless
Z = 40.35 × 0.25 × 0.15 mm
Data collection top
Rigaku Xcalibur Sapphire3 Gemini
diffractometer
3411 independent reflections
Graphite monochromator2964 reflections with I > 2.0σ(I)
Detector resolution: 16.0143 pixels mm-1Rint = 0.035
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 712
Tmin = 0.979, Tmax = 1.000k = 911
9026 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 19.6 25.7 7.98
wR(F2) = 0.103(Δ/σ)max = 0.001
S = 0.95Δρmax = 0.32 e Å3
3338 reflectionsΔρmin = 0.54 e Å3
221 parametersAbsolute structure: Flack (1983), 1505 Friedel-pairs
79 restraintsAbsolute structure parameter: 0.6 (3)
Primary atom site location: iterative
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Refinement. Data collection and crystal screening for (I) was performed on a Rigaku Oxford-Diffraction Gemini-S diffractometer with sealed-tube Mo-Kα radiation using the CrysAlisPro program (Rigaku Oxford-Diffraction, 2012). This program was also used for the integration of the data using default parameters, for the empirical absorption correction using spherical harmonics employing symmetry-equivalent and redundant data, and the correction for Lorentz and polarization effects. The ab-initio iterative charge flipping method was used to solve the crystal structure of (I) with parameters described elsewhere (van der Lee, 2013) employing the Superflip program (Palatinus&Chapuis, 2007) and it was refined using full-matrix least-squares procedures on squared structure factor amplitudes F2 as implemented in CRYSTALS (Betteridge et al., 2003) using all independent reflections with I>0.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.35676 (6)0.84662 (6)0.00163 (13)0.0183
O20.4415 (4)0.9225 (3)0.06247 (18)0.0205
C30.4113 (6)0.8932 (5)0.1321 (3)0.0257
C40.4887 (6)0.7907 (5)0.1653 (2)0.0305
C50.4633 (8)0.7722 (6)0.2345 (3)0.0433
C60.3634 (7)0.8486 (7)0.2706 (3)0.0431
C70.2905 (8)0.9495 (7)0.2365 (3)0.0406
C80.3173 (7)0.9711 (6)0.1665 (3)0.0333
H810.26891.04050.14350.0500*
H710.22371.00150.26050.0500*
H610.34720.83160.31720.0500*
H510.51510.70580.25800.0500*
H410.55500.73740.14170.0500*
O90.20228 (18)0.87095 (18)0.0010 (3)0.0275
O100.4444 (4)0.9209 (4)0.0573 (2)0.0288
C110.4140 (5)0.8929 (5)0.1266 (3)0.0223
C120.3098 (6)0.9729 (6)0.1603 (3)0.0323
C130.2900 (8)0.9499 (8)0.2298 (3)0.0459
C140.3672 (7)0.8504 (7)0.2635 (4)0.0488
C150.4657 (7)0.7703 (7)0.2302 (3)0.0420
C160.4909 (7)0.7958 (6)0.1596 (2)0.0358
H1610.55920.74550.13570.0500*
H1510.51410.70170.25380.0500*
H1410.35190.83760.31060.0500*
H1310.22391.00230.25400.0500*
N170.3982 (2)0.6874 (2)0.0026 (3)0.0213
C180.2936 (3)0.5742 (2)0.0018 (3)0.0232
C190.3086 (7)0.4933 (6)0.0682 (3)0.0425
C200.4369 (7)0.3947 (6)0.0702 (3)0.0671
C210.4344 (6)0.2720 (4)0.0185 (3)0.0809
C220.4727 (8)0.2979 (6)0.0558 (3)0.0828
C230.4388 (6)0.4358 (5)0.0842 (3)0.0460
C240.2980 (6)0.4913 (5)0.0638 (3)0.0330
H2410.27050.55130.10150.0500*
H2420.22680.41960.06090.0500*
H2310.44560.43170.13420.0500*
H2320.51350.49710.06840.0500*
H1910.22250.43940.07420.0500*
H1920.31460.55580.10700.0500*
H1810.19880.61650.00400.0500*
H2010.51910.44780.05980.0830*
H2020.44520.35840.11550.0830*
H2110.49910.20580.03600.1300*
H2120.33990.23640.01980.1300*
H2210.57210.28130.06140.1047*
H2220.41990.23310.08200.1047*
H1210.25921.04290.13670.0436*
H1710.484 (2)0.6673 (19)0.009 (2)0.0300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0138 (3)0.0183 (3)0.0227 (3)0.0001 (2)0.0006 (7)0.0007 (6)
O20.0227 (17)0.0164 (13)0.0223 (15)0.0076 (15)0.0063 (14)0.0020 (13)
C30.029 (3)0.028 (2)0.020 (2)0.011 (2)0.002 (2)0.007 (2)
C40.029 (3)0.024 (2)0.039 (3)0.008 (2)0.011 (2)0.003 (2)
C50.055 (5)0.042 (3)0.033 (3)0.005 (3)0.014 (3)0.002 (3)
C60.058 (5)0.055 (4)0.016 (3)0.018 (3)0.004 (3)0.003 (2)
C70.045 (4)0.044 (3)0.033 (3)0.005 (3)0.018 (3)0.015 (3)
C80.037 (3)0.034 (3)0.029 (3)0.006 (2)0.010 (2)0.007 (2)
O90.0155 (8)0.0237 (9)0.0434 (11)0.0019 (7)0.004 (2)0.006 (2)
O100.027 (2)0.0371 (17)0.0223 (15)0.0064 (19)0.0090 (16)0.0040 (15)
C110.016 (3)0.026 (2)0.025 (2)0.003 (2)0.002 (2)0.003 (2)
C120.023 (3)0.034 (3)0.040 (3)0.003 (2)0.003 (2)0.005 (3)
C130.038 (4)0.058 (4)0.042 (3)0.011 (4)0.011 (3)0.012 (3)
C140.043 (5)0.069 (5)0.034 (4)0.011 (3)0.009 (3)0.015 (3)
C150.039 (4)0.055 (4)0.032 (3)0.008 (3)0.005 (3)0.010 (3)
C160.036 (3)0.052 (3)0.020 (3)0.004 (3)0.008 (2)0.004 (2)
N170.0128 (9)0.0206 (10)0.0305 (12)0.0018 (8)0.003 (3)0.006 (2)
C180.0189 (12)0.0192 (12)0.0316 (13)0.0034 (10)0.008 (2)0.001 (2)
C190.057 (3)0.040 (2)0.030 (2)0.018 (2)0.011 (3)0.007 (2)
C200.056 (3)0.071 (3)0.074 (3)0.007 (3)0.019 (3)0.047 (2)
C210.058 (3)0.0235 (17)0.161 (4)0.0095 (18)0.021 (4)0.037 (2)
C220.065 (4)0.052 (2)0.131 (4)0.018 (3)0.001 (3)0.013 (2)
C230.039 (2)0.053 (2)0.046 (2)0.002 (2)0.002 (2)0.0226 (17)
C240.029 (2)0.036 (2)0.034 (2)0.006 (2)0.001 (2)0.0073 (19)
Geometric parameters (Å, º) top
P1—O21.601 (3)C15—C161.409 (6)
P1—O91.4645 (18)C15—H1510.930
P1—O101.581 (4)C16—H1610.930
P1—N171.607 (2)N17—C181.479 (3)
O2—C31.405 (6)N17—H1710.860 (18)
C3—C41.394 (6)C18—C191.514 (6)
C3—C81.341 (7)C18—C241.507 (6)
C4—C51.371 (6)C18—H1810.980
C4—H410.930C19—C201.540 (7)
C5—C61.385 (7)C19—H1910.970
C5—H510.930C19—H1920.970
C6—C71.369 (7)C20—C211.563 (6)
C6—H610.930C20—H2010.950
C7—C81.394 (6)C20—H2020.950
C7—H710.930C21—C221.502 (7)
C8—H810.930C21—H2110.950
O10—C111.399 (6)C21—H2120.950
C11—C121.409 (6)C22—C231.491 (6)
C11—C161.351 (7)C22—H2210.950
C12—C131.377 (6)C22—H2220.950
C12—H1210.950C23—C241.478 (6)
C13—C141.377 (7)C23—H2310.970
C13—H1310.930C23—H2320.970
C14—C151.370 (7)C24—H2410.970
C14—H1410.930C24—H2420.970
O2—P1—O9114.8 (3)P1—N17—H171116.4 (13)
O2—P1—O1093.42 (10)C18—N17—H171116.5 (13)
O9—P1—O10115.5 (3)N17—C18—C19108.8 (4)
O2—P1—N17108.8 (2)N17—C18—C24113.2 (4)
O9—P1—N17113.34 (11)C19—C18—C24115.5 (2)
O10—P1—N17109.2 (2)N17—C18—H181106.4
P1—O2—C3120.7 (3)C19—C18—H181105.6
O2—C3—C4118.9 (5)C24—C18—H181106.8
O2—C3—C8119.4 (5)C18—C19—C20114.9 (5)
C4—C3—C8121.4 (5)C18—C19—H191108.0
C3—C4—C5117.0 (5)C20—C19—H191107.6
C3—C4—H41121.7C18—C19—H192109.3
C5—C4—H41121.3C20—C19—H192109.3
C4—C5—C6122.5 (6)H191—C19—H192107.4
C4—C5—H51118.6C19—C20—C21117.0 (5)
C6—C5—H51118.8C19—C20—H201106.3
C5—C6—C7118.9 (6)C21—C20—H201107.4
C5—C6—H61120.2C19—C20—H202108.8
C7—C6—H61120.9C21—C20—H202107.8
C6—C7—C8119.2 (6)H201—C20—H202109.5
C6—C7—H71119.4C20—C21—C22118.6 (4)
C8—C7—H71121.4C20—C21—H211106.6
C7—C8—C3120.9 (6)C22—C21—H211107.8
C7—C8—H81119.3C20—C21—H212106.2
C3—C8—H81119.8C22—C21—H212108.0
P1—O10—C11119.7 (3)H211—C21—H212109.5
O10—C11—C12118.3 (5)C21—C22—C23117.0 (5)
O10—C11—C16118.8 (5)C21—C22—H221108.2
C12—C11—C16122.8 (5)C23—C22—H221108.7
C11—C12—C13116.9 (6)C21—C22—H222105.8
C11—C12—H121121.6C23—C22—H222107.4
C13—C12—H121121.4H221—C22—H222109.5
C12—C13—C14120.5 (7)C22—C23—C24115.1 (5)
C12—C13—H131119.4C22—C23—H231108.4
C14—C13—H131120.1C24—C23—H231109.8
C13—C14—C15122.4 (7)C22—C23—H232106.9
C13—C14—H141118.5C24—C23—H232109.3
C15—C14—H141119.1H231—C23—H232107.1
C14—C15—C16117.8 (6)C18—C24—C23116.5 (4)
C14—C15—H151120.6C18—C24—H241107.4
C16—C15—H151121.6C23—C24—H241105.0
C15—C16—C11119.6 (6)C18—C24—H242108.8
C15—C16—H161120.2C23—C24—H242111.2
C11—C16—H161120.2H241—C24—H242107.4
P1—N17—C18124.57 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H232···O9i0.972.573.516 (8)166 (1)
N17—H171···O9i0.862.082.901 (8)159 (4)
Symmetry code: (i) x+1/2, y+3/2, z.
Diphenyl (dibenzylamido)phosphate (II) top
Crystal data top
C26H24NO3PZ = 2
Mr = 429.43F(000) = 452
Triclinic, P1Dx = 1.320 Mg m3
a = 8.3404 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5349 (5) ÅCell parameters from 7627 reflections
c = 14.9677 (7) Åθ = 3.7–29.8°
α = 76.280 (4)°µ = 0.16 mm1
β = 75.778 (4)°T = 120 K
γ = 72.055 (4)°Block, colourless
V = 1080.73 (9) Å30.25 × 0.20 × 0.20 mm
Data collection top
AFC11 (Right): Eulerian 3 circle CCD
diffractometer
3578 reflections with I > 2σ(I)
Radiation source: Rotating Anode MicroMax-007HF DW 1.2 kWRint = 0.018
Profile data from ω–scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
CrysAlis PRO (Rigaku OD, 2015)
h = 1010
Tmin = 0.722, Tmax = 1.000k = 1111
9523 measured reflectionsl = 1818
3901 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.4112P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.021
3901 reflectionsΔρmax = 0.27 e Å3
280 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collection and crystal screening for (I) was performed on a Rigaku Oxford-Diffraction Gemini-S diffractometer with sealed-tube Mo-Kα radiation using the CrysAlisPro program (Rigaku Oxford-Diffraction, 2012). This program was also used for the integration of the data using default parameters, for the empirical absorption correction using spherical harmonics employing symmetry-equivalent and redundant data, and the correction for Lorentz and polarization effects. The ab-initio iterative charge flipping method was used to solve the crystal structure of (I) with parameters described elsewhere (van der Lee, 2013) employing the Superflip program (Palatinus&Chapuis, 2007) and it was refined using full-matrix least-squares procedures on squared structure factor amplitudes F2 as implemented in CRYSTALS (Betteridge et al., 2003) using all independent reflections with I>0.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.28992 (4)0.22585 (4)0.24553 (2)0.02034 (11)
O10.19646 (12)0.25264 (11)0.16998 (7)0.0268 (2)
O20.18570 (12)0.30054 (10)0.33444 (6)0.0242 (2)
O30.44766 (12)0.29786 (10)0.22264 (6)0.0229 (2)
N10.35880 (14)0.04977 (12)0.28829 (7)0.0210 (2)
C10.11701 (16)0.45642 (14)0.32925 (9)0.0216 (3)
C20.13891 (17)0.51758 (16)0.39864 (9)0.0251 (3)
H2A0.2044740.4573200.4444180.030*
C30.06359 (18)0.66858 (16)0.40047 (10)0.0283 (3)
H3A0.0777870.7124230.4477890.034*
C40.03204 (17)0.75573 (15)0.33386 (10)0.0279 (3)
H4A0.0838100.8590510.3356670.033*
C50.05239 (18)0.69265 (16)0.26462 (10)0.0287 (3)
H5A0.1178770.7529520.2188130.034*
C60.02249 (17)0.54132 (15)0.26162 (10)0.0264 (3)
H6A0.0089910.4973270.2141820.032*
C70.58266 (16)0.26177 (14)0.14702 (9)0.0212 (3)
C80.55543 (18)0.31321 (15)0.05655 (9)0.0244 (3)
H8A0.4449620.3693320.0441810.029*
C90.69321 (19)0.28115 (17)0.01621 (10)0.0311 (3)
H9A0.6771200.3146540.0792220.037*
C100.8537 (2)0.2007 (2)0.00263 (11)0.0385 (4)
H10A0.9475750.1792860.0474580.046*
C110.8781 (2)0.1512 (2)0.09426 (11)0.0395 (4)
H11A0.9888140.0966370.1068840.047*
C120.74155 (18)0.18102 (16)0.16751 (10)0.0287 (3)
H12A0.7569380.1465790.2306030.034*
C130.31490 (17)0.06607 (15)0.25673 (9)0.0241 (3)
H13A0.2242300.0170850.2187890.029*
H13B0.2673260.1313580.3122380.029*
C140.46539 (17)0.16227 (15)0.19938 (9)0.0227 (3)
C150.55410 (18)0.09884 (15)0.11602 (10)0.0256 (3)
H15A0.5240780.0067210.0964480.031*
C160.68566 (19)0.18823 (18)0.06139 (11)0.0334 (3)
H16A0.7449280.1440310.0042790.040*
C170.7312 (2)0.34247 (19)0.08992 (12)0.0399 (4)
H17A0.8218810.4039020.0525500.048*
C180.6445 (2)0.40617 (17)0.17262 (13)0.0389 (4)
H18A0.6756860.5116820.1923240.047*
C190.5118 (2)0.31677 (15)0.22719 (11)0.0302 (3)
H19A0.4522660.3614850.2840010.036*
C200.47160 (16)0.00427 (14)0.35785 (9)0.0215 (3)
H20A0.4917040.0826040.3744810.026*
H20B0.5838070.0657660.3299360.026*
C210.39591 (16)0.09676 (14)0.44588 (9)0.0209 (3)
C220.48106 (18)0.24494 (16)0.47433 (10)0.0274 (3)
H22A0.5893200.2882100.4391660.033*
C230.4090 (2)0.33073 (16)0.55406 (11)0.0327 (3)
H23A0.4689360.4316730.5734410.039*
C240.2508 (2)0.26933 (17)0.60496 (10)0.0303 (3)
H24A0.2007190.3282440.6587230.036*
C250.16556 (18)0.12152 (17)0.57722 (10)0.0281 (3)
H25A0.0568240.0788550.6122090.034*
C260.23788 (17)0.03546 (15)0.49876 (9)0.0242 (3)
H26A0.1791220.0663600.4808400.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01953 (18)0.02070 (19)0.01905 (18)0.00377 (13)0.00332 (13)0.00256 (13)
O10.0258 (5)0.0293 (5)0.0242 (5)0.0051 (4)0.0080 (4)0.0022 (4)
O20.0241 (5)0.0209 (5)0.0218 (5)0.0006 (4)0.0015 (4)0.0026 (4)
O30.0243 (5)0.0224 (5)0.0217 (5)0.0070 (4)0.0007 (4)0.0062 (4)
N10.0220 (5)0.0211 (6)0.0214 (5)0.0054 (4)0.0068 (4)0.0039 (4)
C10.0166 (6)0.0214 (6)0.0229 (6)0.0039 (5)0.0013 (5)0.0032 (5)
C20.0198 (6)0.0310 (7)0.0223 (7)0.0059 (5)0.0021 (5)0.0035 (6)
C30.0255 (7)0.0319 (7)0.0292 (7)0.0098 (6)0.0009 (6)0.0103 (6)
C40.0235 (7)0.0232 (7)0.0357 (8)0.0059 (5)0.0017 (6)0.0072 (6)
C50.0257 (7)0.0253 (7)0.0316 (8)0.0027 (6)0.0077 (6)0.0014 (6)
C60.0260 (7)0.0261 (7)0.0265 (7)0.0038 (6)0.0065 (6)0.0059 (6)
C70.0236 (7)0.0189 (6)0.0220 (6)0.0085 (5)0.0007 (5)0.0056 (5)
C80.0256 (7)0.0230 (7)0.0251 (7)0.0087 (5)0.0058 (5)0.0012 (5)
C90.0336 (8)0.0394 (8)0.0220 (7)0.0149 (6)0.0033 (6)0.0039 (6)
C100.0283 (8)0.0575 (10)0.0280 (8)0.0113 (7)0.0033 (6)0.0130 (7)
C110.0228 (7)0.0564 (10)0.0349 (8)0.0029 (7)0.0048 (6)0.0100 (7)
C120.0274 (7)0.0349 (8)0.0237 (7)0.0071 (6)0.0068 (6)0.0045 (6)
C130.0262 (7)0.0250 (7)0.0248 (7)0.0112 (5)0.0067 (5)0.0035 (5)
C140.0272 (7)0.0221 (6)0.0236 (7)0.0088 (5)0.0105 (5)0.0043 (5)
C150.0297 (7)0.0246 (7)0.0247 (7)0.0080 (6)0.0082 (6)0.0042 (5)
C160.0297 (8)0.0454 (9)0.0289 (8)0.0093 (7)0.0061 (6)0.0139 (7)
C170.0337 (8)0.0429 (9)0.0492 (10)0.0049 (7)0.0182 (7)0.0290 (8)
C180.0472 (9)0.0217 (7)0.0557 (10)0.0003 (7)0.0299 (8)0.0121 (7)
C190.0406 (8)0.0224 (7)0.0341 (8)0.0122 (6)0.0180 (7)0.0009 (6)
C200.0202 (6)0.0219 (6)0.0225 (6)0.0043 (5)0.0064 (5)0.0034 (5)
C210.0224 (6)0.0222 (6)0.0207 (6)0.0065 (5)0.0073 (5)0.0042 (5)
C220.0256 (7)0.0264 (7)0.0276 (7)0.0031 (6)0.0061 (6)0.0036 (6)
C230.0378 (8)0.0240 (7)0.0338 (8)0.0063 (6)0.0127 (7)0.0031 (6)
C240.0366 (8)0.0352 (8)0.0230 (7)0.0183 (6)0.0067 (6)0.0003 (6)
C250.0266 (7)0.0367 (8)0.0237 (7)0.0104 (6)0.0033 (6)0.0090 (6)
C260.0252 (7)0.0236 (7)0.0242 (7)0.0047 (5)0.0063 (5)0.0054 (5)
Geometric parameters (Å, º) top
P1—O11.4578 (10)C12—H12A0.9500
P1—O21.5916 (9)C13—C141.5127 (18)
P1—O31.5948 (10)C13—H13A0.9900
P1—N11.6232 (11)C13—H13B0.9900
O2—C11.4092 (15)C14—C191.3893 (19)
O3—C71.4096 (15)C14—C151.3907 (19)
N1—C131.4693 (17)C15—C161.383 (2)
N1—C201.4707 (17)C15—H15A0.9500
C1—C21.378 (2)C16—C171.388 (2)
C1—C61.3826 (19)C16—H16A0.9500
C2—C31.386 (2)C17—C181.378 (3)
C2—H2A0.9500C17—H17A0.9500
C3—C41.382 (2)C18—C191.387 (2)
C3—H3A0.9500C18—H18A0.9500
C4—C51.382 (2)C19—H19A0.9500
C4—H4A0.9500C20—C211.5151 (18)
C5—C61.3913 (19)C20—H20A0.9900
C5—H5A0.9500C20—H20B0.9900
C6—H6A0.9500C21—C221.3881 (19)
C7—C81.3760 (19)C21—C261.3919 (18)
C7—C121.3791 (19)C22—C231.393 (2)
C8—C91.3880 (19)C22—H22A0.9500
C8—H8A0.9500C23—C241.381 (2)
C9—C101.382 (2)C23—H23A0.9500
C9—H9A0.9500C24—C251.384 (2)
C10—C111.384 (2)C24—H24A0.9500
C10—H10A0.9500C25—C261.384 (2)
C11—C121.384 (2)C25—H25A0.9500
C11—H11A0.9500C26—H26A0.9500
O1—P1—O2115.77 (5)N1—C13—H13A108.8
O1—P1—O3116.27 (5)C14—C13—H13A108.8
O2—P1—O397.78 (5)N1—C13—H13B108.8
O1—P1—N1113.54 (6)C14—C13—H13B108.8
O2—P1—N1104.31 (5)H13A—C13—H13B107.7
O3—P1—N1107.44 (5)C19—C14—C15118.94 (13)
C1—O2—P1122.79 (8)C19—C14—C13120.19 (12)
C7—O3—P1119.73 (8)C15—C14—C13120.80 (12)
C13—N1—C20115.99 (10)C16—C15—C14120.52 (13)
C13—N1—P1121.10 (9)C16—C15—H15A119.7
C20—N1—P1122.88 (9)C14—C15—H15A119.7
C2—C1—C6121.90 (12)C15—C16—C17120.07 (15)
C2—C1—O2116.55 (12)C15—C16—H16A120.0
C6—C1—O2121.40 (12)C17—C16—H16A120.0
C1—C2—C3118.83 (13)C18—C17—C16119.78 (14)
C1—C2—H2A120.6C18—C17—H17A120.1
C3—C2—H2A120.6C16—C17—H17A120.1
C4—C3—C2120.38 (14)C17—C18—C19120.22 (14)
C4—C3—H3A119.8C17—C18—H18A119.9
C2—C3—H3A119.8C19—C18—H18A119.9
C5—C4—C3120.03 (13)C18—C19—C14120.47 (14)
C5—C4—H4A120.0C18—C19—H19A119.8
C3—C4—H4A120.0C14—C19—H19A119.8
C4—C5—C6120.37 (13)N1—C20—C21112.18 (10)
C4—C5—H5A119.8N1—C20—H20A109.2
C6—C5—H5A119.8C21—C20—H20A109.2
C1—C6—C5118.49 (13)N1—C20—H20B109.2
C1—C6—H6A120.8C21—C20—H20B109.2
C5—C6—H6A120.8H20A—C20—H20B107.9
C8—C7—C12122.33 (12)C22—C21—C26118.74 (12)
C8—C7—O3120.00 (12)C22—C21—C20120.71 (12)
C12—C7—O3117.59 (12)C26—C21—C20120.54 (11)
C7—C8—C9118.41 (13)C21—C22—C23120.54 (13)
C7—C8—H8A120.8C21—C22—H22A119.7
C9—C8—H8A120.8C23—C22—H22A119.7
C10—C9—C8120.28 (14)C24—C23—C22120.13 (13)
C10—C9—H9A119.9C24—C23—H23A119.9
C8—C9—H9A119.9C22—C23—H23A119.9
C9—C10—C11120.20 (14)C23—C24—C25119.63 (13)
C9—C10—H10A119.9C23—C24—H24A120.2
C11—C10—H10A119.9C25—C24—H24A120.2
C12—C11—C10120.16 (14)C24—C25—C26120.35 (13)
C12—C11—H11A119.9C24—C25—H25A119.8
C10—C11—H11A119.9C26—C25—H25A119.8
C7—C12—C11118.61 (13)C25—C26—C21120.60 (13)
C7—C12—H12A120.7C25—C26—H26A119.7
C11—C12—H12A120.7C21—C26—H26A119.7
N1—C13—C14113.73 (11)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg1 are the centroids of the C1–C6, C14–C19 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···CG1i0.953.503.9798 (13)114
C13—H13B···CG1ii0.993.494.2048 (13)131
C18—H18A···CG3ii0.953.223.8839 (15)128
C8—H8A···CG2iii0.953.413.7716 (14)106
C6—H6A···O10.952.513.1488 (17)125
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds