Download citation
Download citation
link to html
A new stibium phosphate, lithium barium bis­(anti­mony oxide) tris­(phosphate), LiBa(SbO)2(PO4)3, was prepared by the molten salt method with LiF as the flux. The crystal structure consists of an original three-dimensional anionic framework of [(SbO)2(PO4)3] built from PO4 tetra­hedra sharing their corners with SbO6 octa­hedra. This framework delimits one-dimensional tunnels where the lithium(I) and barium(II) ions are located. The UV–Vis spectrum shows that LiBa(SbO)2(PO4)3 was transparent from 350 to 800 nm, and is thus suitable as a luminescent host matrix. We then used Tb3+ and Eu3+ activators to test its luminous performance and the purities of the prepared phosphors were studied by powder X-ray diffraction analysis with Rietveld refinements. Photoluminescence (PL) studies reveal that the emission spectra of 1 mol% RE3+-doped (RE = Tb and Eu) samples can be excited by 371 and 394 nm light, emitting green and orange–red light, respectively, for Tb3+ and Eu3+. The CIE coordinates were measured to be (0.295, 0.571) and (0.6027, 0.3967), and the luminescent lifetimes were calculated as 0.178 and 1.159 ms, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619010155/yo3066sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619010155/yo3066Isup2.hkl
Contains datablock I

CCDC reference: 1909308

Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: APEX2 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXL2017 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015b).

(I) top
Crystal data top
BaLiO14P3Sb2F(000) = 2544
Mr = 704.69Dx = 4.569 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.5757 (18) ÅCell parameters from 1258 reflections
b = 13.7204 (16) Åθ = 2.7–24.6°
c = 9.5959 (11) ŵ = 9.60 mm1
β = 92.513 (2)°T = 296 K
V = 2048.7 (4) Å3Prism, colorless
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4531 independent reflections
Radiation source: fine-focus sealed tube3496 reflections with I > 2σ(I)
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scanh = 2020
Tmin = 0.206, Tmax = 0.851k = 017
4531 measured reflectionsl = 012
Refinement top
Refinement on F212 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0463P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040(Δ/σ)max < 0.001
wR(F2) = 0.098Δρmax = 1.73 e Å3
S = 1.02Δρmin = 2.23 e Å3
4531 reflectionsExtinction correction: SHELXL2017 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
193 parametersExtinction coefficient: 0.00089 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

A suitable single crystal with dimensions of 0.20 × 0.10 × 0.10 mm was selected for the single-crystal X-ray diffraction (SC-XRD) experiments. A set of intensity data was collected using a Bruker SMART APEXII CCD diffractometer system equipped with a graphite-monochromator Mo Kα radiation source (λ = 0.71073 Å) with a tube power of 50 kV and 30 mA. The frames were collected at ambient temperature of 296 K with a scan width of 0.5 ° in ω and integrated with the Bruker SAINT software package using a narrow-frame integration algorithm (Bruker, 2016). The unit cell was determined and refined by least-squares method upon the refinement of XYZ centroid of reflections above 20 σ(I). No weak satellite reflections were observed and thus no structure modulation was considered in the structure model. Then the date was scaled for multi-scan absorption of APEX2 package. Intensities of all measured reflections were corrected for Lorentz–polarization (Lp) and crystal absorption effects. The structure solution was fulfilled by direct methods using software SHELX2017 (Sheldrick, 2015). Table 1 presents the experimental details for data collection and structural refinement details of compound LiBa(SbO)2(PO4)3, important bond lengths and angles were given in Table 2, atomic coordinates and isotropic displacement coefficients are listed in Table S1, fractional atomic anisotropy displacement parameters (Å2) are listed in Table S2, and the detailed crystal data was embraced in a CIF file deposited in The Cambridge Crystallographic Data Centre (CCDC 1909308).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.2685 (10)0.5521 (11)0.6540 (17)0.014 (3)
Ba10.24822 (3)0.17636 (4)0.17783 (5)0.00895 (16)
Sb10.0000000.08462 (6)0.2500000.00442 (19)
Sb20.41526 (3)0.24661 (4)0.49787 (6)0.00457 (16)
Sb30.5000000.07604 (6)0.2500000.00446 (19)
P10.07056 (14)0.10712 (16)0.0663 (2)0.0045 (4)
P20.24624 (14)0.39224 (15)0.4409 (2)0.0051 (4)
P30.41247 (13)0.10670 (16)0.0658 (2)0.0048 (4)
O10.0167 (4)0.1555 (4)0.0994 (6)0.0079 (13)
O20.1491 (4)0.1660 (4)0.0880 (7)0.0088 (13)
O30.0750 (4)0.0757 (4)0.0909 (6)0.0095 (13)
O40.0743 (3)0.0165 (4)0.1611 (7)0.0089 (13)
O50.4786 (4)0.1879 (4)0.0823 (7)0.0102 (13)
O60.3228 (4)0.1441 (4)0.0863 (7)0.0088 (13)
O70.4283 (4)0.0260 (4)0.1716 (6)0.0096 (13)
O80.4219 (4)0.0653 (5)0.0857 (6)0.0111 (14)
O90.1561 (4)0.3443 (4)0.4024 (7)0.0066 (13)
O100.2589 (3)0.4741 (4)0.3434 (6)0.0084 (13)
O110.2532 (4)0.4197 (4)0.5911 (6)0.0084 (13)
O120.3106 (4)0.3058 (4)0.4084 (6)0.0085 (13)
O130.4214 (4)0.1683 (4)0.3292 (6)0.0081 (13)
O140.4177 (4)0.3245 (4)0.6670 (7)0.0075 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.022 (9)0.005 (7)0.016 (8)0.003 (6)0.002 (7)0.001 (6)
Ba10.0111 (3)0.0087 (3)0.0070 (3)0.0006 (2)0.0008 (2)0.0009 (2)
Sb10.0047 (4)0.0044 (4)0.0041 (4)0.0000.0004 (3)0.000
Sb20.0036 (3)0.0048 (3)0.0052 (3)0.0003 (2)0.0004 (2)0.0005 (2)
Sb30.0048 (4)0.0045 (4)0.0040 (4)0.0000.0002 (3)0.000
P10.0044 (10)0.0055 (11)0.0036 (11)0.0009 (8)0.0006 (8)0.0011 (9)
P20.0056 (10)0.0042 (10)0.0055 (10)0.0000 (8)0.0010 (9)0.0003 (8)
P30.0033 (10)0.0055 (11)0.0056 (11)0.0002 (8)0.0000 (9)0.0004 (9)
O10.007 (3)0.008 (3)0.009 (3)0.005 (2)0.000 (2)0.004 (2)
O20.010 (3)0.006 (3)0.010 (3)0.002 (2)0.001 (3)0.000 (2)
O30.012 (3)0.011 (3)0.006 (3)0.002 (2)0.001 (3)0.000 (3)
O40.005 (3)0.009 (3)0.012 (3)0.001 (2)0.001 (2)0.003 (3)
O50.008 (3)0.009 (3)0.014 (3)0.002 (2)0.001 (3)0.005 (3)
O60.003 (3)0.005 (3)0.019 (4)0.002 (2)0.003 (3)0.002 (3)
O70.011 (3)0.009 (3)0.009 (3)0.005 (2)0.002 (2)0.004 (2)
O80.009 (3)0.017 (3)0.007 (3)0.006 (3)0.004 (3)0.008 (3)
O90.004 (3)0.003 (3)0.013 (3)0.002 (2)0.002 (2)0.002 (2)
O100.005 (3)0.011 (3)0.009 (3)0.002 (2)0.003 (2)0.002 (2)
O110.012 (3)0.007 (3)0.006 (3)0.001 (2)0.003 (3)0.002 (2)
O120.007 (3)0.011 (3)0.008 (3)0.003 (2)0.001 (3)0.002 (3)
O130.008 (3)0.011 (3)0.006 (3)0.001 (2)0.001 (2)0.003 (3)
O140.005 (3)0.010 (3)0.008 (3)0.001 (2)0.001 (2)0.000 (3)
Geometric parameters (Å, º) top
Li1—O10i1.865 (18)Sb1—O4viii1.975 (6)
Li1—O111.926 (17)Sb1—O4ix1.975 (6)
Li1—O6ii1.990 (17)Sb2—O141.943 (6)
Li1—O2ii2.136 (17)Sb2—O131.949 (6)
Li1—O4ii2.495 (17)Sb2—O9iii1.949 (6)
Li1—P1ii2.783 (16)Sb2—O1x1.972 (6)
Li1—P2i2.893 (16)Sb2—O5xi1.980 (6)
Li1—P3ii3.002 (16)Sb2—O121.982 (6)
Li1—P23.008 (16)Sb3—O131.939 (6)
Li1—Ba1iii3.540 (16)Sb3—O13xi1.939 (6)
Li1—Ba1ii3.611 (16)Sb3—O81.954 (6)
Li1—Ba1i3.747 (15)Sb3—O8xi1.954 (6)
Ba1—O11iii2.580 (6)Sb3—O7ix1.961 (6)
Ba1—O10iv2.785 (6)Sb3—O7xii1.961 (6)
Ba1—O6v2.825 (6)P1—O21.489 (6)
Ba1—O2v2.846 (6)P1—O11.533 (6)
Ba1—O62.868 (7)P1—O41.544 (6)
Ba1—O22.926 (6)P1—O31.567 (6)
Ba1—O122.967 (6)P2—O101.480 (6)
Ba1—O133.009 (6)P2—O111.489 (6)
Ba1—O14iii3.038 (6)P2—O91.580 (6)
Ba1—O33.112 (6)P2—O121.593 (6)
Ba1—O83.261 (6)P3—O61.492 (6)
Sb1—O14iii1.935 (6)P3—O71.530 (6)
Sb1—O14vi1.935 (6)P3—O51.530 (6)
Sb1—O31.966 (6)P3—O81.561 (6)
Sb1—O3vii1.966 (6)
O10i—Li1—O1196.3 (7)O14vi—Sb1—O397.2 (2)
O10i—Li1—O6ii110.7 (8)O14iii—Sb1—O3vii97.2 (2)
O11—Li1—O6ii114.8 (8)O14vi—Sb1—O3vii87.4 (2)
O10i—Li1—O2ii120.3 (8)O3—Sb1—O3vii172.9 (3)
O11—Li1—O2ii131.7 (9)O14iii—Sb1—O4viii174.3 (2)
O6ii—Li1—O2ii82.5 (6)O14vi—Sb1—O4viii84.8 (2)
O10i—Li1—O4ii93.2 (7)O3—Sb1—O4viii88.7 (2)
O11—Li1—O4ii86.1 (6)O3vii—Sb1—O4viii86.3 (2)
O6ii—Li1—O4ii145.1 (8)O14iii—Sb1—O4ix84.8 (2)
O2ii—Li1—O4ii63.3 (5)O14vi—Sb1—O4ix174.3 (2)
O10i—Li1—P1ii117.3 (7)O3—Sb1—O4ix86.3 (2)
O11—Li1—P1ii105.2 (7)O3vii—Sb1—O4ix88.7 (2)
O6ii—Li1—P1ii111.7 (7)O4viii—Sb1—O4ix90.8 (3)
O2ii—Li1—P1ii31.9 (3)O14—Sb2—O13176.1 (2)
O4ii—Li1—P1ii33.5 (2)O14—Sb2—O9iii86.1 (2)
O10i—Li1—P2i26.5 (3)O13—Sb2—O9iii96.0 (3)
O11—Li1—P2i121.9 (7)O14—Sb2—O1x91.7 (2)
O6ii—Li1—P2i91.7 (6)O13—Sb2—O1x86.3 (3)
O2ii—Li1—P2i100.8 (6)O9iii—Sb2—O1x176.8 (2)
O4ii—Li1—P2i100.6 (5)O14—Sb2—O5xi84.1 (2)
P1ii—Li1—P2i111.3 (5)O13—Sb2—O5xi92.6 (2)
O10i—Li1—P3ii102.0 (7)O9iii—Sb2—O5xi91.3 (2)
O11—Li1—P3ii92.6 (6)O1x—Sb2—O5xi90.8 (2)
O6ii—Li1—P3ii25.9 (3)O14—Sb2—O1297.0 (2)
O2ii—Li1—P3ii107.6 (6)O13—Sb2—O1286.3 (2)
O4ii—Li1—P3ii164.8 (7)O9iii—Sb2—O1289.9 (2)
P1ii—Li1—P3ii133.9 (6)O1x—Sb2—O1288.0 (2)
P2i—Li1—P3ii93.0 (5)O5xi—Sb2—O12178.4 (3)
O10i—Li1—P2120.7 (7)O14—Sb2—Ba1138.78 (17)
O11—Li1—P224.5 (3)O13—Sb2—Ba144.99 (17)
O6ii—Li1—P2100.4 (6)O9iii—Sb2—Ba181.89 (18)
O2ii—Li1—P2112.6 (7)O1x—Sb2—Ba198.29 (18)
O4ii—Li1—P287.7 (5)O5xi—Sb2—Ba1135.23 (17)
P1ii—Li1—P294.1 (5)O12—Sb2—Ba144.03 (17)
P2i—Li1—P2145.5 (6)O13—Sb3—O13xi98.5 (4)
P3ii—Li1—P284.9 (4)O13—Sb3—O889.1 (3)
O10i—Li1—Ba1iii51.3 (4)O13xi—Sb3—O896.6 (2)
O11—Li1—Ba1iii45.3 (4)O13—Sb3—O8xi96.6 (2)
O6ii—Li1—Ba1iii130.1 (7)O13xi—Sb3—O8xi89.1 (3)
O2ii—Li1—Ba1iii147.2 (7)O8—Sb3—O8xi171.3 (4)
O4ii—Li1—Ba1iii84.6 (4)O13—Sb3—O7ix86.3 (3)
P1ii—Li1—Ba1iii117.6 (5)O13xi—Sb3—O7ix175.0 (2)
P2i—Li1—Ba1iii77.6 (4)O8—Sb3—O7ix84.9 (2)
P3ii—Li1—Ba1iii105.2 (4)O8xi—Sb3—O7ix88.9 (3)
P2—Li1—Ba1iii69.9 (3)O13—Sb3—O7xii175.0 (2)
O10i—Li1—Ba1ii160.8 (8)O13xi—Sb3—O7xii86.3 (3)
O11—Li1—Ba1ii99.5 (6)O8—Sb3—O7xii88.9 (3)
O6ii—Li1—Ba1ii52.4 (4)O8xi—Sb3—O7xii84.9 (2)
O2ii—Li1—Ba1ii54.1 (4)O7ix—Sb3—O7xii88.9 (4)
O4ii—Li1—Ba1ii98.6 (5)O2—P1—O1117.6 (3)
P1ii—Li1—Ba1ii68.7 (3)O2—P1—O4107.6 (3)
P2i—Li1—Ba1ii135.0 (5)O1—P1—O4106.4 (3)
P3ii—Li1—Ba1ii66.6 (3)O2—P1—O3106.4 (4)
P2—Li1—Ba1ii75.1 (3)O1—P1—O3108.6 (3)
Ba1iii—Li1—Ba1ii144.7 (5)O4—P1—O3110.2 (3)
O10i—Li1—Ba1i97.0 (6)O2—P1—Li1iv49.3 (4)
O11—Li1—Ba1i161.3 (7)O1—P1—Li1iv149.0 (4)
O6ii—Li1—Ba1i47.8 (4)O4—P1—Li1iv63.0 (4)
O2ii—Li1—Ba1i49.0 (4)O3—P1—Li1iv102.4 (4)
O4ii—Li1—Ba1i106.2 (5)O2—P1—Ba149.3 (3)
P1ii—Li1—Ba1i80.1 (4)O1—P1—Ba1131.1 (2)
P2i—Li1—Ba1i70.5 (3)O4—P1—Ba1122.6 (2)
P3ii—Li1—Ba1i71.8 (3)O3—P1—Ba157.1 (2)
P2—Li1—Ba1i139.4 (5)Li1iv—P1—Ba166.4 (3)
Ba1iii—Li1—Ba1i147.6 (5)O10—P2—O11114.4 (3)
Ba1ii—Li1—Ba1i65.2 (3)O10—P2—O9108.0 (3)
O11iii—Ba1—O10iv63.39 (17)O11—P2—O9111.0 (4)
O11iii—Ba1—O6v134.01 (19)O10—P2—O12109.8 (3)
O10iv—Ba1—O6v146.36 (16)O11—P2—O12111.0 (3)
O11iii—Ba1—O2v132.42 (18)O9—P2—O12101.8 (3)
O10iv—Ba1—O2v139.15 (16)O10—P2—Li1xiii34.2 (4)
O6v—Ba1—O2v57.36 (17)O11—P2—Li1xiii148.0 (4)
O11iii—Ba1—O6134.37 (18)O9—P2—Li1xiii91.7 (4)
O10iv—Ba1—O678.33 (16)O12—P2—Li1xiii84.7 (4)
O6v—Ba1—O691.62 (17)O10—P2—Li182.1 (4)
O2v—Ba1—O666.10 (17)O11—P2—Li132.5 (4)
O11iii—Ba1—O2134.45 (18)O9—P2—Li1122.5 (4)
O10iv—Ba1—O282.53 (16)O12—P2—Li1128.4 (4)
O6v—Ba1—O265.59 (17)Li1xiii—P2—Li1116.1 (2)
O2v—Ba1—O293.13 (16)O6—P3—O7109.8 (3)
O6—Ba1—O256.01 (17)O6—P3—O5111.5 (3)
O11iii—Ba1—O1271.31 (17)O7—P3—O5109.2 (3)
O10iv—Ba1—O12131.43 (17)O6—P3—O8107.3 (4)
O6v—Ba1—O1279.70 (17)O7—P3—O8110.1 (4)
O2v—Ba1—O1266.50 (17)O5—P3—O8109.0 (3)
O6—Ba1—O12128.26 (16)O6—P3—Li1iv35.6 (4)
O2—Ba1—O12145.29 (16)O7—P3—Li1iv79.0 (4)
O11iii—Ba1—O1366.89 (18)O5—P3—Li1iv141.3 (4)
O10iv—Ba1—O1391.76 (16)O8—P3—Li1iv102.7 (4)
O6v—Ba1—O13120.86 (16)O6—P3—Ba147.1 (3)
O2v—Ba1—O1370.77 (17)O7—P3—Ba1138.5 (2)
O6—Ba1—O1391.80 (16)O5—P3—Ba1111.6 (3)
O2—Ba1—O13147.81 (17)O8—P3—Ba162.7 (2)
O12—Ba1—O1353.47 (16)Li1iv—P3—Ba164.7 (3)
O11iii—Ba1—O14iii62.45 (17)P1—O1—Sb2vi133.4 (4)
O10iv—Ba1—O14iii89.99 (16)P1—O2—Li1iv98.8 (5)
O6v—Ba1—O14iii79.98 (16)P1—O2—Ba1v158.6 (4)
O2v—Ba1—O14iii130.75 (16)Li1iv—O2—Ba1v96.5 (5)
O6—Ba1—O14iii144.94 (16)P1—O2—Ba1108.0 (3)
O2—Ba1—O14iii89.98 (17)Li1iv—O2—Ba189.6 (5)
O12—Ba1—O14iii83.95 (16)Ba1v—O2—Ba186.87 (16)
O13—Ba1—O14iii121.80 (16)P1—O3—Sb1136.7 (4)
O11iii—Ba1—O387.93 (17)P1—O3—Ba197.9 (3)
O10iv—Ba1—O360.45 (15)Sb1—O3—Ba1107.6 (2)
O6v—Ba1—O388.87 (16)P1—O4—Sb1viii141.6 (4)
O2v—Ba1—O3138.42 (17)P1—O4—Li1iv83.6 (4)
O6—Ba1—O394.29 (16)Sb1viii—O4—Li1iv134.8 (5)
O2—Ba1—O347.70 (16)P3—O5—Sb2xi143.8 (4)
O12—Ba1—O3135.81 (16)P3—O6—Li1iv118.5 (6)
O13—Ba1—O3149.46 (16)P3—O6—Ba1v133.8 (3)
O14iii—Ba1—O351.94 (16)Li1iv—O6—Ba1v100.8 (5)
O11iii—Ba1—O891.87 (17)P3—O6—Ba1110.5 (3)
O10iv—Ba1—O862.95 (15)Li1iv—O6—Ba194.3 (5)
O6v—Ba1—O8129.91 (17)Ba1v—O6—Ba188.38 (17)
O2v—Ba1—O877.83 (16)P3—O7—Sb3xii151.9 (4)
O6—Ba1—O846.77 (16)P3—O8—Sb3138.9 (4)
O2—Ba1—O898.80 (16)P3—O8—Ba192.1 (3)
O12—Ba1—O8103.50 (15)Sb3—O8—Ba1103.9 (2)
O13—Ba1—O851.45 (15)P2—O9—Sb2iii132.2 (4)
O14iii—Ba1—O8149.83 (15)P2—O10—Li1xiii119.3 (6)
O3—Ba1—O8116.09 (15)P2—O10—Ba1ii142.8 (3)
O11iii—Ba1—Li1iii32.1 (3)Li1xiii—O10—Ba1ii97.2 (5)
O10iv—Ba1—Li1iii31.5 (3)P2—O11—Li1123.0 (6)
O6v—Ba1—Li1iii151.4 (3)P2—O11—Ba1iii134.4 (3)
O2v—Ba1—Li1iii149.8 (3)Li1—O11—Ba1iii102.6 (5)
O6—Ba1—Li1iii107.9 (3)P2—O12—Sb2137.1 (4)
O2—Ba1—Li1iii107.9 (3)P2—O12—Ba1113.8 (3)
O12—Ba1—Li1iii102.6 (3)Sb2—O12—Ba1108.3 (2)
O13—Ba1—Li1iii80.2 (3)Sb3—O13—Sb2137.7 (3)
O14iii—Ba1—Li1iii72.1 (3)Sb3—O13—Ba1113.8 (2)
O3—Ba1—Li1iii69.5 (3)Sb2—O13—Ba1107.8 (2)
O8—Ba1—Li1iii77.8 (3)Sb1iii—O14—Sb2133.4 (3)
O14iii—Sb1—O14vi99.8 (3)Sb1iii—O14—Ba1iii111.3 (2)
O14iii—Sb1—O387.4 (2)Sb2—O14—Ba1iii114.9 (2)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z; (vi) x1/2, y+1/2, z1/2; (vii) x, y, z+1/2; (viii) x, y, z; (ix) x, y, z+1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+1, y, z+1/2; (xii) x+1, y, z; (xiii) x, y+1, z1/2.
Main crystallographic parameters for LiBa(SbO)2(PO4), LiBa0.99(SbO)2(PO4)3:0.01Tb3+ and LiBa0.99(SbO)2(PO4)3:0.01Eu3+ from the GSAS (Larson &amp; Von Dreele, 2000) program Rietveld refinement top
FormulaLiBa(SbO)2(PO4)LiBa0.99(SbO)2(PO4)3:0.01Tb3+LiBa0.99(SbO)2(PO4)3:0.01Eu3+
Crystal systemMonoclinicMonoclinicMonoclinic
Space groupC2/cC2/cC2/c
a (Å)15.5881 (9)15.5978 (8)15.596 (1)
b (Å)13.7255 (8)13.7340 (7)13.732 (1)
c (Å)9.5992 (6)9.6051 (5)9.6037 (7)
α (°)909090
β (°)92.506 (1)92.504 (1)92.494 (1)
γ (°)909090
V3)2051.8 (4)2055.6 (3)2054.9 (4)
2θ interval (%)10–7510–7510–75
Z888
Rwp (%)9.119.399.16
Rp (%)6.756.996.43
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds