Download citation
Download citation
link to html
An efficient approach for the regioselective synthesis of (5-amino-3-methyl­sulfanyl-1H-1,2,4-triazol-1-yl)(2-fluoro­phen­yl)methanone, C10H9FN4OS, (3), from the N-acyl­ation of 3-amino-5-methyl­sulfanyl-1H-1,2,4-triazole, (1), with 2-fluoro­benzoyl chloride has been developed. Heterocyclic amide (3) was used successfully as a strategic inter­mediate for the preparation of 2-fluoro-N-(3-methyl­sulfanyl-1H-1,2,4-triazol-5-yl)benzamide, C10H9FN4OS, (4), through a microwave-assisted Fries rearrangement under catalyst- and solvent-free conditions. Theoretical studies of the prototropy process of (1) and the Fries rearrangement of (3) to provide (4), involving the formation of an intimate ion pair as the key step, were carried out by density functional theory (DFT) calculations. The crystallographic analysis of the inter­molecular inter­actions and the energy frameworks based on the effects of the different mol­ecular con­formations of (3) and (4) are described.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619002572/yo3062sup1.cif
Contains datablocks Compound_3, Compound_4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619002572/yo3062Compound_3sup2.hkl
Contains datablock Compound_3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619002572/yo3062Compound_4sup3.hkl
Contains datablock Compound_4

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619002572/yo3062sup4.pdf
HRMS, NMR, IR and UV-Vis spectra, computational information and 2D fingerprint plots

CCDC references: 1898376; 1898375

Computing details top

For both structures, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(5-Amino-3-methylsulfanyl-1H-1,2,4-triazol-1-yl)(2-fluorophenyl)methanon (Compound_3) top
Crystal data top
C10H9FN4OSZ = 2
Mr = 252.27F(000) = 260
Triclinic, P1Dx = 1.502 Mg m3
a = 7.6599 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8079 (8) ÅCell parameters from 5358 reflections
c = 10.0140 (12) Åθ = 3.6–27.5°
α = 94.487 (9)°µ = 0.29 mm1
β = 108.668 (11)°T = 298 K
γ = 97.565 (9)°Parallelepiped, colorless
V = 557.83 (12) Å30.38 × 0.34 × 0.22 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector'
2450 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2107 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.044
ω scansθmax = 27.1°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 99
Tmin = 0.856, Tmax = 1.000k = 910
12256 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.4216P]
where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.27 e Å3
159 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.02515 (8)0.25941 (8)1.09852 (5)0.05278 (19)
H11.373 (3)0.476 (3)0.7053 (6)0.063*
H21.4957 (16)0.518 (3)0.8587 (18)0.063*
C10A0.8191 (3)0.2346 (10)0.5115 (8)0.0367 (4)0.633 (3)
C11A0.7667 (7)0.1073 (11)0.3944 (7)0.0377 (5)0.633 (3)
C12A0.5846 (5)0.0481 (9)0.3128 (7)0.0465 (12)0.633 (3)
H12A0.5543750.0373570.2352940.056*0.633 (3)
C13A0.4464 (5)0.1184 (5)0.3483 (4)0.0399 (5)0.633 (3)
H13A0.3216060.0799880.2940660.048*0.633 (3)
C14A0.4925 (5)0.2463 (5)0.4645 (4)0.0391 (4)0.633 (3)
H14A0.3990950.2951570.4863430.047*0.633 (3)
C15A0.6781 (2)0.3005 (7)0.5474 (5)0.0380 (4)0.633 (3)
H15A0.7083970.3816700.6277790.046*0.633 (3)
F1A0.9121 (3)0.0504 (3)0.3615 (2)0.0532 (6)0.633 (3)
C10B0.8175 (4)0.2377 (16)0.5144 (14)0.0371 (4)0.367 (3)
C11B0.7981 (9)0.1168 (17)0.3994 (10)0.0371 (16)0.367 (3)
H11B0.9038450.0918890.3804000.045*0.367 (3)
C12B0.6220 (13)0.0324 (17)0.3122 (13)0.0390 (5)0.367 (3)
H12B0.6123610.0559160.2410010.047*0.367 (3)
C13B0.4644 (11)0.0767 (9)0.3292 (7)0.0394 (5)0.367 (3)
H13B0.3479180.0188560.2699600.047*0.367 (3)
C14B0.4765 (9)0.2065 (9)0.4335 (7)0.0389 (4)0.367 (3)
H14B0.3689490.2412640.4428380.047*0.367 (3)
C15B0.6519 (3)0.2856 (12)0.5254 (8)0.0380 (4)0.367 (3)
F1B0.6863 (5)0.4163 (5)0.6360 (4)0.0557 (11)0.367 (3)
N30.9653 (2)0.2605 (2)0.81764 (16)0.0400 (4)
N41.0763 (2)0.3271 (2)0.74015 (16)0.0392 (4)
C51.2529 (3)0.3998 (3)0.8343 (2)0.0426 (4)
N61.2581 (2)0.3836 (2)0.96490 (18)0.0466 (4)
N71.3908 (3)0.4744 (3)0.7944 (2)0.0603 (5)
C21.0807 (3)0.3004 (3)0.9475 (2)0.0412 (4)
C81.01785 (18)0.3102 (2)0.59287 (17)0.0372 (4)
O91.12866 (18)0.3549 (2)0.53342 (15)0.0490 (4)
C180.7830 (3)0.1643 (3)1.0186 (2)0.0593 (6)
H18A0.7247330.1608531.0903600.089*
H18B0.7731360.0479860.9746660.089*
H18C0.7217500.2330880.9480570.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0504 (3)0.0689 (4)0.0336 (3)0.0007 (3)0.0098 (2)0.0081 (2)
C10A0.0323 (6)0.0437 (8)0.0337 (8)0.0040 (6)0.0108 (6)0.0064 (6)
C11A0.0327 (8)0.0447 (10)0.0346 (9)0.0044 (8)0.0107 (7)0.0053 (7)
C12A0.033 (2)0.062 (3)0.0362 (16)0.004 (2)0.002 (2)0.0024 (16)
C13A0.0332 (7)0.0470 (10)0.0367 (9)0.0049 (7)0.0090 (7)0.0031 (7)
C14A0.0328 (6)0.0465 (9)0.0360 (9)0.0044 (7)0.0100 (6)0.0037 (7)
C15A0.0325 (6)0.0454 (9)0.0348 (9)0.0039 (6)0.0104 (6)0.0048 (7)
F1A0.0518 (12)0.0632 (13)0.0447 (11)0.0182 (9)0.0155 (9)0.0049 (9)
C10B0.0324 (7)0.0441 (9)0.0340 (8)0.0040 (7)0.0107 (6)0.0060 (7)
C11B0.021 (3)0.054 (4)0.034 (3)0.001 (3)0.008 (3)0.009 (2)
C12B0.0329 (8)0.0462 (10)0.0358 (10)0.0049 (8)0.0098 (8)0.0038 (8)
C13B0.0331 (7)0.0466 (10)0.0362 (9)0.0049 (7)0.0095 (7)0.0030 (8)
C14B0.0327 (6)0.0462 (10)0.0358 (9)0.0044 (7)0.0100 (6)0.0035 (7)
C15B0.0326 (6)0.0453 (9)0.0348 (9)0.0041 (7)0.0104 (6)0.0047 (7)
F1B0.056 (2)0.062 (2)0.054 (2)0.0153 (16)0.0248 (16)0.0005 (16)
N30.0366 (8)0.0471 (9)0.0338 (8)0.0019 (6)0.0119 (6)0.0042 (6)
N40.0319 (8)0.0479 (9)0.0339 (8)0.0032 (6)0.0103 (6)0.0012 (6)
C50.0322 (9)0.0475 (11)0.0418 (10)0.0003 (8)0.0077 (8)0.0003 (8)
N60.0355 (8)0.0572 (10)0.0396 (9)0.0008 (7)0.0065 (7)0.0021 (7)
N70.0349 (9)0.0893 (15)0.0445 (10)0.0158 (9)0.0088 (8)0.0000 (10)
C20.0362 (9)0.0458 (10)0.0377 (10)0.0021 (8)0.0090 (8)0.0047 (8)
C80.0342 (9)0.0409 (9)0.0375 (9)0.0054 (7)0.0137 (7)0.0050 (7)
O90.0373 (7)0.0676 (10)0.0435 (8)0.0012 (6)0.0184 (6)0.0064 (7)
C180.0531 (13)0.0743 (16)0.0490 (12)0.0062 (11)0.0220 (10)0.0059 (11)
Geometric parameters (Å, º) top
S1—C21.739 (2)C12B—H12B0.9300
S1—C181.796 (2)C13B—C14B1.369 (7)
C10A—C15A1.388 (5)C13B—H13B0.9300
C10A—C11A1.391 (5)C14B—C15B1.391 (6)
C10A—C81.491 (2)C14B—H14B0.9300
C11A—C12A1.367 (6)C15B—F1B1.380 (8)
C11A—F1A1.374 (6)N3—C21.303 (2)
C12A—C13A1.382 (5)N3—N41.402 (2)
C12A—H12A0.9300N4—C81.387 (2)
C13A—C14A1.392 (4)N4—C51.393 (2)
C13A—H13A0.9300C5—N61.312 (3)
C14A—C15A1.386 (4)C5—N71.326 (3)
C14A—H14A0.9300N6—C21.377 (2)
C15A—H15A0.9300N7—H10.8600 (11)
C10B—C11B1.386 (9)N7—H20.8600 (11)
C10B—C15B1.403 (7)C8—O91.214 (2)
C10B—C81.491 (2)C18—H18A0.9600
C11B—C12B1.392 (10)C18—H18B0.9600
C11B—H11B0.9300C18—H18C0.9600
C12B—C13B1.356 (9)
C2—S1—C18100.21 (10)C13B—C14B—C15B119.0 (6)
C15A—C10A—C11A117.7 (3)C13B—C14B—H14B120.5
C15A—C10A—C8119.2 (3)C15B—C14B—H14B120.5
C11A—C10A—C8123.0 (4)F1B—C15B—C14B125.7 (4)
C12A—C11A—F1A121.8 (4)F1B—C15B—C10B112.1 (4)
C12A—C11A—C10A123.0 (5)C14B—C15B—C10B122.2 (6)
F1A—C11A—C10A115.2 (3)C2—N3—N4101.36 (14)
C11A—C12A—C13A118.4 (5)C8—N4—C5127.12 (15)
C11A—C12A—H12A120.8C8—N4—N3123.84 (14)
C13A—C12A—H12A120.8C5—N4—N3108.91 (15)
C12A—C13A—C14A120.5 (4)N6—C5—N7126.71 (18)
C12A—C13A—H13A119.7N6—C5—N4109.42 (16)
C14A—C13A—H13A119.7N7—C5—N4123.86 (18)
C15A—C14A—C13A119.8 (3)C5—N6—C2103.34 (16)
C15A—C14A—H14A120.1C5—N7—H1119.0 (17)
C13A—C14A—H14A120.1C5—N7—H2118.8 (17)
C14A—C15A—C10A120.5 (3)H1—N7—H2122 (2)
C14A—C15A—H15A119.7N3—C2—N6116.95 (17)
C10A—C15A—H15A119.7N3—C2—S1124.73 (15)
C11B—C10B—C15B116.3 (5)N6—C2—S1118.31 (14)
C11B—C10B—C8111.4 (5)O9—C8—N4119.78 (14)
C15B—C10B—C8131.7 (6)O9—C8—C10B122.9 (6)
C10B—C11B—C12B120.7 (7)N4—C8—C10B117.4 (6)
C10B—C11B—H11B119.6O9—C8—C10A121.7 (4)
C12B—C11B—H11B119.6N4—C8—C10A118.5 (4)
C13B—C12B—C11B121.1 (10)S1—C18—H18A109.5
C13B—C12B—H12B119.4S1—C18—H18B109.5
C11B—C12B—H12B119.4H18A—C18—H18B109.5
C12B—C13B—C14B120.1 (7)S1—C18—H18C109.5
C12B—C13B—H13B120.0H18A—C18—H18C109.5
C14B—C13B—H13B120.0H18B—C18—H18C109.5
C15A—C10A—C11A—C12A1.4 (15)N3—N4—C5—N60.4 (2)
C8—C10A—C11A—C12A174.5 (8)C8—N4—C5—N74.2 (3)
C15A—C10A—C11A—F1A178.3 (8)N3—N4—C5—N7179.8 (2)
C8—C10A—C11A—F1A2.4 (14)N7—C5—N6—C2179.1 (2)
F1A—C11A—C12A—C13A176.6 (7)N4—C5—N6—C20.3 (2)
C10A—C11A—C12A—C13A0.1 (14)N4—N3—C2—N61.2 (2)
C11A—C12A—C13A—C14A0.0 (9)N4—N3—C2—S1177.63 (14)
C12A—C13A—C14A—C15A1.6 (7)C5—N6—C2—N31.0 (2)
C13A—C14A—C15A—C10A3.2 (8)C5—N6—C2—S1177.93 (15)
C11A—C10A—C15A—C14A3.1 (12)C18—S1—C2—N31.9 (2)
C8—C10A—C15A—C14A173.0 (6)C18—S1—C2—N6176.86 (17)
C15B—C10B—C11B—C12B8 (2)C5—N4—C8—O93.3 (3)
C8—C10B—C11B—C12B179.6 (13)N3—N4—C8—O9172.11 (17)
C10B—C11B—C12B—C13B6 (2)C5—N4—C8—C10B176.2 (6)
C11B—C12B—C13B—C14B0.0 (17)N3—N4—C8—C10B8.4 (6)
C12B—C13B—C14B—C15B3.1 (12)C5—N4—C8—C10A177.5 (4)
C13B—C14B—C15B—F1B179.4 (8)N3—N4—C8—C10A7.1 (4)
C13B—C14B—C15B—C10B0.4 (15)C11B—C10B—C8—O944.0 (16)
C11B—C10B—C15B—F1B175.0 (13)C15B—C10B—C8—O9126.6 (15)
C8—C10B—C15B—F1B5 (2)C11B—C10B—C8—N4136.5 (11)
C11B—C10B—C15B—C14B5 (2)C15B—C10B—C8—N452.9 (19)
C8—C10B—C15B—C14B175.4 (12)C15A—C10A—C8—O9130.7 (7)
C2—N3—N4—C8177.04 (17)C11A—C10A—C8—O945.2 (11)
C2—N3—N4—C50.9 (2)C15A—C10A—C8—N450.1 (9)
C8—N4—C5—N6176.37 (18)C11A—C10A—C8—N4134.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H1···O90.86 (1)2.14 (2)2.738 (2)126 (2)
C15A—H15A···N30.932.602.960 (5)104
N7—H2···N6i0.86 (2)2.13 (2)2.987 (3)174 (2)
C14A—H14A···O9ii0.932.363.275 (4)167
Symmetry codes: (i) x+3, y+1, z+2; (ii) x1, y, z.
2-Fluoro-N-(3-methylsulfanyl-1H-1,2,4-triazol-5-yl)benzamide (Compound_4) top
Crystal data top
C10H9FN4OSF(000) = 520
Mr = 252.27Dx = 1.556 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.0509 (11) ÅCell parameters from 3138 reflections
b = 26.640 (5) Åθ = 4.0–24.7°
c = 8.0251 (16) ŵ = 0.30 mm1
β = 94.12 (2)°T = 298 K
V = 1077.0 (4) Å3Parallelepiped, colorless
Z = 40.23 × 0.08 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
5060 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3267 reflections with I > 2σ(I)
Detector resolution: 5.3072 pixels mm-1Rint = 0.080
ω scansθmax = 26.8°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 66
Tmin = 0.734, Tmax = 1.000k = 3333
5060 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: mixed
wR(F2) = 0.237H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1329P)2]
where P = (Fo2 + 2Fc2)/3
5060 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1477 (4)0.27586 (4)0.0007 (2)0.0449 (5)
F10.1660 (7)0.53895 (10)0.1032 (4)0.0505 (9)
H10.223 (15)0.461 (2)0.206 (8)0.06 (2)*
O10.8265 (8)0.46221 (12)0.2805 (5)0.0404 (10)
N10.5883 (9)0.32664 (13)0.1083 (6)0.0357 (11)
C10.4195 (13)0.23505 (19)0.0417 (9)0.0544 (18)
H1A0.3511550.2047710.0934960.082*
H1B0.5193220.2269530.0610540.082*
H1C0.5327420.2516920.1153830.082*
C20.3270 (11)0.32716 (16)0.0838 (6)0.0303 (11)
N20.6408 (10)0.37462 (14)0.1623 (6)0.0344 (11)
C30.4156 (10)0.40049 (16)0.1636 (6)0.0301 (12)
N30.2102 (9)0.37196 (14)0.1168 (6)0.0358 (11)
C40.6041 (11)0.48003 (17)0.2559 (6)0.0307 (12)
H40.81 (2)0.386 (3)0.187 (12)0.11 (3)*
N40.3965 (9)0.45071 (14)0.1992 (6)0.0342 (10)
C60.3445 (12)0.56183 (17)0.2127 (7)0.0361 (13)
C50.5514 (10)0.53388 (16)0.2864 (6)0.0305 (12)
C70.3142 (13)0.61226 (18)0.2366 (7)0.0448 (15)
H70.1732970.6296570.1825890.054*
C90.7035 (14)0.60997 (19)0.4223 (8)0.0497 (16)
H90.8243670.6262440.4966510.060*
C80.4989 (14)0.63664 (19)0.3431 (8)0.0520 (17)
H80.4845200.6709920.3611390.062*
C100.7318 (12)0.55995 (18)0.3933 (7)0.0388 (13)
H100.8747830.5428510.4460410.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0279 (8)0.0374 (7)0.0688 (11)0.0045 (6)0.0013 (7)0.0100 (6)
F10.044 (2)0.0498 (17)0.055 (2)0.0030 (15)0.0163 (17)0.0033 (15)
O10.025 (2)0.0422 (19)0.053 (2)0.0033 (16)0.0032 (18)0.0046 (16)
N10.027 (3)0.033 (2)0.047 (3)0.0011 (18)0.004 (2)0.0006 (18)
C10.040 (4)0.043 (3)0.082 (5)0.001 (3)0.009 (4)0.019 (3)
C20.019 (3)0.035 (2)0.037 (3)0.000 (2)0.001 (2)0.001 (2)
N20.020 (3)0.034 (2)0.049 (3)0.0007 (19)0.002 (2)0.0024 (18)
C30.024 (3)0.033 (2)0.034 (3)0.004 (2)0.001 (2)0.000 (2)
N30.024 (3)0.033 (2)0.051 (3)0.0016 (18)0.005 (2)0.0025 (19)
C40.026 (3)0.035 (2)0.031 (3)0.003 (2)0.005 (2)0.002 (2)
N40.018 (3)0.036 (2)0.050 (3)0.0030 (19)0.005 (2)0.0010 (18)
C60.037 (4)0.037 (3)0.036 (3)0.003 (2)0.010 (3)0.003 (2)
C50.028 (3)0.035 (2)0.028 (3)0.002 (2)0.006 (2)0.002 (2)
C70.044 (4)0.044 (3)0.048 (4)0.007 (3)0.015 (3)0.010 (2)
C90.056 (5)0.045 (3)0.049 (4)0.012 (3)0.007 (3)0.006 (3)
C80.065 (5)0.036 (3)0.058 (4)0.002 (3)0.021 (3)0.002 (3)
C100.033 (4)0.045 (3)0.038 (3)0.004 (2)0.004 (3)0.007 (2)
Geometric parameters (Å, º) top
S1—C21.746 (5)C4—N41.360 (7)
S1—C11.803 (6)C4—C51.483 (7)
F1—C61.357 (6)N4—H10.93 (7)
O1—C41.222 (6)C6—C71.367 (7)
N1—C21.320 (7)C6—C51.381 (7)
N1—N21.370 (6)C5—C101.391 (7)
C1—H1A0.9600C7—C81.381 (9)
C1—H1B0.9600C7—H70.9300
C1—H1C0.9600C9—C101.362 (7)
C2—N31.366 (6)C9—C81.372 (9)
N2—C31.331 (7)C9—H90.9300
N2—H40.90 (10)C8—H80.9300
C3—N31.319 (7)C10—H100.9300
C3—N41.373 (6)
C2—S1—C199.4 (3)C4—N4—C3124.4 (5)
C2—N1—N2101.9 (4)C4—N4—H1121 (4)
S1—C1—H1A109.5C3—N4—H1113 (4)
S1—C1—H1B109.5F1—C6—C7117.2 (5)
H1A—C1—H1B109.5F1—C6—C5118.8 (4)
S1—C1—H1C109.5C7—C6—C5124.0 (5)
H1A—C1—H1C109.5C6—C5—C10115.9 (4)
H1B—C1—H1C109.5C6—C5—C4126.2 (5)
N1—C2—N3114.9 (4)C10—C5—C4117.9 (5)
N1—C2—S1122.3 (3)C6—C7—C8118.1 (6)
N3—C2—S1122.6 (4)C6—C7—H7120.9
C3—N2—N1109.8 (4)C8—C7—H7120.9
C3—N2—H4128 (5)C10—C9—C8120.8 (6)
N1—N2—H4122 (5)C10—C9—H9119.6
N3—C3—N2110.8 (4)C8—C9—H9119.6
N3—C3—N4123.7 (5)C9—C8—C7119.7 (5)
N2—C3—N4125.4 (5)C9—C8—H8120.1
C3—N3—C2102.5 (4)C7—C8—H8120.1
O1—C4—N4120.6 (4)C9—C10—C5121.4 (5)
O1—C4—C5121.5 (5)C9—C10—H10119.3
N4—C4—C5117.9 (5)C5—C10—H10119.3
N2—N1—C2—N30.6 (6)F1—C6—C5—C10178.1 (5)
N2—N1—C2—S1176.0 (4)C7—C6—C5—C101.4 (8)
C1—S1—C2—N13.9 (5)F1—C6—C5—C41.2 (8)
C1—S1—C2—N3171.2 (4)C7—C6—C5—C4175.5 (5)
C2—N1—N2—C31.3 (5)O1—C4—C5—C6155.9 (5)
N1—N2—C3—N31.6 (6)N4—C4—C5—C624.1 (7)
N1—N2—C3—N4175.0 (4)O1—C4—C5—C1021.0 (7)
N2—C3—N3—C21.2 (5)N4—C4—C5—C10159.0 (5)
N4—C3—N3—C2175.5 (5)F1—C6—C7—C8177.9 (5)
N1—C2—N3—C30.3 (6)C5—C6—C7—C81.2 (8)
S1—C2—N3—C3175.0 (4)C10—C9—C8—C72.0 (9)
O1—C4—N4—C30.8 (8)C6—C7—C8—C90.6 (9)
C5—C4—N4—C3179.2 (4)C8—C9—C10—C51.7 (9)
N3—C3—N4—C4176.4 (5)C6—C5—C10—C90.0 (8)
N2—C3—N4—C47.4 (8)C4—C5—C10—C9177.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···F10.92 (7)2.25 (6)2.710 (5)111 (5)
N2—H4···O10.92 (10)2.16 (8)2.664 (5)114 (7)
N4—H1···O1i0.92 (7)2.13 (8)3.013 (6)159 (5)
N2—H4···N3ii0.92 (10)2.17 (10)2.926 (7)140 (8)
C10—H10···O1iii0.932.583.367 (7)143
C1—H1A···N1iv0.962.783.566 (8)140
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x1/2, y+1/2, z1/2.
Calculated energy (Hartrees), energy difference (ΔE) relative to T2, zero-point energy (ZPE), and total dipole moment (D) for tautomers T1, T2, T3 and T4 and transition states TS12, TS23 and TS34 in the gas phase top
Note: E = Eelectr + ZPE + Evib + Erot + Etrans
CompoundCalculated energyΔE (kcal mol-1)ZPEDipole moment (D)
T1-735.24032431.030.1046793.22
T2-735.24195920.000.1046713.94
T3-735.182017138.180.1055678.39
T4-735.23014857.170.1042833.72
TS12-735.159207048.690.0995151.19
TS23-735.146136757.200.1000095.38
TS34-735.142480059.300.0996995.20
Optimization of the reaction conditions for the synthesis of secondary amide (4)a top
EntrySolventT (K)Time tYieldb (%)
1THFRefluxc6 h15
2PhMeRefluxc6 h31
3d41310 min19
4d43310 min42
5d45310 min69
6d45320 min84
Notes: (a) reaction conditions: tertiary amide (3) (0.25 mmol); (b) isolated yield; (c) conventional heating; (d) run in 10.0 ml sealed tubes at a power of 300 W in the absence of solvent.
CE-HF interaction energies (kJ mol-1) for (3). top
N is the number of molecules with an R molecular centroid-to-centroid distance (Å). Electron density was calculated using HF/3-21G model energies.
NREeleEpolEdisErepEtot*
18.38-144.9-3.8-19.78.9-160.6
15.48-234.2-13.6-72.518.6-297.7
15.89-181.1-89.3-142.985.5-302.1
111.13-100.3-0.3-2.50.0-104.6
210.01-105.2-8.6-20.34.7-127.3
210.48-124.0-6.3-12.616.7-128.3
17.66-153.2-8.1-42.020.0-183.0
27.66-149.0-8.6-27.849.6-142.3
15.55-242.6-25.3-67.119.7-308.2
17.16-192.1-9.1-34.6-1.2-233.7
110.32-189.7-27.0-16.758.5-178.5
Note: (*) scale factors used to determine Etot: Eele = 1.019, Epol = 0.651, Edis = 0.901 and Erep = 0.811.
CE-HF interaction energies (kJ mol-1) for (4). top
N is the number of molecules with an R molecular centroid-to-centroid distance (Å). Electron density was calculated using HF/3-21G model energies.
NREeleEpolEdisErepEtot*
15.97-22.5-5.0-21.26.7-39.9
25.05-45.2-15.1-39.247.1-53.1
211.19-1.4-1.3-9.94.5-7.5
211.32-1.4-1.0-6.43.8-4.8
213.52-6.2-1.4-7.65.4-9.7
14.29-8.1-3.0-62.624.3-46.8
213.72-1.0-0.7-5.82.2-4.8
16.03-10.2-3.2-42.416.0-37.8
18.03-12.8-3.3-15.98.7-22.5
Note: (*) scale factors used to determine Etot: Eele = 1.019, Epol = 0.651, Edis = 0.901 and Erep = 0.811.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds