Download citation
Download citation
link to html
Zirconium tetra­chloride, ZrCl4, is a strategic material with wide-ranging applications. Until now, only one crystallographic study on ZrCl4 has been reported [Krebs (1970). Z. Anorg. Allg. Chem. 378, 263–272] and that was more than 40 years ago. The compound used for the previous determination was prepared from ZrO2 and Cl2–CCl4, and single-crystal X-ray diffraction (SCXRD) studies on ZrCl4 obtained from Zr metal have not yet been reported. In this context, we prepared ZrCl4 from the reaction of Zr metal and Cl2 gas in a sealed tube and investigated its structure at 100, 150, 200, 250, and 300 K. At 300 K, the SCXRD analysis indicates that ZrCl4 crystallizes in the ortho­rhom­bic space group Pca21 [a = 6.262 (9), b = 7.402 (11), c = 12.039 (17) Å, and V = 558.0 (14) Å3] and consists of infinite zigzag chains of edge-sharing ZrCl6 octa­hedra. This chain motif is similar to that observed previously in ZrCl4, but the structural parameters and space group differ. In the temperature range 100–300 K, no phase transformation was identified, while elongation of intra-chain Zr...Zr [3.950 (1) Å at 100 K and 3.968 (5) Å at 300 K] and inter-chain Cl...Cl [3.630 (3) Å at 100 K and 3.687 (9) Å at 300 K] distances occurred.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961800219X/yo3045sup1.cif
Contains datablocks global, SMB_ZrCl4_b_100K, SMB_ZrCl4a_a_150K, SMB_ZrCl4_b_200K, SMB_ZrCl4_b_250K, SMB_ZrCl4_b_300K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4_b_100Ksup2.hkl
Contains datablock SMB_ZrCl4_b_100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4a_a_150Ksup3.hkl
Contains datablock SMB_ZrCl4a_a_150K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4_b_200Ksup4.hkl
Contains datablock SMB_ZrCl4_b_200K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4_b_250Ksup5.hkl
Contains datablock SMB_ZrCl4_b_250K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4_b_300Ksup6.hkl
Contains datablock SMB_ZrCl4_b_300K

CCDC references: 1822239; 1822238; 1822237; 1822236; 1822235

Computing details top

For all structures, data collection: BIS (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011); software used to prepare material for publication: APEX3 (Bruker, 2016).

Zirconium tetrachloride (SMB_ZrCl4_b_100K) top
Crystal data top
ZrCl4Dx = 2.849 Mg m3
Mr = 233.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2790 reflections
a = 6.2199 (9) Åθ = 2.8–27.9°
b = 7.3301 (10) ŵ = 3.82 mm1
c = 11.9153 (16) ÅT = 100 K
V = 543.25 (13) Å3Rectangular box, translucent colourless
Z = 40.09 × 0.08 × 0.06 mm
F(000) = 432
Data collection top
Bruker D8 QUEST
diffractometer
924 independent reflections
Radiation source: sealed tube, Siemens KFFMo2K-90877 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.050
Detector resolution: 8.3333 pixels mm-1θmax = 24.7°, θmin = 3.4°
φ and ω scansh = 77
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.63, Tmax = 0.81l = 1414
5240 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.07Δρmax = 2.08 e Å3
924 reflectionsΔρmin = 0.53 e Å3
46 parametersAbsolute structure: Flack x determined using 394 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.05 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.42265 (13)0.33389 (11)0.49994 (14)0.0170 (3)
Cl10.5727 (4)0.1350 (3)0.6288 (2)0.0221 (6)
Cl20.0920 (4)0.3893 (3)0.61382 (19)0.0189 (6)
Cl30.2781 (4)0.1303 (3)0.3723 (2)0.0226 (6)
Cl40.7506 (4)0.3924 (3)0.38424 (18)0.0194 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0132 (4)0.0184 (5)0.0193 (5)0.0001 (4)0.0003 (4)0.0003 (6)
Cl10.0211 (13)0.0236 (13)0.0217 (13)0.0026 (10)0.0024 (10)0.0043 (10)
Cl20.0150 (12)0.0217 (12)0.0200 (14)0.0014 (9)0.0012 (9)0.0022 (10)
Cl30.0208 (12)0.0238 (12)0.0231 (14)0.0017 (10)0.0020 (12)0.0022 (10)
Cl40.0153 (11)0.0219 (12)0.0211 (14)0.0019 (10)0.0017 (11)0.0009 (10)
Geometric parameters (Å, º) top
Zr1—Cl32.313 (3)Zr1—Cl2i2.659 (3)
Zr1—Cl12.314 (3)Zr1—Cl4ii2.659 (2)
Zr1—Cl22.497 (3)Cl2—Zr1ii2.659 (3)
Zr1—Cl42.499 (2)Cl4—Zr1i2.659 (2)
Cl3—Zr1—Cl1100.75 (9)Cl4—Zr1—Cl2i80.05 (7)
Cl3—Zr1—Cl298.17 (9)Cl3—Zr1—Cl4ii89.40 (9)
Cl1—Zr1—Cl294.25 (10)Cl1—Zr1—Cl4ii169.03 (11)
Cl3—Zr1—Cl493.74 (10)Cl2—Zr1—Cl4ii80.08 (7)
Cl1—Zr1—Cl498.34 (9)Cl4—Zr1—Cl4ii85.01 (7)
Cl2—Zr1—Cl4160.75 (9)Cl2i—Zr1—Cl4ii81.26 (7)
Cl3—Zr1—Cl2i169.16 (11)Zr1—Cl2—Zr1ii99.96 (9)
Cl1—Zr1—Cl2i89.00 (10)Zr1—Cl4—Zr1i99.90 (9)
Cl2—Zr1—Cl2i85.69 (8)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+1, z.
Zirconium tetrachloride (SMB_ZrCl4a_a_150K) top
Crystal data top
ZrCl4Dx = 2.829 Mg m3
Mr = 233.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2581 reflections
a = 6.2311 (8) Åθ = 2.8–27.9°
b = 7.3497 (10) ŵ = 3.79 mm1
c = 11.9462 (15) ÅT = 150 K
V = 547.10 (12) Å3Rectangular plate, translucent colourless
Z = 40.09 × 0.08 × 0.06 mm
F(000) = 432
Data collection top
Bruker D8 QUEST
diffractometer
906 independent reflections
Radiation source: sealed tube, Siemens KFFMo2K-90853 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.051
Detector resolution: 8.3333 pixels mm-1θmax = 24.7°, θmin = 6.5°
φ and ω scansh = 77
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.64, Tmax = 0.78l = 1414
5124 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0514P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.04Δρmax = 2.08 e Å3
906 reflectionsΔρmin = 0.52 e Å3
46 parametersAbsolute structure: Flack x determined using 374 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.03 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.42306 (12)0.33410 (10)0.50001 (13)0.0191 (3)
Cl10.5726 (4)0.1359 (3)0.6287 (2)0.0265 (6)
Cl20.0927 (4)0.3896 (3)0.61336 (18)0.0211 (6)
Cl30.2797 (4)0.1309 (3)0.3725 (2)0.0276 (6)
Cl40.7507 (4)0.3926 (3)0.38452 (18)0.0229 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0150 (4)0.0208 (5)0.0213 (5)0.0002 (4)0.0005 (4)0.0006 (5)
Cl10.0252 (14)0.0281 (13)0.0262 (14)0.0041 (10)0.0028 (10)0.0042 (11)
Cl20.0161 (12)0.0250 (12)0.0222 (13)0.0024 (9)0.0024 (9)0.0035 (10)
Cl30.0273 (12)0.0279 (12)0.0277 (14)0.0030 (11)0.0037 (13)0.0040 (10)
Cl40.0184 (11)0.0254 (11)0.0247 (14)0.0022 (10)0.0018 (11)0.0029 (10)
Geometric parameters (Å, º) top
Zr1—Cl32.313 (3)Zr1—Cl2i2.660 (3)
Zr1—Cl12.314 (3)Zr1—Cl4ii2.663 (2)
Zr1—Cl22.497 (2)Cl2—Zr1ii2.660 (3)
Zr1—Cl42.501 (2)Cl4—Zr1i2.663 (2)
Cl3—Zr1—Cl1100.76 (9)Cl4—Zr1—Cl2i79.93 (7)
Cl3—Zr1—Cl298.31 (9)Cl3—Zr1—Cl4ii89.43 (10)
Cl1—Zr1—Cl294.27 (9)Cl1—Zr1—Cl4ii168.97 (10)
Cl3—Zr1—Cl493.60 (10)Cl2—Zr1—Cl4ii79.94 (7)
Cl1—Zr1—Cl498.39 (9)Cl4—Zr1—Cl4ii85.05 (7)
Cl2—Zr1—Cl4160.69 (9)Cl2i—Zr1—Cl4ii81.27 (7)
Cl3—Zr1—Cl2i169.05 (11)Zr1—Cl2—Zr1ii100.15 (9)
Cl1—Zr1—Cl2i88.99 (9)Zr1—Cl4—Zr1i99.96 (9)
Cl2—Zr1—Cl2i85.81 (8)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+1, z.
Zirconium tetrachloride (SMB_ZrCl4_b_200K) top
Crystal data top
ZrCl4Dx = 2.813 Mg m3
Mr = 233.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2383 reflections
a = 6.2389 (8) Åθ = 2.8–28.4°
b = 7.3667 (10) ŵ = 3.77 mm1
c = 11.9735 (16) ÅT = 200 K
V = 550.30 (13) Å3Rectangular box, translucent colourless
Z = 40.09 × 0.08 × 0.06 mm
F(000) = 432
Data collection top
Bruker D8 QUEST
diffractometer
934 independent reflections
Radiation source: sealed tube, Siemens KFFMo2K-90864 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.049
Detector resolution: 8.3333 pixels mm-1θmax = 24.7°, θmin = 3.4°
φ and ω scansh = 77
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.64, Tmax = 0.82l = 1414
5292 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3988P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max < 0.001
S = 1.11Δρmax = 2.11 e Å3
934 reflectionsΔρmin = 0.54 e Å3
46 parametersAbsolute structure: Flack x determined using 386 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.18 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.42327 (15)0.33461 (12)0.50006 (16)0.0244 (3)
Cl10.5717 (5)0.1372 (4)0.6283 (3)0.0346 (8)
Cl20.0931 (4)0.3897 (4)0.6132 (2)0.0278 (7)
Cl30.2805 (5)0.1316 (4)0.3725 (3)0.0356 (7)
Cl40.7508 (4)0.3931 (4)0.3848 (2)0.0288 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0189 (5)0.0265 (5)0.0278 (6)0.0001 (4)0.0001 (5)0.0001 (7)
Cl10.0329 (17)0.0368 (17)0.0340 (17)0.0042 (12)0.0045 (13)0.0074 (13)
Cl20.0217 (14)0.0330 (15)0.0287 (16)0.0017 (11)0.0019 (11)0.0050 (12)
Cl30.0344 (16)0.0359 (16)0.0365 (18)0.0042 (13)0.0012 (16)0.0048 (13)
Cl40.0229 (13)0.0343 (14)0.0290 (16)0.0017 (12)0.0025 (13)0.0036 (12)
Geometric parameters (Å, º) top
Zr1—Cl12.309 (3)Zr1—Cl2i2.661 (3)
Zr1—Cl32.316 (3)Zr1—Cl4ii2.662 (3)
Zr1—Cl22.499 (3)Cl2—Zr1ii2.661 (3)
Zr1—Cl42.503 (3)Cl4—Zr1i2.662 (3)
Cl1—Zr1—Cl3100.74 (11)Cl4—Zr1—Cl2i79.87 (9)
Cl1—Zr1—Cl294.15 (11)Cl1—Zr1—Cl4ii168.98 (12)
Cl3—Zr1—Cl298.37 (11)Cl3—Zr1—Cl4ii89.38 (12)
Cl1—Zr1—Cl498.49 (10)Cl2—Zr1—Cl4ii79.94 (9)
Cl3—Zr1—Cl493.52 (12)Cl4—Zr1—Cl4ii85.10 (9)
Cl2—Zr1—Cl4160.72 (10)Cl2i—Zr1—Cl4ii81.36 (8)
Cl1—Zr1—Cl2i88.99 (11)Zr1—Cl2—Zr1ii100.16 (11)
Cl3—Zr1—Cl2i169.01 (13)Zr1—Cl4—Zr1i100.02 (10)
Cl2—Zr1—Cl2i85.88 (9)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+1, z.
Zirconium tetrachloride (SMB_ZrCl4_b_250K) top
Crystal data top
Cl4ZrDx = 2.790 Mg m3
Mr = 233.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 1861 reflections
a = 6.253 (5) Åθ = 2.8–25.8°
b = 7.383 (6) ŵ = 3.74 mm1
c = 12.017 (9) ÅT = 250 K
V = 554.8 (7) Å3Rectangualr plate, translucent colourless
Z = 40.09 × 0.08 × 0.06 mm
F(000) = 432
Data collection top
Bruker D8 QUEST
diffractometer
934 independent reflections
Radiation source: sealed tube, Siemens KFFMo2K-90815 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.063
Detector resolution: 8.3333 pixels mm-1θmax = 24.7°, θmin = 4.3°
φ and ω scansh = 77
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.63, Tmax = 0.81l = 1414
5285 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0566P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.05Δρmax = 2.13 e Å3
934 reflectionsΔρmin = 0.48 e Å3
46 parametersAbsolute structure: Flack x determined using 351 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.01 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.42359 (16)0.33495 (13)0.50035 (17)0.0260 (4)
Cl20.0938 (5)0.3902 (4)0.3876 (2)0.0303 (8)
Cl30.2820 (5)0.1329 (4)0.6274 (3)0.0408 (9)
Cl10.5717 (6)0.1375 (5)0.3721 (3)0.0395 (9)
Cl40.7504 (5)0.3927 (4)0.6150 (2)0.0321 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0210 (5)0.0289 (6)0.0282 (6)0.0003 (5)0.0002 (6)0.0007 (7)
Cl20.0239 (16)0.0373 (17)0.0296 (18)0.0021 (13)0.0020 (13)0.0062 (14)
Cl30.0396 (19)0.0415 (18)0.041 (2)0.0060 (16)0.0054 (19)0.0064 (15)
Cl10.041 (2)0.0397 (19)0.038 (2)0.0059 (15)0.0033 (15)0.0104 (15)
Cl40.0263 (15)0.0374 (16)0.032 (2)0.0036 (14)0.0052 (15)0.0069 (14)
Geometric parameters (Å, º) top
Zr1—Cl32.311 (4)Zr1—Cl2i2.662 (4)
Zr1—Cl12.315 (4)Zr1—Cl4ii2.667 (3)
Zr1—Cl22.501 (4)Cl2—Zr1ii2.662 (4)
Zr1—Cl42.501 (4)Cl4—Zr1i2.667 (3)
Cl3—Zr1—Cl1100.76 (13)Cl4—Zr1—Cl2i79.85 (10)
Cl3—Zr1—Cl298.46 (13)Cl3—Zr1—Cl4ii89.41 (14)
Cl1—Zr1—Cl294.12 (13)Cl1—Zr1—Cl4ii168.86 (14)
Cl3—Zr1—Cl493.40 (14)Cl2—Zr1—Cl4ii79.76 (10)
Cl1—Zr1—Cl498.47 (12)Cl4—Zr1—Cl4ii85.33 (11)
Cl2—Zr1—Cl4160.79 (11)Cl2i—Zr1—Cl4ii81.41 (11)
Cl3—Zr1—Cl2i168.98 (14)Zr1—Cl2—Zr1ii100.26 (12)
Cl1—Zr1—Cl2i88.92 (14)Zr1—Cl4—Zr1i100.12 (12)
Cl2—Zr1—Cl2i85.96 (11)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+1, z.
Zirconium tetrachloride (SMB_ZrCl4_b_300K) top
Crystal data top
ZrCl4Dx = 2.773 Mg m3
Mr = 233.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 1130 reflections
a = 6.262 (9) Åθ = 2.8–24.5°
b = 7.402 (11) ŵ = 3.71 mm1
c = 12.039 (17) ÅT = 300 K
V = 558.0 (14) Å3Rectangular box, translucent colourless
Z = 40.09 × 0.08 × 0.06 mm
F(000) = 432
Data collection top
Bruker D8 QUEST
diffractometer
949 independent reflections
Radiation source: sealed tube, Siemens KFFMo2K-90737 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.093
Detector resolution: 8.3333 pixels mm-1θmax = 24.7°, θmin = 3.4°
φ and ω scansh = 77
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.55, Tmax = 0.81l = 1414
5334 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0788P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.02Δρmax = 2.59 e Å3
949 reflectionsΔρmin = 0.70 e Å3
46 parametersAbsolute structure: Flack x determined using 284 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.0 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.4239 (2)0.3354 (2)0.5000 (3)0.0356 (5)
Cl10.5702 (8)0.1380 (7)0.6280 (4)0.0515 (15)
Cl20.0942 (7)0.3905 (7)0.6127 (4)0.0391 (12)
Cl30.2829 (9)0.1339 (7)0.3731 (5)0.0536 (14)
Cl40.7504 (7)0.3930 (6)0.3853 (4)0.0407 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0273 (8)0.0381 (9)0.0413 (10)0.0009 (8)0.0001 (10)0.0002 (12)
Cl10.047 (3)0.054 (3)0.053 (4)0.006 (3)0.005 (3)0.011 (3)
Cl20.032 (3)0.046 (3)0.040 (3)0.004 (2)0.004 (2)0.007 (2)
Cl30.054 (3)0.050 (3)0.056 (3)0.006 (3)0.004 (3)0.009 (3)
Cl40.033 (2)0.046 (3)0.043 (3)0.004 (2)0.007 (2)0.007 (2)
Geometric parameters (Å, º) top
Zr1—Cl32.310 (6)Zr1—Cl2i2.664 (5)
Zr1—Cl12.313 (6)Zr1—Cl4ii2.670 (5)
Zr1—Cl42.504 (6)Cl2—Zr1ii2.664 (5)
Zr1—Cl22.504 (6)Cl4—Zr1i2.670 (5)
Cl3—Zr1—Cl1100.6 (2)Cl2—Zr1—Cl2i85.99 (17)
Cl3—Zr1—Cl493.3 (2)Cl3—Zr1—Cl4ii89.4 (2)
Cl1—Zr1—Cl498.73 (19)Cl1—Zr1—Cl4ii169.0 (2)
Cl3—Zr1—Cl298.5 (2)Cl4—Zr1—Cl4ii85.34 (17)
Cl1—Zr1—Cl293.9 (2)Cl2—Zr1—Cl4ii79.76 (16)
Cl4—Zr1—Cl2160.82 (17)Cl2i—Zr1—Cl4ii81.54 (17)
Cl3—Zr1—Cl2i169.0 (2)Zr1—Cl2—Zr1ii100.26 (19)
Cl1—Zr1—Cl2i89.0 (2)Zr1—Cl4—Zr1i100.08 (19)
Cl4—Zr1—Cl2i79.89 (16)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y+1, z.
Selected bond lengths (Å) in MCl4
M = Zr (present work), Hf (Niewa &amp; Jacobs, 1995), and Tc (Elder &amp; Penfold, 1966). Cl···Cl is the shortest distance between two chains.
top
ZrCl4HfCl4TcCl4
M···M13.9683.9213.62
Avg. M—Cl(bri1)2.6672.6262.492
AVg. M—Cl(bri2)2.5042.4772.382
Avg. M—Cl(ter)2.3122.2982.242
Cl···Cl3.6873.7433.56
Unit-cell parameters (Å), volume (Å3), and selected bond lengths (Å) and angles (°) in ZrCl4 obtained here and in Krebs (1970) top
Present workKrebs (1970)
Space groupPca21P2/c
Z42
T (K)300293
a (Å)6.262 (9)6.361 (4)
b (Å)7.402 (11)7.407 (4)
c (Å)12.039 (17)6.256 (4)
α/β/γ (°)90/90/9090/109.30 (4)/90
V3)558.0 (14)278.2
Avg. Zr1—Cl(ter)2.3122.307
Avg. Zr1– Cl(bri2)2.5042.498
Avg. Zr1—Cl(bri1)2.6672.655
Zr1···Zr1ii3.965 (1)3.962 (2)
Cl1—Zr1—Cl3100.6 (2)100.7 (1)
Cl1—Zr1—Cl498.73 (19)98.5 (1)
Cl2—Zr1—Cl398.5 (2)
Cl4—Zr1—Cl2ii79.89 (16)79.5 (1)
Cl4—Zr1ii—Cl2ii79.76 (16)
Cl2ii—Zr1—Cl4i81.54 (17)81.5 (1)
Cl2—Zr1—Cl4160.82 (17)160.7 (1)
Cl1—Zr1—Cl4i168.9 (2)168.9 (1)
Cl3—Zr1—Cl2ii168.9 (2)
Cl4—Zr1—Cl393.3 (2)93.8 (1)
Cl2—Zr1—Cl193.9 (2)
Symmetry operation: (i) x-1/2, -y+1, z; (ii) x+1/2, -y+1, z.
Selected bond lengths (Å) in ZrCl4 at 150, 200, 250, and 300 K top
300 K250 K200 K150 K100 K
Zr—Cl12.313 (6)2.315 (4)2.309 (3)2.314 (3)2.314 (3)
Zr1—Cl22.504 (6)2.501 (4)2.499 (3)2.497 (2)2.497 (3)
Zr1—Cl32.310 (6)2.311 (4)2.316 (3)2.313 (3)2.313 (3)
Zr1—Cl42.504 (6)2.501 (4)2.503 (3)2.501 (2)2.499 (2)
Zr1—Cl2ii2.664 (5)2.662 (4)2.661 (3)2.660 (3)2.659 (3)
Zr1—Cl4i2.670 (5)2.667 (3)2.662 (3)2.663 (2)2.659 (2)
Zr1 ···Zr1ii3.968 (5)3.964 (3)3.958 (1)3.957 (1)3.950 (1)
Avg. Zr1—Cl(ter)2.312[6]2.313[4]2.313[5]2.314[3]2.314[3]
Avg. Zr1—Cl(bri2)2.504[6]2.501[4]2.501[3]2.499[2]2.498[3]
avg. Zr1—Cl(bri1)2.667[5]2.665[4]2.662[3]2.662[3]2.659[3]
Cl1···Cl3*3.687 (9)3.679 (5)3.658 (5)3.647 (3)3.630 (3)
Symmetry codes: (i) x-1/2, -y+1, z; (ii) x+1/2, -y+1, z; (*) -x+1/2, y, z+1/2 (interchain distance).
Selected bond angles (°) in ZrCl4 at 150, 200, 250, and 300 K top
300 K250 K200 K150 K100 K
Cl1—Zr1—Cl3100.6 (2)100.76 (13)100.74 (11)100.76 (9)100.75 (9)
Cl1—Zr1—Cl498.73 (19)98.47 (12)98.49 (10)98.39 (9)98.34 (9)
Cl2ii—Zr1—Cl4i81.54 (17)81.41 (11)81.36 (8)81.27 (7)81.26 (7)
Cl2—Zr1—Cl398.5 (2)98.46 (13)98.37 (11)98.31 (9)98.17 (9)
Cl2—Zr1—Cl4160.82 (17)160.79 (11)160.72 (10)160.69 (9)160.75 (9)
Zr1—Cl4—Zr1ii100.08 (19)100.12 (12)100.02 (10)99.96 (9)99.90 (9)
Zr1—Cl2ii—Zr1ii100.26 (19)100.26 (12)100.16 (11)100.15 (9)99.96 (9)
Cl4—Zr1—Cl2ii79.89 (16)79.85 (10)79.87 (9)79.93 (7)80.05 (7)
Cl4—Zr1ii—Cl2ii79.76 (16)79.76 (10)79.94 (9)79.94 (7)80.08 (7)
Avg. Cl4—Zr1—Cl279.8[2]79.8[1]79.9[9]79.94[7]80.06[7]
Symmetry codes: (i) x-1/2, -y+1, z; (ii) x+1/2, -y+1, z.
Lattice parameters of ZrCl4 as measured at the given temperatures top
300 K250 K200 K150 K100 K
a (Å)6.262 (9)6.253 (5)6.2389 (8)6.2311 (8)6.2199 (9)
b (Å)7.402 (11)7.383 (6)7.3667 (10)7.3497 (10)7.3301 (10)
c (Å)12.039 (17)12.017 (9)11.9735 (16)11.9462 (15)11.9153 (16)
α = β = γ (°)9090909090
V3)558.0 (14)554.8 (7)550.30 (13)547.10 (12)543.25 (13)
Z44444
R factor5.33%3.82%3.76%3.34%3.45%

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds