Download citation
Download citation
link to html
Li–B–C alloys have attracted much inter­est because of their potential use in lithium-ion batteries and superconducting materials. The formation of the new compound LiBC3 [lithium boron tricarbide; own structure type, space group P\overline{6}m2, a = 2.5408 (3) Å and c = 7.5989 (9) Å] has been revealed and belongs to the graphite-like structure family. The crystal structure of LiBC3 presents hexa­gonal graphene carbon networks, lithium layers and heterographene B/C networks, alternating sequentially along the c axis. According to electronic structure calculations using the tight-binding linear muffin-tin orbital-atomic spheres approximations (TB–LMTO–ASA) method, strong covalent B—C and C—C inter­actions are established. The coordination polyhedra for the B and C atoms are trigonal prisms and for the Li atoms are hexa­gonal prisms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617015182/yo3041sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617015182/yo3041Isup2.hkl
Contains datablock I

CCDC reference: 1580572

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Lithium boron tricarbide top
Crystal data top
Li0.96BC3Dx = 2.091 Mg m3
Dm = 2.13 (3) Mg m3
Dm measured by volumetric
Mr = 53.50Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6m2Cell parameters from 77 reflections
a = 2.5408 (3) Åθ = 2.7–29.6°
c = 7.5989 (9) ŵ = 0.10 mm1
V = 42.48 (1) Å3T = 293 K
Z = 1Plate, metallic grey
F(000) = 25.90.08 × 0.06 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
73 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.110
ω scansθmax = 29.7°, θmin = 2.7°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
h = 33
Tmin = 0.993, Tmax = 0.998k = 33
1554 measured reflectionsl = 1010
77 independent reflections
Refinement top
Refinement on F211 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0041P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.23Δρmax = 0.15 e Å3
77 reflectionsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00000.00000.00000.0383 (19)
C20.33330.66670.50000.0350 (12)
C30.33330.66670.00000.0295 (11)
B10.00000.00000.50000.066 (4)
Li10.66670.33330.25000.083 (10)*0.49 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.037 (3)0.041 (3)0.0185 (13)0.0000.000
C20.0349 (18)0.0349 (18)0.035 (2)0.0174 (9)0.0000.000
C30.0282 (15)0.0282 (15)0.032 (2)0.0141 (7)0.0000.000
B10.066 (5)0.066 (5)0.068 (7)0.033 (3)0.0000.000
Geometric parameters (Å, º) top
C1—C3i1.4669 (2)C3—Li1vi2.4002 (2)
C1—C31.4669 (2)C3—Li1xii2.4002 (2)
C1—C3ii1.4669 (2)C3—Li1iv2.4002 (2)
C1—Li1iii2.4002 (2)C3—Li1v2.4002 (2)
C1—Li12.4002 (2)C3—Li12.4002 (2)
C1—Li1iv2.4002 (2)B1—C2i1.4669 (2)
C1—Li1v2.4002 (2)B1—C2ii1.4669 (2)
C1—Li1vi2.4002 (2)B1—Li1x2.4002 (2)
C1—Li1ii2.4002 (2)B1—Li1ii2.4002 (2)
C2—B1vii1.4669 (2)B1—Li1iv2.4002 (2)
C2—B1viii1.4669 (2)B1—Li1xi2.4002 (2)
C2—B11.4669 (2)B1—Li12.4002 (2)
C2—Li1ix2.4002 (2)B1—Li1xiii2.4002 (2)
C2—Li1iv2.4002 (2)Li1—C3i2.4002 (2)
C2—Li1vii2.4002 (2)Li1—C2xiv2.4002 (2)
C2—Li1x2.4002 (2)Li1—B1viii2.4002 (2)
C2—Li1xi2.4002 (2)Li1—B1xiv2.4002 (2)
C2—Li12.4002 (2)Li1—C1xiv2.4002 (2)
C3—C1vii1.4669 (2)Li1—C3xiv2.4002 (2)
C3—C1viii1.4669 (2)Li1—C2i2.4002 (2)
C3—Li1vii2.4002 (2)Li1—C1viii2.4002 (2)
C3i—C1—C3120.0Li1xii—C3—Li1144.413 (4)
C3i—C1—C3ii120.0Li1iv—C3—Li163.916 (8)
C3—C1—C3ii120.0Li1v—C3—Li1104.651 (9)
C3i—C1—Li1iii72.206 (2)C2i—B1—C2120.0
C3—C1—Li1iii127.675 (5)C2i—B1—C2ii120.0
C3ii—C1—Li1iii72.206 (2)C2—B1—C2ii120.0
C3i—C1—Li172.206 (2)C2i—B1—Li1x72.206 (2)
C3—C1—Li172.206 (2)C2—B1—Li1x72.206 (2)
C3ii—C1—Li1127.675 (5)C2ii—B1—Li1x127.675 (5)
Li1iii—C1—Li1144.413 (4)C2i—B1—Li1ii72.206 (2)
C3i—C1—Li1iv127.675 (5)C2—B1—Li1ii127.675 (5)
C3—C1—Li1iv72.206 (2)C2ii—B1—Li1ii72.206 (2)
C3ii—C1—Li1iv72.206 (2)Li1x—B1—Li1ii144.413 (4)
Li1iii—C1—Li1iv144.413 (4)C2i—B1—Li1iv127.675 (5)
Li1—C1—Li1iv63.916 (8)C2—B1—Li1iv72.206 (2)
C3i—C1—Li1v72.206 (2)C2ii—B1—Li1iv72.206 (2)
C3—C1—Li1v72.206 (2)Li1x—B1—Li1iv144.413 (4)
C3ii—C1—Li1v127.675 (5)Li1ii—B1—Li1iv63.916 (7)
Li1iii—C1—Li1v63.916 (7)C2i—B1—Li1xi127.675 (5)
Li1—C1—Li1v104.651 (9)C2—B1—Li1xi72.206 (2)
Li1iv—C1—Li1v144.413 (4)C2ii—B1—Li1xi72.206 (2)
C3i—C1—Li1vi127.675 (5)Li1x—B1—Li1xi63.916 (8)
C3—C1—Li1vi72.206 (2)Li1ii—B1—Li1xi144.413 (4)
C3ii—C1—Li1vi72.206 (2)Li1iv—B1—Li1xi104.651 (9)
Li1iii—C1—Li1vi63.916 (7)C2i—B1—Li172.206 (2)
Li1—C1—Li1vi144.413 (4)C2—B1—Li172.206 (2)
Li1iv—C1—Li1vi104.651 (9)C2ii—B1—Li1127.675 (5)
Li1v—C1—Li1vi63.916 (8)Li1x—B1—Li1104.651 (9)
C3i—C1—Li1ii72.206 (2)Li1ii—B1—Li163.916 (7)
C3—C1—Li1ii127.675 (5)Li1iv—B1—Li163.916 (8)
C3ii—C1—Li1ii72.206 (2)Li1xi—B1—Li1144.413 (4)
Li1iii—C1—Li1ii104.651 (9)C2i—B1—Li1xiii72.206 (2)
Li1—C1—Li1ii63.916 (7)C2—B1—Li1xiii127.675 (5)
Li1iv—C1—Li1ii63.916 (7)C2ii—B1—Li1xiii72.206 (2)
Li1v—C1—Li1ii144.413 (4)Li1x—B1—Li1xiii63.916 (8)
Li1vi—C1—Li1ii144.413 (4)Li1ii—B1—Li1xiii104.651 (9)
B1vii—C2—B1viii120.0Li1iv—B1—Li1xiii144.413 (4)
B1vii—C2—B1120.0Li1xi—B1—Li1xiii63.916 (8)
B1viii—C2—B1120.0Li1—B1—Li1xiii144.413 (4)
B1vii—C2—Li1ix72.206 (2)C3i—Li1—C2xiv144.413 (4)
B1viii—C2—Li1ix72.206 (2)C3i—Li1—B1viii180.0
B1—C2—Li1ix127.675 (5)C2xiv—Li1—B1viii35.587 (4)
B1vii—C2—Li1iv72.206 (2)C3i—Li1—C135.587 (4)
B1viii—C2—Li1iv127.675 (5)C2xiv—Li1—C1180.0
B1—C2—Li1iv72.206 (2)B1viii—Li1—C1144.413 (4)
Li1ix—C2—Li1iv144.413 (4)C3i—Li1—B1xiv116.084 (7)
B1vii—C2—Li1vii72.206 (2)C2xiv—Li1—B1xiv35.587 (4)
B1viii—C2—Li1vii72.206 (2)B1viii—Li1—B1xiv63.916 (7)
B1—C2—Li1vii127.675 (5)C1—Li1—B1xiv144.413 (4)
Li1ix—C2—Li1vii104.651 (9)C3i—Li1—C1xiv35.587 (4)
Li1iv—C2—Li1vii63.916 (7)C2xiv—Li1—C1xiv116.084 (8)
B1vii—C2—Li1x127.675 (5)B1viii—Li1—C1xiv144.413 (4)
B1viii—C2—Li1x72.206 (2)C1—Li1—C1xiv63.916 (8)
B1—C2—Li1x72.206 (2)B1xiv—Li1—C1xiv104.651 (9)
Li1ix—C2—Li1x63.916 (8)C3i—Li1—C3xiv63.916 (7)
Li1iv—C2—Li1x144.413 (4)C2xiv—Li1—C3xiv104.651 (9)
Li1vii—C2—Li1x144.413 (4)B1viii—Li1—C3xiv116.084 (7)
B1vii—C2—Li1xi72.206 (2)C1—Li1—C3xiv75.349 (9)
B1viii—C2—Li1xi127.675 (5)B1xiv—Li1—C3xiv116.084 (8)
B1—C2—Li1xi72.206 (2)C1xiv—Li1—C3xiv35.587 (4)
Li1ix—C2—Li1xi63.916 (8)C3i—Li1—C2i104.651 (9)
Li1iv—C2—Li1xi104.651 (9)C2xiv—Li1—C2i63.916 (7)
Li1vii—C2—Li1xi144.413 (4)B1viii—Li1—C2i75.349 (9)
Li1x—C2—Li1xi63.916 (8)C1—Li1—C2i116.084 (7)
B1vii—C2—Li1127.675 (5)B1xiv—Li1—C2i35.587 (4)
B1viii—C2—Li172.206 (2)C1xiv—Li1—C2i116.084 (8)
B1—C2—Li172.206 (2)C3xiv—Li1—C2i144.413 (4)
Li1ix—C2—Li1144.413 (4)C3i—Li1—C1viii75.349 (9)
Li1iv—C2—Li163.916 (8)C2xiv—Li1—C1viii116.084 (7)
Li1vii—C2—Li163.916 (7)B1viii—Li1—C1viii104.651 (9)
Li1x—C2—Li1104.651 (9)C1—Li1—C1viii63.916 (7)
Li1xi—C2—Li1144.413 (4)B1xiv—Li1—C1viii144.413 (4)
C1vii—C3—C1viii120.0C1xiv—Li1—C1viii63.916 (8)
C1vii—C3—C1120.0C3xiv—Li1—C1viii35.587 (4)
C1viii—C3—C1120.0C2i—Li1—C1viii180.0
C1vii—C3—Li1vii72.206 (2)C3i—Li1—B1116.084 (7)
C1viii—C3—Li1vii72.206 (2)C2xiv—Li1—B175.349 (9)
C1—C3—Li1vii127.675 (5)B1viii—Li1—B163.916 (7)
C1vii—C3—Li1vi72.206 (2)C1—Li1—B1104.651 (9)
C1viii—C3—Li1vi127.675 (5)B1xiv—Li1—B163.916 (8)
C1—C3—Li1vi72.206 (2)C1xiv—Li1—B1144.413 (4)
Li1vii—C3—Li1vi144.413 (4)C3xiv—Li1—B1180.0
C1vii—C3—Li1xii72.206 (2)C2i—Li1—B135.587 (4)
C1viii—C3—Li1xii72.206 (2)C1viii—Li1—B1144.413 (4)
C1—C3—Li1xii127.675 (5)C3i—Li1—C363.916 (8)
Li1vii—C3—Li1xii104.651 (9)C2xiv—Li1—C3144.413 (4)
Li1vi—C3—Li1xii63.916 (8)B1viii—Li1—C3116.084 (8)
C1vii—C3—Li1iv72.206 (2)C1—Li1—C335.587 (4)
C1viii—C3—Li1iv127.675 (5)B1xiv—Li1—C3180.0
C1—C3—Li1iv72.206 (2)C1xiv—Li1—C375.349 (9)
Li1vii—C3—Li1iv63.916 (7)C3xiv—Li1—C363.916 (8)
Li1vi—C3—Li1iv104.651 (9)C2i—Li1—C3144.413 (4)
Li1xii—C3—Li1iv144.413 (4)C1viii—Li1—C335.587 (4)
C1vii—C3—Li1v127.675 (5)B1—Li1—C3116.084 (8)
C1viii—C3—Li1v72.206 (2)C3i—Li1—C2144.413 (4)
C1—C3—Li1v72.206 (2)C2xiv—Li1—C263.916 (8)
Li1vii—C3—Li1v144.413 (4)B1viii—Li1—C235.587 (4)
Li1vi—C3—Li1v63.916 (8)C1—Li1—C2116.084 (8)
Li1xii—C3—Li1v63.916 (8)B1xiv—Li1—C275.349 (9)
Li1iv—C3—Li1v144.413 (4)C1xiv—Li1—C2180.0
C1vii—C3—Li1127.675 (5)C3xiv—Li1—C2144.413 (4)
C1viii—C3—Li172.206 (2)C2i—Li1—C263.916 (8)
C1—C3—Li172.206 (2)C1viii—Li1—C2116.084 (8)
Li1vii—C3—Li163.916 (8)B1—Li1—C235.587 (4)
Li1vi—C3—Li1144.413 (4)C3—Li1—C2104.651 (9)
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z; (iii) x+y, x, z; (iv) x1, y, z; (v) x+y+1, x+1, z; (vi) x+y, x+1, z; (vii) x, y+1, z; (viii) x+1, y+1, z; (ix) x+y+1, x+2, z+1; (x) x+y+1, x+1, z+1; (xi) x+y, x+1, z+1; (xii) x+y+1, x+2, z; (xiii) x+y, x, z+1; (xiv) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds