Download citation
Download citation
link to html
Metal complexes with Schiff base ligands have been suggested as potential phosphors in electroluminescent devices. In the title complex, tetra­kis­[6-methyl-2-({[(pyridin-2-yl)meth­yl]imino}­meth­yl)phenolato-1:2[kappa]8N,N',O:O;3:2[kappa]8N,N',O:O]trizinc(II) hexa­fluorido­phosphate methanol monosolvate, [Zn3(C14H13N2O)4](PF6)2·CH3OH, the ZnII cations adopt both six- and four-coordinate geometries involving the N and O atoms of tetra­dentate 6-methyl-2-({[(pyridin-2-yl)meth­yl]imino}­meth­yl)phenolate ligands. Two terminal ZnII cations adopt distorted octa­hedral geometries and the central ZnII cation adopts a distorted tetra­hedral geometry. The O atoms of the phenolate ligands bridge three ZnII cations, forming a dicationic trinuclear metal cluster. The title complex exhibits a strong emission at 469 nm with a quantum yield of 15.5%.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615017015/yo3013sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615017015/yo3013Isup2.hkl
Contains datablock I

CCDC reference: 1423651

Introduction top

Many Schiff bases containing aromatic rings exhibit fluorescence emission in the blue or blue–green regions at room temperature (Burlov et al., 2014; Satam et al., 2014), and their metal complexes enhance this fluorescence with high photoluminescent quantum yields (PLQYs) due to an increase in the rigidity of the fluorescent ligand (Li et al., 2004). Therefore, metal complexes with Schiff base ligands have been suggested as potential phosphors in electroluminescent devices, such as organic light-emitting devices (OLEDs) or light-emitting electrochemical cells (LECs) (Dumur et al. , 2014). To develop emitting materials, in particular, zinc complexes with Schiff bases have been synthesized and their luminescence properties studied (Das et al., 2013; Gracia-Santos et al., 2009). Recently, we reported neutral dinuclear ZnII complex with an N,N',O-coordinating Schiff base containing a 2-picolyl group, [Zn2L2(CH3COO)2]2, where L = 6-chloro-2-({(E)-[(pyridin-2-yl)methyl]­imino}­methyl)­phenolate, produced by the reaction of HL and zinc(II) acetate (Kim et al., 2013). The complex showed different geometries for the ZnII atoms and we suggested it as a potential candidate for the emitting material in blue OLEDs. LECs offer more advantages than multilayer OLEDs because LECs consist of a single layer, which can be easily produced from solution (Su et al., 2006). In the present report, the Schiff base molecule 6-methyl-2-({[(pyridin-2-yl)methyl]­imino}­methyl)­phenol (HL1) was prepared and its reaction with zinc(II) acetate yielded the ZnII precursor complex incorporating L1, which further reacted with NH4PF6 to yield a trinuclear cationic ZnII complex, viz. [Zn3(L1)4](PF6)2.CH3OH, (I). Luminescent cationic transition metal complexes can be used as chromo­phosphors in LECs since these cationic metal complexes are intrinsically ionic and no ion-conducting materials in needed in an emitting layer in LECs. The structural and photoluminescence properties of (1) were examined with regard to its being a potential candidate as a fluorescent chromo­phosphor in LECs.

Experimental top

UV–visible spectra were recorded on a Jasco V-570 spectrophotometer, and photoluminescence spectra were measured using a Hitachi F-4500 fluorescence spectrophotometer.

Synthesis and crystallization top

Preparation of 6-methyl-2-({[(pyridin-2-yl)methyl]­imino}­methyl)­phenol (HL1) top

2-Picolyl­amine (0.54 g, 5 mmol) was added to a solution of 2-hy­droxy-3-methyl­benzaldehyde (0.58 g, 5 mmol) in methanol (30 ml) and the resulting solution stirred at 298 K for 3 h. A brown oil was obtained after evaporation (yield 1.09 g, 96%).

Preparation of the title complex, (I) top

A methanol solution (30 ml) of Schiff base molecule HL1 (1.13 g, 5 mmol) was added to a methanol solution (10 ml) of zinc a­ctate (1.095 g, 5 mmol) and the resulting solution stirred at 298 K for 3 h. The brown powder which formed was filtered off and washed with hexane (yield 2.30 g, 66%). Ammonium hexafluoridophosphate (NH4PF6; 0.163 g, 1mmol) was added to a methanol solution (30 ml) of the obtained brown ZnII precursor complex (0.699 g, 1 mmol) and the resulting solution stirred for 3 h. The title trinuclear cluster, (I) was obtained as a white powder. The powder was filtered off and washed with hexane (yield 0.234 g, 17%). Colourless crystals of (I) suitable for X-ray analysis were obtained by recrystallization from a solution in chloro­form–hexane (1:1 v/v) at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 and O—H = 0.82 Å, and with 1.5Ueq(C,O) for methyl or hy­droxy atoms or 1.2Ueq(C) otherwise. The maximum and minimum residual electron-density peaks were located at 1.09 and 0.63 Å, respectively, from atoms Zn1 and F81.

Results and discussion top

The UV–Vis and photoluminescence (PL) spectra both of the Schiff base molecule 6-methyl-2-({[(pyridin-2-yl)methyl]­imino}­methyl)­phenol (HL1) and its trinuclear ZnII complex, (I), were investigated in di­methyl­formamide solution (ca 10-5 M) at room temperature. UV–Vis spectra revealed that there was a strong absorption at 266 nm, whereas complex (I) displayed a strong peak at 269 nm and a weaker absorption at 380 nm. The lower energy absorption at 380 nm was ascribed to a typical spin-allowed metal-to-ligand charge-transfer (MLCT) transition. The PL spectra indicate that the HL1 molecule has a luminescence emission at 356 nm with PLQYs of less than 1%, whereas complex (I) exhibits an emission in the blue region at 469 nm with 15.5% PLQYs. The PLQYs were calculated using 9,10-di­phenyl­anthracene (0.91) as a reference. The emission of complex (I) should probably be assigned to 1(ππ*) intra­ligand fluorescence (Wang et al., 2007). Compared to free molecule HL1, the emission peak of complex (I) was bathochromically shifted as [to? by?] 113 nm, which is inter­preted as the extended π-conjugation resulting in a decrease of the HOMO–LUMO (HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied molecular orbital) energy gap of the complex (Shyamal et al.,2014). It is worth noting that the quantum yield of complex (I) was enhanced up to 15.5% compared with that of free molecule HL1 (<1%). The enhanced luminescence efficiency in complex (I) is attributed to the coordination of the L1 ligands to the ZnII ions which increase the rigidity of the ligands resulting in decreased radiation-less decay of the intra­ligand exited state (Roy et al., 2015).

The structure of the salt (I) consists of one dicationic trinuclear metal cluster, two PF6- anions and one methanol solvent molecule in the lattice. The structural analysis of (I) (Fig. 1 and Table 2) shows that there are two different coordination geometries of the ZnII atoms in the metal cluster. The outer ZnII cations are each coordinated by four N atoms and two O atoms of two L1 ligands within a distorted o­cta­hedral geometry (Fig. 2). The Zn—N and Zn—O bond lengths (Table 2) are comparable with those of other Zn complexes (Kim et al., 2013; Yuan et al., 2012). The bond angles around the Zn1 and Zn3 atoms are in the ranges 77.7 (1)–101.7 (2) and 77.1 (2)–105.7 (2)°, respectively. The central Zn2 atom is coordinated by four O atoms of four L1 ligands, forming a distorted tetra­hedral geometry, and these O atoms bridge to the outer ZnII atoms to form the trinuclear metal cluster. The bond angles around the Zn2 atom (Table 2) deviate greatly from the ideal tetra­hedral value of 109.5 °; however, the Zn2—O bond lengths [1.944 (4)–1.966 (4) Å] are much shorter than those involving the outer ZnII atoms [Zn1/Zn3—O = 2.124 (4)–2.153 (4) Å]. The dihedral angle between O16/Zn2/O33 and O50/Zn2/O67 planes is 81.06 (14)°. There are no direct inter­actions between two ZnII metal atoms due to long separations of 3.083 (1) and 3.097 (1) Å. The crystal structure is stabilized by weak van der Waals inter­actions, which link the molecules into a three-dimensional network (Fig. 3). [Mention the hydrogen bonding detailled in Table 3?]

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environments atound the Zn atoms in a trinuclear metal cluster.
[Figure 3] Fig. 3. Part of the crystal structure of the title complex, (I), showing the three-dimensional network of molecules. H atoms have been omitted for clarity.
Tetrakis[6-methyl-2-({[(pyridin-2-yl)methyl]imino}methyl)phenolato-1:2κ8N,N',O:O;3:2κ8N,N',O:O]trizinc(II) hexafluoridophosphate methanol monosolvate top
Crystal data top
[Zn3(C14H13N2O)4](PF6)2·CH4OF(000) = 2888
Mr = 1419.14Dx = 1.578 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.460 (3) ÅCell parameters from 3870 reflections
b = 21.116 (4) Åθ = 2.3–19.9°
c = 19.607 (4) ŵ = 1.34 mm1
β = 94.00 (3)°T = 173 K
V = 5972 (2) Å3Block, colorless
Z = 40.13 × 0.11 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
14777 independent reflections
Radiation source: fine-focus sealed tube6278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.118
φ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1819
Tmin = 0.828, Tmax = 0.904k = 2728
58982 measured reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.0932P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
14777 reflectionsΔρmax = 1.24 e Å3
790 parametersΔρmin = 0.57 e Å3
Crystal data top
[Zn3(C14H13N2O)4](PF6)2·CH4OV = 5972 (2) Å3
Mr = 1419.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.460 (3) ŵ = 1.34 mm1
b = 21.116 (4) ÅT = 173 K
c = 19.607 (4) Å0.13 × 0.11 × 0.07 mm
β = 94.00 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
14777 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
6278 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.904Rint = 0.118
58982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.01Δρmax = 1.24 e Å3
14777 reflectionsΔρmin = 0.57 e Å3
790 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.79162 (5)0.71368 (3)0.36056 (3)0.03344 (19)
N10.8594 (4)0.7172 (2)0.2670 (2)0.0409 (13)
C20.9066 (5)0.6691 (3)0.2408 (3)0.0462 (17)
H20.91130.63130.26500.055*
C30.9480 (6)0.6731 (4)0.1807 (4)0.070 (2)
H30.97840.63860.16320.084*
C40.9431 (7)0.7297 (5)0.1470 (4)0.087 (3)
H40.97100.73410.10590.105*
C50.8968 (6)0.7809 (4)0.1733 (4)0.068 (2)
H50.89340.81970.15080.082*
C60.8552 (5)0.7719 (3)0.2354 (3)0.0441 (16)
C70.8027 (5)0.8256 (3)0.2662 (3)0.0514 (18)
H7A0.84130.86320.26910.062*
H7B0.74770.83520.23680.062*
N80.7755 (4)0.8088 (2)0.3348 (2)0.0383 (12)
C90.7697 (4)0.8531 (3)0.3785 (3)0.0459 (17)
H90.78010.89430.36420.055*
C100.7475 (4)0.8436 (3)0.4502 (3)0.0408 (15)
C110.7172 (4)0.7868 (3)0.4774 (3)0.0374 (15)
C120.7000 (4)0.7835 (3)0.5475 (3)0.0446 (16)
C130.7187 (5)0.8361 (4)0.5876 (4)0.060 (2)
H130.71130.83350.63430.072*
C140.7479 (5)0.8921 (4)0.5611 (4)0.067 (2)
H140.75700.92730.58940.080*
C150.7637 (5)0.8967 (3)0.4932 (4)0.059 (2)
H150.78500.93440.47560.071*
O160.7004 (3)0.73561 (18)0.43802 (18)0.0349 (9)
C170.6688 (5)0.7203 (3)0.5761 (3)0.0561 (19)
H17A0.61380.70620.55030.084*
H17B0.65600.72560.62310.084*
H17C0.71710.68950.57280.084*
N180.9189 (3)0.7242 (2)0.4238 (2)0.0366 (12)
C190.9728 (5)0.7759 (3)0.4317 (3)0.0486 (17)
H190.95480.81190.40690.058*
C201.0527 (4)0.7793 (3)0.4737 (3)0.0424 (16)
H201.08910.81570.47660.051*
C211.0759 (5)0.7256 (3)0.5114 (3)0.0498 (18)
H211.12790.72550.54210.060*
C221.0221 (5)0.6730 (3)0.5033 (3)0.0495 (18)
H221.03890.63660.52790.059*
C230.9438 (4)0.6722 (3)0.4596 (3)0.0366 (15)
C240.8856 (4)0.6143 (3)0.4497 (3)0.0401 (15)
H24A0.92520.57800.44330.048*
H24B0.85250.60690.49030.048*
N250.8189 (3)0.6207 (2)0.3904 (2)0.0365 (12)
C260.7952 (4)0.5727 (3)0.3540 (3)0.0420 (16)
H260.82620.53500.36480.050*
C270.7254 (4)0.5708 (3)0.2980 (3)0.0387 (15)
C280.6581 (4)0.6191 (3)0.2840 (3)0.0338 (14)
C290.5852 (4)0.6098 (3)0.2337 (3)0.0383 (15)
C300.5828 (5)0.5544 (3)0.1966 (3)0.0491 (18)
H300.53520.54850.16280.059*
C310.6483 (6)0.5070 (3)0.2076 (3)0.0545 (19)
H310.64460.47010.18170.065*
C320.7188 (5)0.5153 (3)0.2574 (3)0.0462 (17)
H320.76330.48370.26460.055*
O330.6623 (3)0.67419 (18)0.31933 (18)0.0346 (10)
C340.5140 (5)0.6611 (3)0.2214 (3)0.0531 (19)
H34A0.46370.64570.19140.080*
H34B0.54190.69700.20090.080*
H34C0.49080.67350.26420.080*
Zn20.58596 (5)0.70283 (3)0.39106 (3)0.03423 (19)
Zn30.37979 (5)0.71103 (3)0.42360 (3)0.0355 (2)
N350.3122 (3)0.6627 (2)0.5047 (2)0.0381 (12)
C360.2519 (4)0.6139 (3)0.4966 (3)0.0433 (16)
H360.23980.59680.45320.052*
C370.2082 (5)0.5889 (3)0.5499 (4)0.0507 (18)
H370.16830.55460.54280.061*
C380.2231 (5)0.6144 (3)0.6139 (4)0.0543 (19)
H380.19160.59890.65010.065*
C390.2852 (5)0.6631 (3)0.6237 (3)0.0487 (17)
H390.29730.68060.66690.058*
C400.3299 (4)0.6859 (3)0.5680 (3)0.0392 (15)
C410.4020 (5)0.7362 (3)0.5766 (3)0.0457 (17)
H41A0.37910.77000.60440.055*
H41B0.45690.71860.60090.055*
N420.4278 (3)0.7628 (2)0.5115 (2)0.0373 (12)
C430.4673 (4)0.8177 (3)0.5139 (3)0.0401 (15)
H430.47650.83660.55670.048*
C440.4990 (4)0.8527 (3)0.4556 (3)0.0364 (14)
C450.5049 (4)0.8253 (3)0.3902 (3)0.0336 (14)
C460.5371 (5)0.8629 (3)0.3380 (3)0.0455 (16)
C470.5639 (5)0.9250 (3)0.3506 (4)0.0513 (18)
H470.58510.94960.31550.062*
C480.5592 (5)0.9510 (3)0.4161 (4)0.0499 (18)
H480.57810.99250.42480.060*
C490.5266 (4)0.9146 (3)0.4670 (3)0.0445 (16)
H490.52300.93190.51030.053*
O500.4841 (3)0.76417 (18)0.37719 (19)0.0351 (9)
C510.5446 (6)0.8336 (3)0.2678 (3)0.059 (2)
H51A0.58100.79570.27210.089*
H51B0.57380.86320.23890.089*
H51C0.48370.82360.24800.089*
N520.2718 (3)0.7736 (2)0.3802 (3)0.0409 (13)
C530.2604 (5)0.8345 (3)0.3977 (4)0.0476 (17)
H530.29590.85120.43480.057*
C540.1962 (5)0.8734 (4)0.3610 (4)0.060 (2)
H540.19020.91570.37290.072*
C550.1417 (6)0.8480 (4)0.3068 (4)0.065 (2)
H550.09740.87280.28270.079*
C560.1538 (5)0.7856 (4)0.2892 (4)0.063 (2)
H560.11940.76800.25220.076*
C570.2188 (5)0.7491 (3)0.3280 (3)0.0444 (16)
C580.2323 (5)0.6803 (4)0.3123 (4)0.067 (2)
H58A0.17980.65650.32690.081*
H58B0.23380.67510.26320.081*
N590.3177 (4)0.6545 (3)0.3458 (3)0.0457 (14)
C600.3370 (5)0.5974 (3)0.3312 (3)0.0463 (17)
H600.29740.57740.29860.056*
C610.4145 (5)0.5607 (3)0.3603 (3)0.0437 (16)
C620.4864 (5)0.5839 (3)0.4052 (3)0.0397 (15)
C630.5581 (5)0.5435 (3)0.4317 (3)0.0425 (16)
C640.5545 (5)0.4795 (3)0.4124 (4)0.059 (2)
H640.60040.45190.42990.071*
C650.4842 (6)0.4568 (3)0.3680 (4)0.068 (2)
H650.48450.41440.35510.082*
C660.4143 (5)0.4951 (3)0.3425 (3)0.0547 (19)
H660.36660.47860.31350.066*
O670.4918 (3)0.64598 (18)0.42335 (19)0.0380 (10)
C680.6329 (5)0.5674 (3)0.4809 (4)0.0551 (19)
H68A0.66360.60240.46090.083*
H68B0.67680.53420.49160.083*
H68C0.60640.58110.52200.083*
P690.23276 (15)0.60244 (10)0.10196 (11)0.0597 (6)
F700.2366 (4)0.5326 (3)0.1279 (4)0.155 (3)
F710.2338 (4)0.6694 (2)0.0648 (4)0.121 (2)
F720.1475 (5)0.6126 (4)0.1376 (5)0.211 (4)
F730.3280 (5)0.5925 (3)0.0692 (4)0.158 (3)
F740.2923 (6)0.6305 (5)0.1620 (3)0.198 (4)
F750.1769 (7)0.5775 (4)0.0397 (3)0.204 (4)
P760.06957 (15)0.48600 (10)0.35167 (10)0.0575 (5)
F770.0108 (5)0.4809 (3)0.4135 (4)0.184 (4)
F780.1364 (4)0.4333 (3)0.3850 (3)0.127 (2)
F790.0009 (5)0.5335 (4)0.3191 (4)0.183 (4)
F800.1226 (5)0.4857 (4)0.2868 (3)0.146 (3)
F810.0150 (6)0.4296 (4)0.3190 (5)0.209 (4)
F820.1303 (8)0.5347 (4)0.3815 (5)0.252 (5)
O830.0362 (7)0.4363 (4)0.1470 (4)0.129 (3)
H830.04800.45960.17990.194*
C840.0020 (8)0.4727 (6)0.0906 (7)0.160 (6)
H84A0.04380.50180.10480.240*
H84B0.02560.44520.05580.240*
H84C0.05200.49570.07260.240*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0405 (4)0.0277 (4)0.0321 (4)0.0005 (3)0.0031 (3)0.0016 (3)
N10.047 (3)0.041 (3)0.036 (3)0.001 (3)0.006 (2)0.004 (3)
C20.050 (4)0.041 (4)0.049 (4)0.001 (3)0.017 (3)0.000 (3)
C30.089 (6)0.058 (5)0.069 (5)0.010 (4)0.041 (5)0.003 (4)
C40.108 (8)0.093 (7)0.067 (5)0.025 (6)0.049 (5)0.012 (5)
C50.105 (7)0.056 (5)0.046 (4)0.019 (5)0.022 (4)0.013 (4)
C60.052 (4)0.043 (4)0.036 (3)0.014 (3)0.001 (3)0.005 (3)
C70.071 (5)0.039 (4)0.044 (4)0.005 (4)0.004 (4)0.017 (3)
N80.051 (3)0.027 (3)0.037 (3)0.004 (2)0.002 (2)0.002 (2)
C90.053 (4)0.024 (3)0.060 (4)0.005 (3)0.004 (3)0.000 (3)
C100.040 (4)0.036 (4)0.045 (4)0.007 (3)0.001 (3)0.012 (3)
C110.039 (4)0.037 (4)0.036 (3)0.008 (3)0.004 (3)0.006 (3)
C120.042 (4)0.056 (5)0.036 (3)0.014 (3)0.002 (3)0.010 (3)
C130.067 (5)0.067 (6)0.045 (4)0.019 (4)0.000 (4)0.023 (4)
C140.072 (6)0.054 (5)0.073 (5)0.014 (4)0.010 (4)0.036 (4)
C150.061 (5)0.052 (5)0.062 (5)0.008 (4)0.005 (4)0.014 (4)
O160.038 (2)0.035 (2)0.032 (2)0.0026 (19)0.0024 (18)0.0092 (18)
C170.062 (5)0.067 (5)0.039 (4)0.007 (4)0.005 (3)0.005 (4)
N180.042 (3)0.031 (3)0.038 (3)0.003 (2)0.004 (2)0.002 (2)
C190.053 (5)0.047 (4)0.047 (4)0.000 (4)0.008 (3)0.002 (3)
C200.037 (4)0.047 (4)0.043 (4)0.012 (3)0.002 (3)0.001 (3)
C210.036 (4)0.060 (5)0.053 (4)0.002 (3)0.006 (3)0.010 (4)
C220.043 (4)0.048 (4)0.056 (4)0.009 (3)0.004 (4)0.003 (3)
C230.033 (4)0.040 (4)0.038 (3)0.005 (3)0.005 (3)0.002 (3)
C240.044 (4)0.035 (4)0.041 (3)0.002 (3)0.002 (3)0.007 (3)
N250.049 (3)0.027 (3)0.034 (3)0.001 (2)0.000 (2)0.001 (2)
C260.055 (4)0.023 (3)0.049 (4)0.003 (3)0.013 (3)0.002 (3)
C270.052 (4)0.030 (4)0.034 (3)0.005 (3)0.005 (3)0.003 (3)
C280.043 (4)0.029 (3)0.030 (3)0.008 (3)0.006 (3)0.001 (3)
C290.050 (4)0.037 (4)0.028 (3)0.008 (3)0.005 (3)0.002 (3)
C300.071 (5)0.043 (4)0.033 (3)0.019 (4)0.002 (3)0.002 (3)
C310.088 (6)0.032 (4)0.044 (4)0.009 (4)0.007 (4)0.011 (3)
C320.072 (5)0.022 (3)0.047 (4)0.000 (3)0.018 (4)0.000 (3)
O330.043 (3)0.032 (2)0.029 (2)0.0015 (19)0.0036 (18)0.0062 (18)
C340.066 (5)0.050 (5)0.042 (4)0.001 (4)0.011 (3)0.001 (3)
Zn20.0379 (4)0.0325 (4)0.0324 (3)0.0004 (3)0.0031 (3)0.0019 (3)
Zn30.0383 (4)0.0325 (4)0.0356 (4)0.0008 (3)0.0017 (3)0.0039 (3)
N350.041 (3)0.033 (3)0.041 (3)0.000 (2)0.005 (2)0.000 (2)
C360.041 (4)0.032 (4)0.057 (4)0.003 (3)0.004 (3)0.001 (3)
C370.046 (4)0.029 (4)0.077 (5)0.000 (3)0.006 (4)0.013 (4)
C380.057 (5)0.049 (5)0.058 (5)0.003 (4)0.013 (4)0.020 (4)
C390.055 (5)0.046 (4)0.047 (4)0.001 (3)0.012 (3)0.008 (3)
C400.043 (4)0.033 (4)0.042 (4)0.007 (3)0.003 (3)0.004 (3)
C410.063 (5)0.041 (4)0.033 (3)0.002 (3)0.004 (3)0.002 (3)
N420.041 (3)0.032 (3)0.039 (3)0.003 (2)0.004 (2)0.003 (2)
C430.044 (4)0.040 (4)0.036 (3)0.006 (3)0.003 (3)0.007 (3)
C440.039 (4)0.025 (3)0.045 (3)0.005 (3)0.004 (3)0.003 (3)
C450.036 (4)0.027 (3)0.039 (3)0.002 (3)0.004 (3)0.002 (3)
C460.056 (5)0.034 (4)0.045 (4)0.011 (3)0.003 (3)0.003 (3)
C470.057 (5)0.042 (4)0.056 (4)0.007 (3)0.006 (4)0.011 (3)
C480.055 (5)0.026 (4)0.068 (5)0.001 (3)0.004 (4)0.007 (3)
C490.047 (4)0.032 (4)0.054 (4)0.004 (3)0.003 (3)0.006 (3)
O500.041 (3)0.027 (2)0.037 (2)0.0044 (19)0.0024 (18)0.0030 (18)
C510.093 (6)0.051 (5)0.034 (4)0.007 (4)0.005 (4)0.005 (3)
N520.040 (3)0.041 (3)0.042 (3)0.001 (2)0.004 (2)0.003 (3)
C530.043 (4)0.045 (4)0.055 (4)0.003 (3)0.006 (3)0.004 (3)
C540.057 (5)0.058 (5)0.067 (5)0.014 (4)0.013 (4)0.016 (4)
C550.062 (6)0.064 (6)0.070 (5)0.017 (4)0.004 (4)0.025 (5)
C560.057 (5)0.079 (6)0.053 (4)0.008 (4)0.000 (4)0.011 (4)
C570.049 (4)0.046 (4)0.037 (3)0.002 (3)0.002 (3)0.005 (3)
C580.066 (6)0.058 (5)0.074 (5)0.009 (4)0.022 (4)0.016 (4)
N590.046 (4)0.042 (4)0.048 (3)0.000 (3)0.005 (3)0.002 (3)
C600.063 (5)0.034 (4)0.042 (4)0.010 (3)0.005 (3)0.003 (3)
C610.065 (5)0.030 (4)0.038 (3)0.005 (3)0.017 (3)0.003 (3)
C620.053 (4)0.032 (4)0.037 (3)0.001 (3)0.019 (3)0.001 (3)
C630.058 (5)0.029 (4)0.043 (4)0.003 (3)0.020 (3)0.000 (3)
C640.065 (5)0.045 (5)0.068 (5)0.017 (4)0.016 (4)0.004 (4)
C650.112 (7)0.027 (4)0.067 (5)0.010 (4)0.011 (5)0.018 (4)
C660.080 (6)0.040 (4)0.043 (4)0.002 (4)0.001 (4)0.013 (3)
O670.045 (3)0.029 (2)0.041 (2)0.0034 (19)0.009 (2)0.0007 (19)
C680.060 (5)0.042 (4)0.064 (5)0.005 (4)0.008 (4)0.017 (4)
P690.0568 (14)0.0609 (14)0.0607 (12)0.0013 (10)0.0005 (10)0.0025 (11)
F700.134 (5)0.115 (5)0.218 (7)0.007 (4)0.040 (5)0.100 (5)
F710.096 (4)0.069 (4)0.191 (6)0.001 (3)0.042 (4)0.029 (4)
F720.124 (6)0.200 (8)0.325 (11)0.007 (5)0.140 (7)0.099 (8)
F730.132 (6)0.096 (5)0.258 (9)0.021 (4)0.103 (6)0.057 (5)
F740.192 (8)0.318 (11)0.079 (4)0.126 (8)0.029 (5)0.003 (6)
F750.338 (11)0.154 (6)0.105 (5)0.157 (7)0.081 (6)0.025 (5)
P760.0661 (14)0.0483 (12)0.0595 (12)0.0011 (10)0.0135 (10)0.0038 (10)
F770.225 (8)0.160 (6)0.187 (7)0.108 (6)0.151 (6)0.104 (6)
F780.140 (5)0.135 (5)0.106 (4)0.059 (4)0.005 (4)0.021 (4)
F790.184 (7)0.193 (7)0.181 (7)0.135 (6)0.091 (6)0.120 (6)
F800.160 (6)0.191 (7)0.093 (4)0.053 (5)0.058 (4)0.017 (4)
F810.219 (9)0.138 (7)0.256 (10)0.059 (6)0.072 (8)0.027 (7)
F820.324 (13)0.175 (8)0.246 (10)0.154 (9)0.060 (9)0.064 (7)
O830.159 (7)0.118 (6)0.110 (6)0.024 (6)0.005 (6)0.004 (5)
C840.143 (11)0.157 (12)0.173 (13)0.053 (9)0.039 (10)0.103 (11)
Geometric parameters (Å, º) top
Zn1—N252.078 (5)N35—C401.342 (7)
Zn1—N82.080 (5)N35—C361.351 (8)
Zn1—O162.131 (4)C36—C371.365 (9)
Zn1—N12.141 (5)C36—H360.9300
Zn1—O332.153 (4)C37—C381.367 (9)
Zn1—N182.158 (5)C37—H370.9300
Zn1—Zn23.0826 (12)C38—C391.369 (9)
N1—C61.310 (7)C38—H380.9300
N1—C21.345 (8)C39—C401.394 (8)
C2—C31.362 (9)C39—H390.9300
C2—H20.9300C40—C411.490 (9)
C3—C41.365 (11)C41—N421.465 (7)
C3—H30.9300C41—H41A0.9700
C4—C51.390 (11)C41—H41B0.9700
C4—H40.9300N42—C431.291 (7)
C5—C61.407 (9)C43—C441.463 (8)
C5—H50.9300C43—H430.9300
C6—C71.514 (9)C44—C491.379 (8)
C7—N81.472 (7)C44—C451.414 (8)
C7—H7A0.9700C45—O501.346 (7)
C7—H7B0.9700C45—C461.401 (8)
N8—C91.275 (7)C46—C471.386 (9)
C9—C101.477 (9)C46—C511.519 (8)
C9—H90.9300C47—C481.402 (9)
C10—C111.397 (8)C47—H470.9300
C10—C151.413 (9)C48—C491.371 (8)
C11—O161.340 (7)C48—H480.9300
C11—C121.415 (8)C49—H490.9300
C12—C131.376 (9)C51—H51A0.9600
C12—C171.528 (9)C51—H51B0.9600
C13—C141.371 (10)C51—H51C0.9600
C13—H130.9300N52—C571.339 (8)
C14—C151.369 (10)N52—C531.344 (8)
C14—H140.9300C53—C541.400 (9)
C15—H150.9300C53—H530.9300
Zn2—O161.963 (4)C54—C551.385 (11)
C17—H17A0.9600C54—H540.9300
C17—H17B0.9600C55—C561.377 (10)
C17—H17C0.9600C55—H550.9300
N18—C231.339 (7)C56—C571.398 (9)
N18—C191.345 (8)C56—H560.9300
C19—C201.372 (9)C57—C581.501 (10)
C19—H190.9300C58—N591.464 (8)
C20—C211.382 (9)C58—H58A0.9700
C20—H200.9300C58—H58B0.9700
C21—C221.360 (9)N59—C601.273 (8)
C21—H210.9300C60—C611.447 (9)
C22—C231.371 (9)C60—H600.9300
C22—H220.9300C61—C621.402 (9)
C23—C241.489 (8)C61—C661.430 (9)
C24—N251.464 (7)C62—O671.359 (7)
C24—H24A0.9700C62—C631.414 (9)
C24—H24B0.9700C63—C641.402 (9)
N25—C261.273 (7)C63—C681.487 (9)
C26—C271.441 (9)C64—C651.378 (10)
C26—H260.9300C64—H640.9300
C27—C321.415 (8)C65—C661.361 (10)
C27—C281.424 (8)C65—H650.9300
C28—O331.354 (6)C66—H660.9300
C28—C291.405 (8)C68—H68A0.9600
C29—C301.377 (8)C68—H68B0.9600
C29—C341.503 (9)C68—H68C0.9600
C30—C311.384 (9)P69—F721.475 (6)
C30—H300.9300P69—F751.511 (6)
C31—C321.372 (10)P69—F741.528 (6)
C31—H310.9300P69—F701.560 (6)
C32—H320.9300P69—F731.573 (6)
Zn2—O331.944 (4)P69—F711.592 (6)
C34—H34A0.9600P76—F821.448 (6)
C34—H34B0.9600P76—F791.520 (6)
C34—H34C0.9600P76—F801.531 (5)
Zn2—O671.953 (4)P76—F771.532 (5)
Zn2—O501.966 (4)P76—F811.543 (7)
Zn2—Zn33.0967 (12)P76—F781.584 (6)
Zn3—N592.090 (5)O83—C841.407 (11)
Zn3—N422.117 (5)O83—H830.8200
Zn3—O672.124 (4)C84—H84A0.9600
Zn3—O502.134 (4)C84—H84B0.9600
Zn3—N522.173 (5)C84—H84C0.9600
Zn3—N352.178 (5)
N25—Zn1—N8175.0 (2)N42—Zn3—N3577.63 (19)
N25—Zn1—O1696.87 (17)O67—Zn3—N3594.59 (17)
N8—Zn1—O1684.17 (17)O50—Zn3—N35157.60 (17)
N25—Zn1—N1100.63 (19)N52—Zn3—N35102.94 (19)
N8—Zn1—N179.0 (2)N59—Zn3—Zn2100.88 (15)
O16—Zn1—N1161.17 (18)N42—Zn3—Zn286.06 (13)
N25—Zn1—O3383.27 (18)O67—Zn3—Zn238.56 (11)
N8—Zn1—O33101.73 (18)O50—Zn3—Zn238.96 (10)
O16—Zn1—O3377.71 (14)N52—Zn3—Zn2128.97 (13)
N1—Zn1—O3397.42 (17)N35—Zn3—Zn2127.74 (14)
N25—Zn1—N1878.33 (19)C40—N35—C36117.8 (5)
N8—Zn1—N1896.7 (2)C40—N35—Zn3116.0 (4)
O16—Zn1—N1896.50 (16)C36—N35—Zn3126.2 (4)
N1—Zn1—N1893.81 (19)N35—C36—C37122.3 (6)
O33—Zn1—N18159.93 (17)N35—C36—H36118.8
N25—Zn1—Zn292.41 (14)C37—C36—H36118.8
N8—Zn1—Zn291.47 (14)C36—C37—C38119.9 (7)
O16—Zn1—Zn239.14 (10)C36—C37—H37120.1
N1—Zn1—Zn2132.39 (14)C38—C37—H37120.1
O33—Zn1—Zn238.69 (10)C37—C38—C39119.0 (6)
N18—Zn1—Zn2133.75 (13)C37—C38—H38120.5
C6—N1—C2119.5 (5)C39—C38—H38120.5
C6—N1—Zn1115.2 (4)C38—C39—C40119.0 (7)
C2—N1—Zn1125.2 (4)C38—C39—H39120.5
N1—C2—C3123.3 (7)C40—C39—H39120.5
N1—C2—H2118.3N35—C40—C39122.0 (6)
C3—C2—H2118.3N35—C40—C41116.8 (5)
C2—C3—C4117.6 (7)C39—C40—C41121.2 (6)
C2—C3—H3121.2N42—C41—C40113.2 (5)
C4—C3—H3121.2N42—C41—H41A108.9
C3—C4—C5120.7 (7)C40—C41—H41A108.9
C3—C4—H4119.7N42—C41—H41B108.9
C5—C4—H4119.7C40—C41—H41B108.9
C4—C5—C6117.6 (7)H41A—C41—H41B107.8
C4—C5—H5121.2C43—N42—C41116.8 (5)
C6—C5—H5121.2C43—N42—Zn3127.7 (4)
N1—C6—C5121.3 (7)C41—N42—Zn3115.0 (4)
N1—C6—C7118.7 (5)N42—C43—C44126.0 (6)
C5—C6—C7120.0 (6)N42—C43—H43117.0
N8—C7—C6110.9 (5)C44—C43—H43117.0
N8—C7—H7A109.5C49—C44—C45120.0 (6)
C6—C7—H7A109.5C49—C44—C43117.0 (6)
N8—C7—H7B109.5C45—C44—C43122.9 (5)
C6—C7—H7B109.5O50—C45—C46119.1 (5)
H7A—C7—H7B108.0O50—C45—C44122.5 (5)
C9—N8—C7118.1 (5)C46—C45—C44118.4 (5)
C9—N8—Zn1123.9 (4)C47—C46—C45120.6 (6)
C7—N8—Zn1115.0 (4)C47—C46—C51120.7 (6)
N8—C9—C10124.6 (6)C45—C46—C51118.7 (6)
N8—C9—H9117.7C46—C47—C48120.2 (6)
C10—C9—H9117.7C46—C47—H47119.9
C11—C10—C15119.8 (6)C48—C47—H47119.9
C11—C10—C9125.1 (5)C49—C48—C47119.3 (6)
C15—C10—C9115.0 (6)C49—C48—H48120.3
O16—C11—C10121.4 (5)C47—C48—H48120.3
O16—C11—C12118.9 (6)C48—C49—C44121.5 (6)
C10—C11—C12119.6 (6)C48—C49—H49119.2
C13—C12—C11118.4 (7)C44—C49—H49119.2
C13—C12—C17123.1 (6)C45—O50—Zn2116.7 (3)
C11—C12—C17118.4 (6)C45—O50—Zn3125.4 (3)
C14—C13—C12122.2 (7)Zn2—O50—Zn398.02 (16)
C14—C13—H13118.9C46—C51—H51A109.5
C12—C13—H13118.9C46—C51—H51B109.5
C15—C14—C13120.4 (7)H51A—C51—H51B109.5
C15—C14—H14119.8C46—C51—H51C109.5
C13—C14—H14119.8H51A—C51—H51C109.5
C14—C15—C10119.6 (7)H51B—C51—H51C109.5
C14—C15—H15120.2C57—N52—C53119.4 (6)
C10—C15—H15120.2C57—N52—Zn3114.9 (4)
C11—O16—Zn2131.8 (4)C53—N52—Zn3125.4 (4)
C11—O16—Zn1119.4 (4)N52—C53—C54121.3 (7)
Zn2—O16—Zn197.62 (15)N52—C53—H53119.4
C12—C17—H17A109.5C54—C53—H53119.4
C12—C17—H17B109.5C55—C54—C53119.3 (7)
H17A—C17—H17B109.5C55—C54—H54120.4
C12—C17—H17C109.5C53—C54—H54120.4
H17A—C17—H17C109.5C56—C55—C54119.1 (7)
H17B—C17—H17C109.5C56—C55—H55120.5
C23—N18—C19118.3 (6)C54—C55—H55120.5
C23—N18—Zn1113.9 (4)C55—C56—C57118.9 (7)
C19—N18—Zn1127.9 (4)C55—C56—H56120.5
N18—C19—C20124.6 (6)C57—C56—H56120.5
N18—C19—H19117.7N52—C57—C56122.0 (7)
C20—C19—H19117.7N52—C57—C58117.1 (6)
C19—C20—C21116.1 (6)C56—C57—C58120.9 (7)
C19—C20—H20121.9N59—C58—C57112.7 (6)
C21—C20—H20121.9N59—C58—H58A109.0
C22—C21—C20119.5 (6)C57—C58—H58A109.0
C22—C21—H21120.2N59—C58—H58B109.0
C20—C21—H21120.2C57—C58—H58B109.0
C21—C22—C23121.6 (7)H58A—C58—H58B107.8
C21—C22—H22119.2C60—N59—C58116.3 (6)
C23—C22—H22119.2C60—N59—Zn3128.0 (5)
N18—C23—C22119.8 (6)C58—N59—Zn3114.9 (4)
N18—C23—C24118.4 (6)N59—C60—C61126.4 (6)
C22—C23—C24121.8 (6)N59—C60—H60116.8
N25—C24—C23111.3 (5)C61—C60—H60116.8
N25—C24—H24A109.4C62—C61—C66118.8 (7)
C23—C24—H24A109.4C62—C61—C60125.5 (6)
N25—C24—H24B109.4C66—C61—C60115.7 (6)
C23—C24—H24B109.4O67—C62—C61121.9 (6)
H24A—C24—H24B108.0O67—C62—C63117.3 (6)
C26—N25—C24120.5 (5)C61—C62—C63120.8 (6)
C26—N25—Zn1123.9 (4)C64—C63—C62118.0 (7)
C24—N25—Zn1114.4 (4)C64—C63—C68121.0 (6)
N25—C26—C27126.6 (6)C62—C63—C68120.9 (6)
N25—C26—H26116.7C65—C64—C63121.1 (7)
C27—C26—H26116.7C65—C64—H64119.4
C32—C27—C28117.8 (6)C63—C64—H64119.4
C32—C27—C26117.9 (6)C66—C65—C64121.5 (7)
C28—C27—C26124.1 (5)C66—C65—H65119.3
O33—C28—C29118.9 (5)C64—C65—H65119.3
O33—C28—C27120.8 (5)C65—C66—C61119.8 (7)
C29—C28—C27120.3 (5)C65—C66—H66120.1
C30—C29—C28118.6 (6)C61—C66—H66120.1
C30—C29—C34122.4 (6)C62—O67—Zn2122.4 (3)
C28—C29—C34118.9 (5)C62—O67—Zn3126.5 (4)
C29—C30—C31122.6 (7)Zn2—O67—Zn398.75 (17)
C29—C30—H30118.7C63—C68—H68A109.5
C31—C30—H30118.7C63—C68—H68B109.5
C32—C31—C30119.1 (6)H68A—C68—H68B109.5
C32—C31—H31120.5C63—C68—H68C109.5
C30—C31—H31120.5H68A—C68—H68C109.5
C31—C32—C27121.5 (6)H68B—C68—H68C109.5
C31—C32—H32119.3F72—P69—F7590.9 (6)
C27—C32—H32119.3F72—P69—F7491.3 (5)
C28—O33—Zn2129.1 (3)F75—P69—F74176.4 (4)
C28—O33—Zn1122.1 (4)F72—P69—F7089.7 (4)
Zn2—O33—Zn197.47 (16)F75—P69—F7086.5 (4)
C29—C34—H34A109.5F74—P69—F7096.3 (5)
C29—C34—H34B109.5F72—P69—F73175.7 (5)
H34A—C34—H34B109.5F75—P69—F7393.3 (5)
C29—C34—H34C109.5F74—P69—F7384.5 (5)
H34A—C34—H34C109.5F70—P69—F7389.7 (3)
H34B—C34—H34C109.5F72—P69—F7197.0 (5)
O33—Zn2—O67119.14 (16)F75—P69—F7187.9 (4)
O33—Zn2—O1686.94 (16)F74—P69—F7189.1 (4)
O67—Zn2—O16130.43 (16)F70—P69—F71171.2 (4)
O33—Zn2—O50124.23 (16)F73—P69—F7184.0 (3)
O67—Zn2—O5085.26 (16)F82—P76—F7993.4 (6)
O16—Zn2—O50115.57 (17)F82—P76—F8090.8 (5)
O33—Zn2—Zn143.84 (12)F79—P76—F8090.2 (4)
O67—Zn2—Zn1144.30 (12)F82—P76—F7794.9 (6)
O16—Zn2—Zn143.25 (11)F79—P76—F7789.8 (3)
O50—Zn2—Zn1130.38 (12)F80—P76—F77174.4 (5)
O33—Zn2—Zn3140.33 (12)F82—P76—F81173.5 (7)
O67—Zn2—Zn342.69 (11)F79—P76—F8192.0 (5)
O16—Zn2—Zn3132.53 (11)F80—P76—F8185.6 (5)
O50—Zn2—Zn343.02 (11)F77—P76—F8188.8 (5)
Zn1—Zn2—Zn3172.50 (3)F82—P76—F7889.9 (5)
N59—Zn3—N42171.5 (2)F79—P76—F78176.5 (5)
N59—Zn3—O6785.28 (19)F80—P76—F7890.8 (3)
N42—Zn3—O6797.42 (17)F77—P76—F7888.9 (3)
N59—Zn3—O50105.67 (18)F81—P76—F7884.8 (4)
N42—Zn3—O5082.80 (17)C84—O83—H83109.5
O67—Zn3—O5077.13 (15)O83—C84—H84A109.5
N59—Zn3—N5278.6 (2)O83—C84—H84B109.5
N42—Zn3—N52100.97 (19)H84A—C84—H84B109.5
O67—Zn3—N52156.86 (17)O83—C84—H84C109.5
O50—Zn3—N5291.31 (17)H84A—C84—H84C109.5
N59—Zn3—N3594.2 (2)H84B—C84—H84C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O83—H83···F800.822.353.112 (10)154
C36—H36···F820.932.433.230 (10)145
C41—H41A···F71i0.972.533.140 (9)121
C58—H58B···F740.972.403.302 (11)154
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn3(C14H13N2O)4](PF6)2·CH4O
Mr1419.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.460 (3), 21.116 (4), 19.607 (4)
β (°) 94.00 (3)
V3)5972 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.13 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.828, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
58982, 14777, 6278
Rint0.118
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.214, 1.01
No. of reflections14777
No. of parameters790
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 0.57

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Zn1—N252.078 (5)Zn2—O671.953 (4)
Zn1—N82.080 (5)Zn2—O501.966 (4)
Zn1—O162.131 (4)Zn2—Zn33.0967 (12)
Zn1—N12.141 (5)Zn3—N592.090 (5)
Zn1—O332.153 (4)Zn3—N422.117 (5)
Zn1—N182.158 (5)Zn3—O672.124 (4)
Zn1—Zn23.0826 (12)Zn3—O502.134 (4)
Zn2—O161.963 (4)Zn3—N522.173 (5)
Zn2—O331.944 (4)Zn3—N352.178 (5)
N25—Zn1—O1696.87 (17)O33—Zn2—O67119.14 (16)
N8—Zn1—O1684.17 (17)O33—Zn2—O1686.94 (16)
N25—Zn1—N1100.63 (19)O67—Zn2—O16130.43 (16)
N8—Zn1—N179.0 (2)O67—Zn2—O5085.26 (16)
N25—Zn1—O3383.27 (18)N59—Zn3—O50105.67 (18)
N8—Zn1—O33101.73 (18)O67—Zn3—O5077.13 (15)
O16—Zn1—O3377.71 (14)O50—Zn3—N5291.31 (17)
N1—Zn1—O3397.42 (17)O67—Zn3—N3594.59 (17)
N1—Zn1—N1893.81 (19)N52—Zn3—N35102.94 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O83—H83···F800.822.353.112 (10)154
C36—H36···F820.932.433.230 (10)145
C41—H41A···F71i0.972.533.140 (9)121
C58—H58B···F740.972.403.302 (11)154
Symmetry code: (i) x, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds