research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1,3-bis­­{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]ethen­yl}benzene

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 29 June 2021; accepted 12 July 2021; online 16 July 2021)

In the mol­ecule of the title compound, C22H14Cl4N4, the central benzene ring makes dihedral angles of 77.03 (9) and 81.42 (9)° with the two approximately planar 2,2-di­chloro-1-[(E)-phenyl­diazen­yl]vinyl groups. In the crystal, mol­ecules are linked by C—H⋯π, C—Cl⋯π, Cl⋯Cl and Cl⋯H inter­actions, forming a three-dimensional network. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (30.4%), C⋯H/H⋯C (20.4%), Cl⋯H/H⋯Cl (19.4%), Cl⋯Cl (7.8%) and Cl⋯C/C⋯Cl (7.3%) inter­actions.

1. Chemical context

Azodyes and related hydrazones are of inter­est for synthetic organic chemistry, coordination chemistry, medicinal and material chemistry because of their important physical and biological properties (Mahmoudi et al., 2016[Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.], 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.],c[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763-4772.], 2018a[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812-2821.],b[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959-4971.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]). For this reason, diverse new synthetic procedures have been developed for their efficient and versatile synthesis (Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018a[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190-194.],b[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130-136.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]). Moreover, azo/hydrazone ligands can also be used as starting materials in the synthesis of coordination and supra­molecular compounds (Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.]; Sutradhar et al., 2015[Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959-3969.], 2016[Sutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079-8088.]), and as building blocks in the construction of 1D, 2D or 3D networks owing to their non-covalent bond-donating and acceptor capabilities (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.]; Kopylovich et al., 2011a[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175-180.],b[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248-7250.]; Asgarova et al., 2019[Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342-347.]). In fact, inclusion of suitable substituents to azo/hydrazone ligands can improve their functional properties and the catalytic or biological activity of the corresponding coordination compounds (Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]; Gurbanov et al., 2020b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Karmakar et al., 2017[Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649-8657.]; Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.], 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Mac Leod et al., 2012[Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]; Maharramov et al., 2019[Maharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441-4447.]; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032-5038.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). Thus, the attachment of halogen-containing substituents to azo/hydrazone compounds can improve their functional properties via inter­molecular halogen bonding. In order to continue our work in this perspective, we have synthesized a new halogen­ated bis-azo ligand, 1,3-bis­{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]ethen­yl}benzene, which is able to provide multiple inter­molecular non-covalent inter­actions.

[Scheme 1]

2. Structural commentary

The mol­ecule of the title compound consists of three nearly planar fragments: the central benzene ring and the two attached 2,2-di­chloro-1-[(E)-phenyl­diazen­yl]vinyl groups, Cl1–C8 and Cl3–C22 (Fig. 1[link]), the largest deviations from the least-squares planes of these side groups being 0.060 (1) and 0.083 (3) Å for Cl2 and C18, respectively. These groups are nearly perpendicular to the central benzene ring, subtending dihedral angles of 77.03 (9) and 81.42 (9)°, respectively, with this ring. All bond dimensions within the mol­ecule are typical of such type of compounds (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 30% probability ellipsoids.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯π (Table 1[link]) and C—Cl⋯π inter­actions [C15—Cl4⋯Cg3ii; Cl4⋯Cg3ii = 3.9572 (15); C15⋯Cg3ii = 4.381 (3) Å; C15—Cl4⋯Cg3ii = 92.60 (10)°; symmetry code: (ii) 2 − x, 1 − y, 1 − z] involving the terminal C17–C22 phenyl ring (Cg3). Besides this, there are the Cl⋯Cl and Cl⋯H contacts, which contribute to a three-dimensional network (Table 2[link], Figs. 2[link] and 3[link]).

Table 1
C—H⋯π inter­actions (Å, °)

Cg3 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12ACg3i 0.93 2.72 3.610 (3) 162
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Inter­molecular contacts (Å) in the title structure

Contact Distance Symmetry operation
Cl4⋯Cg3 1.709 (2) 2 − x, 1 − y, 1 − z
Cl1⋯Cl4 3.4325 (12) 2 − x, −[{1\over 2}] + y, [{1\over 2}] − z
Cl3⋯Cl2 3.5171 (13) 2 − x, 1 − y, −z
H14A⋯C7 2.97 x, [{1\over 2}] − y, −[{1\over 2}] + z
Cl3⋯H20A 3.10 x, y, − 1 + z
H13A⋯C4 2.95 1 − x, 1 − y, −z
H7A⋯H4A 2.43 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
H12A⋯C21 2.92 x, [{3\over 2}] − y, −[{1\over 2}] + z
H8A⋯H7A 2.54 1 − x, −y, −z
[Figure 2]
Figure 2
A fragment of the mol­ecular packing showing the C—H⋯π and C—Cl⋯π inter­actions.
[Figure 3]
Figure 3
A fragment of the mol­ecular packing showing the Cl⋯Cl and Cl—H inter­actions.

4. Hirshfeld surface analysis

The Hirshfeld surfaces and two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). Hirshfeld surfaces show inter­molecular inter­actions by different hues and intensities to denote short and long contacts, as well as the intensity of the connections. In Fig. 4[link], the 3D Hirshfeld surface of the title mol­ecule is mapped over dnorm in the range −0.0453 to 1.4337 a.u. The red patches surrounding Cl1, Cl2, Cl3 and Cl4 are caused by the Cl1⋯Cl4, Cl3⋯Cl2 and Cl3⋯H20A inter­actions, which play a vital role in the mol­ecular packing of the title compound, and highlight their functions as donors and/or acceptors; they also appear as blue and red regions on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) corresponding to positive and negative potentials, as shown in Fig. 5[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.0453 to 1.4337 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title complex plotted over electrostatic potential energy in the range −0.1379 to 0.1988 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are viewed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

In Fig. 6[link], the overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, Cl⋯Cl and Cl⋯C/C⋯Cl contacts, as well as their relative contributions to the Hirshfeld surface, are shown, while Table 2[link] provides data on the distinct inter­molecular contacts. The percentage contributions to the Hirshfeld surfaces from various inter­atomic contacts are: H⋯H (30.4%; Fig. 6[link]b), C⋯H/H⋯C (20.4%; Fig. 6[link]c), Cl⋯H/H⋯Cl (19.4%; Fig. 6[link]d), Cl⋯Cl (7.8%; Fig. 6[link]e) and Cl⋯C/C⋯Cl (7.3%; Fig. 6[link]f). Other Cl⋯N/N⋯Cl, N⋯H/H⋯N, C⋯C, N⋯C/C⋯N and N⋯N contacts account for less than 5.9% of Hirshfeld surface mapping and have minimal directional impact on mol­ecular packing (Table 3[link]).

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 30.4
C⋯H/H⋯C 20.4
Cl⋯H/H⋯Cl 19.4
Cl⋯Cl 7.8
Cl⋯C/C⋯Cl 7.3
Cl⋯N/N⋯Cl 5.9
N⋯H/H⋯N 5.6
C⋯C 1.8
N⋯C/C⋯N 1.2
N⋯N 0.2
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Cl⋯H/H⋯Cl, (e) Cl⋯Cl and (f) Cl⋯C/C⋯Cl inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of Cambridge Crystallographic Database (CSD, version 5.41, update of August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed a closely related compound, meso-(E,E)-1,10-[1,2-bis­(4-chloro­phen­yl)ethane-1,2-di­yl]bis­(phenyl­diazene), for which triclinic (refcode PAGCEI; Mohamed et al., 2016[Mohamed, S. K., Younes, S. H. H., Abdel-Raheem, E. M. M., Horton, P. N., Akkurt, M. & Glidewell, C. (2016). Acta Cryst. C72, 57-62.]) and monoclinic (PAGCEI01; Mohamed et al., 2016[Mohamed, S. K., Younes, S. H. H., Abdel-Raheem, E. M. M., Horton, P. N., Akkurt, M. & Glidewell, C. (2016). Acta Cryst. C72, 57-62.]) polymorphs are known. In both polymorphs, the mol­ecules lie on inversion centres, but in PAGCEI01, the mol­ecules are subject to whole-mol­ecule disorder equivalent to configurational disorder with occupancies of 0.6021 (19) and 0.3979 (19). There are no hydrogen bonds in the crystal structure of PAGCEI, whereas the mol­ecules of PAGCEI01 are linked by C—H⋯π(arene) hydrogen bonds into complex chains, which are further linked into sheets by C— H⋯N inter­actions.

6. Synthesis and crystallization

This bis-azo dye was synthesized according to a reported method (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). A 20 mL screw neck vial was charged with DMSO (10 mL), 1,3-bis­[(E)-(2-phenyl­hydrazineyl­idene)meth­yl]benzene (628 mg, 2 mmol), tetra­methylethyl­enedi­amine (TMEDA) (581 mg, 5 mmol), CuCl (3 mg, 0.03 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of a di­chloro­methane solution. Orange solid (50%); mp 402 K. Analysis calculated for C22H14Cl4N4 (M = 476.18): C 55.49, H 2.96, N 11.77; found: C 55.45, H 2.94, N 11.70%. 1H NMR (300 MHz, CDCl3) δ 6.58–8.02 (14H, Ar). 13C NMR (75MHz, CDCl3) δ 121.8, 122.15, 124.83, 126.28, 127.32, 128.04, 128.95, 130.09, 133.12, 139.07. ESI–MS: m/z: 477.32 [M + H]+.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq (C). Owing to poor agreement between observed and calculated intensities, six outliers ([\overline{2}] 16 2, [\overline{14}] 1 12, [\overline{12}] 1 13, 8 14 1, [\overline{11}] 2 13 and [\overline{3}] 16 1) were omitted in the final cycles of refinement.

Table 4
Experimental details

Crystal data
Chemical formula C22H14Cl4N4
Mr 476.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 16.0289 (10), 13.1213 (8), 11.1286 (7)
β (°) 108.073 (2)
V3) 2225.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.44 × 0.26 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.621, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 24362, 4399, 3193
Rint 0.044
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 1.01
No. of reflections 4399
No. of parameters 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-[2,2-Dichloro-1-(3-{2,2-dichloro-1-[(E)-2-phenyldiazen-1-yl]ethenyl}phenyl)ethenyl](phenyl)diazene top
Crystal data top
C22H14Cl4N4F(000) = 968
Mr = 476.17Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.0289 (10) ÅCell parameters from 6439 reflections
b = 13.1213 (8) Åθ = 2.5–26.4°
c = 11.1286 (7) ŵ = 0.55 mm1
β = 108.073 (2)°T = 296 K
V = 2225.1 (2) Å3Prism, colourless
Z = 40.44 × 0.26 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3193 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 2.1°
Tmin = 0.621, Tmax = 0.745h = 2020
24362 measured reflectionsk = 1616
4399 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0456P)2 + 1.0697P]
where P = (Fo2 + 2Fc2)/3
4399 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74226 (5)0.14141 (5)0.10025 (7)0.0592 (2)
Cl20.81687 (6)0.33515 (7)0.12359 (8)0.0777 (3)
Cl30.97228 (5)0.57996 (7)0.11006 (7)0.0736 (3)
Cl41.05825 (5)0.63410 (7)0.36813 (8)0.0762 (3)
N10.65092 (13)0.24501 (16)0.05084 (19)0.0467 (5)
N20.60887 (13)0.28678 (16)0.11510 (19)0.0488 (5)
N30.88872 (14)0.60214 (16)0.40656 (19)0.0469 (5)
N40.81623 (14)0.58883 (16)0.42594 (18)0.0468 (5)
C10.74926 (16)0.2676 (2)0.0611 (2)0.0472 (6)
C20.70658 (15)0.31073 (19)0.0111 (2)0.0435 (6)
C30.55342 (16)0.2175 (2)0.1536 (2)0.0480 (6)
C40.5054 (2)0.2569 (3)0.2249 (3)0.0698 (8)
H4A0.5106090.3256480.2463990.084*
C50.4494 (2)0.1959 (3)0.2652 (3)0.0830 (10)
H5A0.4172870.2237000.3139820.100*
C60.44075 (19)0.0957 (3)0.2343 (3)0.0721 (9)
H6A0.4022680.0548890.2605810.086*
C70.4887 (2)0.0553 (3)0.1645 (3)0.0730 (9)
H7A0.4830590.0135320.1437360.088*
C80.5458 (2)0.1151 (2)0.1240 (3)0.0641 (8)
H8A0.5788320.0864710.0771190.077*
C90.71822 (15)0.41985 (18)0.0494 (2)0.0419 (5)
C100.79331 (15)0.45017 (18)0.1441 (2)0.0409 (5)
H10A0.8354380.4019420.1834880.049*
C110.80614 (15)0.55110 (18)0.1805 (2)0.0386 (5)
C120.74374 (16)0.62289 (19)0.1206 (2)0.0465 (6)
H12A0.7519240.6911010.1440180.056*
C130.66925 (17)0.5928 (2)0.0259 (2)0.0545 (7)
H13A0.6274490.6411100.0143030.065*
C140.65639 (16)0.4924 (2)0.0093 (2)0.0510 (6)
H14A0.6059270.4729710.0729440.061*
C150.96300 (16)0.5965 (2)0.2578 (2)0.0498 (6)
C160.88676 (15)0.58312 (18)0.2816 (2)0.0418 (5)
C170.82000 (18)0.60524 (19)0.5545 (2)0.0477 (6)
C180.89313 (19)0.6384 (2)0.6491 (2)0.0571 (7)
H18A0.9446370.6538560.6311480.068*
C190.8890 (2)0.6485 (2)0.7705 (3)0.0670 (8)
H19A0.9380990.6708420.8345840.080*
C200.8130 (3)0.6258 (2)0.7979 (3)0.0717 (9)
H20A0.8108940.6321150.8801820.086*
C210.7409 (2)0.5940 (2)0.7040 (3)0.0699 (8)
H21A0.6894960.5786860.7223870.084*
C220.74340 (19)0.5843 (2)0.5820 (3)0.0589 (7)
H22A0.6935550.5636660.5181310.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0678 (4)0.0510 (4)0.0588 (4)0.0018 (3)0.0197 (3)0.0113 (3)
Cl20.0910 (6)0.0744 (5)0.0899 (6)0.0174 (4)0.0603 (5)0.0081 (4)
Cl30.0575 (4)0.1103 (7)0.0610 (5)0.0054 (4)0.0302 (3)0.0060 (4)
Cl40.0446 (4)0.0956 (6)0.0776 (5)0.0107 (4)0.0032 (3)0.0124 (4)
N10.0497 (11)0.0487 (13)0.0435 (12)0.0082 (10)0.0171 (10)0.0042 (10)
N20.0497 (12)0.0525 (13)0.0460 (12)0.0077 (10)0.0173 (10)0.0055 (10)
N30.0532 (12)0.0440 (12)0.0414 (11)0.0046 (10)0.0115 (10)0.0043 (9)
N40.0557 (12)0.0452 (12)0.0397 (11)0.0045 (10)0.0148 (10)0.0026 (9)
C10.0491 (14)0.0484 (15)0.0438 (14)0.0029 (12)0.0141 (11)0.0023 (11)
C20.0440 (13)0.0460 (14)0.0384 (13)0.0071 (11)0.0095 (10)0.0037 (11)
C30.0451 (13)0.0547 (16)0.0432 (14)0.0065 (12)0.0122 (11)0.0016 (12)
C40.0744 (19)0.065 (2)0.082 (2)0.0045 (16)0.0424 (18)0.0088 (16)
C50.074 (2)0.099 (3)0.095 (3)0.006 (2)0.053 (2)0.004 (2)
C60.0568 (17)0.093 (3)0.067 (2)0.0182 (17)0.0208 (15)0.0087 (18)
C70.090 (2)0.062 (2)0.071 (2)0.0208 (17)0.0303 (18)0.0000 (16)
C80.0746 (19)0.0585 (19)0.0672 (19)0.0088 (15)0.0335 (16)0.0058 (15)
C90.0448 (12)0.0448 (14)0.0382 (12)0.0062 (11)0.0159 (10)0.0036 (11)
C100.0415 (12)0.0418 (14)0.0399 (13)0.0003 (10)0.0136 (10)0.0027 (10)
C110.0426 (12)0.0414 (14)0.0342 (12)0.0043 (10)0.0155 (10)0.0009 (10)
C120.0528 (14)0.0410 (14)0.0471 (14)0.0010 (11)0.0177 (12)0.0023 (11)
C130.0525 (15)0.0534 (17)0.0523 (16)0.0110 (13)0.0085 (12)0.0036 (13)
C140.0461 (13)0.0591 (17)0.0422 (14)0.0033 (12)0.0056 (11)0.0045 (12)
C150.0432 (13)0.0541 (16)0.0499 (15)0.0022 (12)0.0111 (11)0.0041 (12)
C160.0454 (13)0.0371 (13)0.0419 (13)0.0019 (10)0.0117 (10)0.0017 (10)
C170.0658 (16)0.0389 (14)0.0384 (13)0.0005 (12)0.0160 (12)0.0020 (11)
C180.0664 (17)0.0538 (17)0.0474 (15)0.0019 (14)0.0125 (13)0.0034 (13)
C190.090 (2)0.0604 (19)0.0432 (16)0.0001 (17)0.0098 (15)0.0027 (13)
C200.112 (3)0.062 (2)0.0460 (17)0.0052 (18)0.0309 (18)0.0006 (14)
C210.089 (2)0.071 (2)0.0593 (19)0.0048 (18)0.0366 (17)0.0004 (16)
C220.0701 (18)0.0583 (18)0.0514 (16)0.0084 (14)0.0233 (14)0.0052 (13)
Geometric parameters (Å, º) top
Cl1—C11.707 (3)C9—C141.383 (3)
Cl2—C11.706 (3)C9—C101.389 (3)
Cl3—C151.710 (3)C10—C111.381 (3)
Cl4—C151.709 (2)C10—H10A0.9300
N1—N21.251 (3)C11—C121.385 (3)
N1—C21.407 (3)C11—C161.487 (3)
N2—C31.427 (3)C12—C131.383 (3)
N3—N41.258 (3)C12—H12A0.9300
N3—C161.404 (3)C13—C141.372 (4)
N4—C171.430 (3)C13—H13A0.9300
C1—C21.333 (3)C14—H14A0.9300
C2—C91.489 (3)C15—C161.340 (3)
C3—C41.367 (4)C17—C181.381 (4)
C3—C81.380 (4)C17—C221.382 (4)
C4—C51.378 (4)C18—C191.380 (4)
C4—H4A0.9300C18—H18A0.9300
C5—C61.356 (5)C19—C201.378 (4)
C5—H5A0.9300C19—H19A0.9300
C6—C71.358 (4)C20—C211.361 (4)
C6—H6A0.9300C20—H20A0.9300
C7—C81.383 (4)C21—C221.376 (4)
C7—H7A0.9300C21—H21A0.9300
C8—H8A0.9300C22—H22A0.9300
N2—N1—C2114.7 (2)C10—C11—C16120.5 (2)
N1—N2—C3112.9 (2)C12—C11—C16120.0 (2)
N4—N3—C16114.0 (2)C13—C12—C11119.8 (2)
N3—N4—C17113.3 (2)C13—C12—H12A120.1
C2—C1—Cl2122.4 (2)C11—C12—H12A120.1
C2—C1—Cl1124.1 (2)C14—C13—C12120.6 (2)
Cl2—C1—Cl1113.55 (15)C14—C13—H13A119.7
C1—C2—N1115.1 (2)C12—C13—H13A119.7
C1—C2—C9122.6 (2)C13—C14—C9120.2 (2)
N1—C2—C9122.3 (2)C13—C14—H14A119.9
C4—C3—C8118.9 (3)C9—C14—H14A119.9
C4—C3—N2116.6 (3)C16—C15—Cl4124.2 (2)
C8—C3—N2124.5 (2)C16—C15—Cl3122.0 (2)
C3—C4—C5120.7 (3)Cl4—C15—Cl3113.76 (15)
C3—C4—H4A119.7C15—C16—N3115.6 (2)
C5—C4—H4A119.7C15—C16—C11121.3 (2)
C6—C5—C4120.4 (3)N3—C16—C11123.2 (2)
C6—C5—H5A119.8C18—C17—C22119.7 (3)
C4—C5—H5A119.8C18—C17—N4125.0 (3)
C5—C6—C7119.5 (3)C22—C17—N4115.3 (2)
C5—C6—H6A120.2C19—C18—C17119.3 (3)
C7—C6—H6A120.2C19—C18—H18A120.3
C6—C7—C8121.0 (3)C17—C18—H18A120.3
C6—C7—H7A119.5C20—C19—C18120.7 (3)
C8—C7—H7A119.5C20—C19—H19A119.7
C3—C8—C7119.5 (3)C18—C19—H19A119.7
C3—C8—H8A120.2C21—C20—C19119.7 (3)
C7—C8—H8A120.2C21—C20—H20A120.2
C14—C9—C10119.1 (2)C19—C20—H20A120.2
C14—C9—C2121.2 (2)C20—C21—C22120.5 (3)
C10—C9—C2119.6 (2)C20—C21—H21A119.7
C11—C10—C9120.8 (2)C22—C21—H21A119.7
C11—C10—H10A119.6C21—C22—C17120.0 (3)
C9—C10—H10A119.6C21—C22—H22A120.0
C10—C11—C12119.4 (2)C17—C22—H22A120.0
C2—N1—N2—C3179.88 (19)C16—C11—C12—C13179.5 (2)
C16—N3—N4—C17178.1 (2)C11—C12—C13—C140.1 (4)
Cl1—C1—C2—N12.4 (3)C12—C13—C14—C90.2 (4)
Cl2—C1—C2—C93.6 (3)C10—C9—C14—C130.1 (4)
Cl1—C1—C2—C9176.39 (18)C2—C9—C14—C13178.8 (2)
N2—N1—C2—C1177.7 (2)Cl4—C15—C16—N30.0 (3)
N2—N1—C2—C93.5 (3)Cl3—C15—C16—N3178.32 (18)
N1—N2—C3—C4179.7 (2)Cl4—C15—C16—C11179.46 (19)
N1—N2—C3—C80.1 (4)Cl3—C15—C16—C111.2 (4)
C8—C3—C4—C50.9 (5)N4—N3—C16—C15179.9 (2)
N2—C3—C4—C5179.3 (3)N4—N3—C16—C110.6 (3)
C3—C4—C5—C60.3 (5)C10—C11—C16—C1579.5 (3)
C4—C5—C6—C70.9 (5)C12—C11—C16—C1599.6 (3)
C5—C6—C7—C80.4 (5)C10—C11—C16—N3101.1 (3)
C4—C3—C8—C71.4 (4)C12—C11—C16—N379.9 (3)
N2—C3—C8—C7178.8 (3)N3—N4—C17—C183.8 (4)
C6—C7—C8—C30.7 (5)N3—N4—C17—C22175.5 (2)
C1—C2—C9—C14102.4 (3)C22—C17—C18—C191.1 (4)
N1—C2—C9—C1479.0 (3)N4—C17—C18—C19178.1 (2)
C1—C2—C9—C1076.3 (3)C17—C18—C19—C200.0 (4)
N1—C2—C9—C10102.4 (3)C18—C19—C20—C210.6 (5)
C14—C9—C10—C110.6 (3)C19—C20—C21—C220.1 (5)
C2—C9—C10—C11179.3 (2)C20—C21—C22—C171.1 (5)
C9—C10—C11—C120.8 (3)C18—C17—C22—C211.7 (4)
C9—C10—C11—C16179.8 (2)N4—C17—C22—C21177.6 (3)
C10—C11—C12—C130.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg3i0.932.723.610 (3)162
Symmetry code: (i) x, y+3/2, z1/2.
Intermolecular contacts (Å) in the title structure top
ContactDistanceSymmetry operation
Cl4···Cg31.709 (2)2 - x, 1 - y, 1 - z
Cl1···Cl43.4325 (12)2 - x, -1/2 + y, 1/2 - z
Cl3···Cl23.5171 (13)2 - x, 1 - y, -z
H14A···C72.97x, 1/2 - y, -1/2 + z
Cl3···H20A3.10x, y, - 1 + z
H13A···C42.951 - x, 1 - y, -z
H7A···H4A2.431 - x, -1/2 + y, 1/2 - z
H12A···C212.92x, 3/2 - y, -1/2 + z
H8A···H7A2.541 - x, -y, -z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H30.4
C···H/H···C20.4
Cl···H/H···Cl19.4
Cl···Cl7.8
Cl···C/C···Cl7.3
Cl···N/N···Cl5.9
N···H/H···N5.6
C···C1.8
N···C/C···N1.2
N···N0.2
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, NQS, MA, and AB; synthesis, NQA and NEA; X-ray analysis, RKA; writing, NQS, ZA, MA and AB; funding acquisition, NQS, NEA and RKA; supervision, NQS, MA and AB.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAsgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). Acta Cryst. C75, 342–347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Duruskari, G. S., Mammadova, G. Z., Khalilov, A. N., Aslanova, J. M., Cisterna, J., Cárdenas, A. & Brito, I. (2019). J. Chil. Chem. Soc. 64, 4441–4447.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017c). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationMohamed, S. K., Younes, S. H. H., Abdel-Raheem, E. M. M., Horton, P. N., Akkurt, M. & Glidewell, C. (2016). Acta Cryst. C72, 57–62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutradhar, M., Alegria, E. C. B. A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). RSC Adv. 6, 8079–8088.  Web of Science CSD CrossRef CAS Google Scholar
First citationSutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969.  Web of Science CSD CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds