research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mol­ecular and crystal structure, optical properties and DFT studies of 1,4-dimeth­­oxy-2,5-bis­­[2-(4-nitro­phen­yl)ethen­yl]benzene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA, bDepartment of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, 92617, USA, and cSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
*Correspondence e-mail: bogdgv@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 13 May 2020; accepted 19 May 2020; online 29 May 2020)

The title compound DBNB, C24H20N2O6, has been crystallized and studied by X-ray diffraction, spectroscopic and computational methods. In the title mol­ecule, which is based on a 1,4-distyryl-2,5-di­meth­oxy­benzene core with p-nitro-substituted terminal benzene rings, the dihedral angle between mean planes of the central fragment and the terminal phenyl ring is 16.46 (6)°. The crystal packing is stabilized by ππ inter­actions. DFT calculations at the B3LYP/6–311 G(d,p) level of theory were used to compare the optimized structures with the experimental data. Energy parameters, including HOMO and LUMO energies, their difference, and vertical excitation and emission energies were obtained.

1. Chemical context

One method for the design of the organic two-photon absorbing (TPA) mol­ecules is Donor–π-Bridge–Acceptor–π-Bridge–Donor or Acceptor–π-bridge–Donor–π-bridge–Acceptor (He et al., 2008[He, G. S., Tan, L.-S., Zheng, Q. & Prasad, P. N. (2008). Chem. Rev. 108, 1245-1330.]). Specific spectroscopic properties of such mol­ecules make them useful for applications in different areas. For instance, about half a century ago it was found that the title compound and other substituted distyryl­benzenes would be highly efficient wavelength shifters in organic liquid scintillators (Nakaya et al., 1966[Nakaya, T. & Imoto, M. (1966). Bull. Chem. Soc. Jpn, 39, 1547-1551.]). It is important to mention that some mol­ecules with such general structure possess not only plasminogen activator (tPA) activity but also demonstrate light emission, which make them useful for organic light-emitting diodes (OLEDs) (Cárdenas et al., 2019[Cárdenas, J. C., Aguirre-Díaz, L. M., Galindo, J. F., Alí-Torres, J., Ochoa-Puentes, C., Echeverri, M., Gómez-Lor, B., Monge, M. Á., Gutiérrez-Puebla, E. & Sierra, C. A. (2019). Cryst. Growth Des. 19, 3913-3922.]) and/or chemical sensors (Xu et al., 2013[Xu, Z., Liao, Q., Shi, X., Li, H., Zhang, H. & Fu, H. (2013). J. Mater. Chem. B, 1, 6035-6041.]). For instance, for a mol­ecule similar to the title mol­ecule, 1,4-dimeth­oxy-2,5-bis­(4′-di­chloro­styr­yl)benzene, blue fluorescence emission was found, which makes it a prospective candidate for cell imaging. Another phenyl­eneethenylene derivative, 2,5-dimeth­oxy-1,4-bis­[2-(4-carboxyl­atestyr­yl)]benzene, for which two polymorphs and one DMF solvate have been studied, demonstrated three different types of emission, depending on the mol­ecular packing in the crystal (Cárdenas et al., 2019[Cárdenas, J. C., Aguirre-Díaz, L. M., Galindo, J. F., Alí-Torres, J., Ochoa-Puentes, C., Echeverri, M., Gómez-Lor, B., Monge, M. Á., Gutiérrez-Puebla, E. & Sierra, C. A. (2019). Cryst. Growth Des. 19, 3913-3922.]). On this basis, we considered that an investigation of the mol­ecular structure and crystal packing of the title compound would be useful for correlating its structural characteristics to its spectroscopic properties.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of DBDB is presented in Fig. 1[link]. The mol­ecule lies on an inversion center and shows a slight deviation from planarity. The dihedral angle formed by mean planes of the central fragment and the terminal benzene ring is 16.46 (6)°. The meth­oxy group is rotated by 3.77 (11)° and the nitro group by 15.99 (8)° with respect to the central ring and the terminal benzene ring, respectively. In a similar compound with para-chlorine substitution, the angles between the central and terminal aromatic rings are 43.82 and 67.38° (Xu et al., 2013[Xu, Z., Liao, Q., Shi, X., Li, H., Zhang, H. & Fu, H. (2013). J. Mater. Chem. B, 1, 6035-6041.]), whereas in closely related structures these angles vary from 11.97 to 35.75° (Cárdenas et al., 2019[Cárdenas, J. C., Aguirre-Díaz, L. M., Galindo, J. F., Alí-Torres, J., Ochoa-Puentes, C., Echeverri, M., Gómez-Lor, B., Monge, M. Á., Gutiérrez-Puebla, E. & Sierra, C. A. (2019). Cryst. Growth Des. 19, 3913-3922.]), demonstrating the flexibility of this type of mol­ecule, even in the solid state.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the DBDB mol­ecules are packed into ladder-like stacks (Fig. 2[link]) along the a-axis direction, which in turn build a parquet-like structure (Fig. 3[link]). An inter­molecular distance of 3.451 (1) Å is found between the mean planes of the central rings in the mol­ecular stacks, with a separation between the centroids of the central ring and the terminal benzene ring of 3.899 (1) Å, which suggests the presence of ππ inter­actions between the mol­ecules.

[Figure 2]
Figure 2
Ladder-like stack of DBDB mol­ecules; the distance between the mean planes of the central phenyl rings within the stack is 3.451 (1) Å.
[Figure 3]
Figure 3
The packing in the crystal of the title compound.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title mol­ecule returned no results. Two entries for compounds with the same core and unsubstituted terminal rings were found. Over 30 entries were found for variously substituted mol­ecules with the same core, of which 10 entries correspond to para-substituted terminal aromatic groups. Among them halogen-substituted mol­ecules [refcodes: VIQCAB (Xu et al., 2013[Xu, Z., Liao, Q., Shi, X., Li, H., Zhang, H. & Fu, H. (2013). J. Mater. Chem. B, 1, 6035-6041.]), ODOHOG (Sun et al., 2013[Sun, C.-L., Li, J., Geng, H.-W., Li, H., Ai, Y., Wang, Q., Pan, S.-L. & Zhang, H.-L. (2013). Chem. Asian J. 8, 3091-3100.]), ODOJAU (Sun et al., 2013[Sun, C.-L., Li, J., Geng, H.-W., Li, H., Ai, Y., Wang, Q., Pan, S.-L. & Zhang, H.-L. (2013). Chem. Asian J. 8, 3091-3100.])], as well as mol­ecules with cyano (OBUHAV; Xu et al., 2013[Xu, Z., Liao, Q., Shi, X., Li, H., Zhang, H. & Fu, H. (2013). J. Mater. Chem. B, 1, 6035-6041.]), carboxyl (TOJDEE, TOJDII; Cárdenas et al., 2019[Cárdenas, J. C., Aguirre-Díaz, L. M., Galindo, J. F., Alí-Torres, J., Ochoa-Puentes, C., Echeverri, M., Gómez-Lor, B., Monge, M. Á., Gutiérrez-Puebla, E. & Sierra, C. A. (2019). Cryst. Growth Des. 19, 3913-3922.]) and alkyl­carboxyl­ate (TOJCUT; Cárdenas et al., 2019[Cárdenas, J. C., Aguirre-Díaz, L. M., Galindo, J. F., Alí-Torres, J., Ochoa-Puentes, C., Echeverri, M., Gómez-Lor, B., Monge, M. Á., Gutiérrez-Puebla, E. & Sierra, C. A. (2019). Cryst. Growth Des. 19, 3913-3922.]) groups in the para-position have been reported. Most of the mol­ecules demonstrate dihedral angles between the central fragment and the terminal rings ranging from 5.0 (1) to 36.1 (1)°. One notable exception is the chlorine-substituted compound (VIQCAB; Xu et al., 2013[Xu, Z., Liao, Q., Shi, X., Li, H., Zhang, H. & Fu, H. (2013). J. Mater. Chem. B, 1, 6035-6041.]), for which the angles between central and the terminal aromatic rings are 43.82 (16) and 67.38 (17)°.

5. Optical studies in solution

A solution of the title compound in dioxane (at 10 mM concentration) in a quartz sample cuvette (10 mm optical path length) was used for optical absorption and emission studies. All measurements were carried out at ambient temperature. The corresponding spectra are shown in Fig. 4[link]. Peak positions, as well as band shapes are in good agreement with those previously reported (Nakaya et al., 1966[Nakaya, T. & Imoto, M. (1966). Bull. Chem. Soc. Jpn, 39, 1547-1551.]). Fluorescence was measured at the excitation wavelength of 434 nm, chosen from the absorption spectrum, and had a maximum at 525 nm. The E0–0 transition energy was estimated to be at 483 nm (2.57 eV).

[Figure 4]
Figure 4
Normalized absorption (black) and emission (red) spectra of the title compound measured in dioxane solution.

6. DFT calculations

In an effort to further elucidate the nature of the electronic radiative transitions in the title compound, DFT and time-dependent (TD) DFT calculations were carried out with GAUSSIAN 16 software (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN16. Revision C. 01 Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.com.]). The standard B3LYP functional with the 6-311G(d,p) basis set was used to optimize both the ground and first excited states of the title mol­ecule and to obtain vertical excitation and emission energies, HOMO (EHOMO) and LUMO (ELUMO) energies and their difference (Fig. 5[link]). All of the calculated parameters are for the gas phase of the title compound. Both optimized geometries were confirmed to be the true minima via vibrational frequency analysis. The summary of calculated energy parameters is presented in Table 1[link]. The calculated geometry parameters (bond lengths and angles) are in good agreement with the experimental data (Table 2[link]).

Table 1
Selected energy parameters (gas phase)

Total Energy (eV) −40479.535
EHOMO (eV) −5.813
ELUMO (eV) −3.096
HOMO–LUMO gap (eV) 2.717
S0–S1 vertical excitation (nm) 497.44
S1–S0 vertical emission (nm) 546.03

Table 2
Selected X-ray and DFT ground-state geometry parameter (Å, °) comparison

Bonds/angles Experimental Calculated
O1—C1 1.3663 (14) 1.3652
O1—C12 1.4248 (15) 1.4207
O2—N1 1.2321 (16) 1.2253
N1—C9 1.4665 (16) 1.4723
     
C5—C4—C3 127.07 (11) 126.76
C4—C5—C6 125.13 (11) 126.38
C1—O1—C12 117.68 (9) 119.05
C8—C9—N1 118.92 (11) 119.26
[Figure 5]
Figure 5
HOMO and LUMO orbitals with corresponding energy values and gap.

7. Synthesis and crystallization

The synthesis of title compound was carried out as described in the literature (Nakaya et al., 1966[Nakaya, T. & Imoto, M. (1966). Bull. Chem. Soc. Jpn, 39, 1547-1551.]; Caruso et al., 2005[Caruso, U., Casalboni, M., Fort, A., Fusco, M., Panunzi, B., Quatela, A., Roviello, A. & Sarcinelli, F. (2005). Opt. Mater. 27, 1800-1810.]). The obtained material was recrystallized by slow evaporation of ethanol solution giving dark-red block-shaped crystals.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions (0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula C24H20N2O6
Mr 432.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.9074 (10), 12.4794 (16), 10.6248 (14)
β (°) 102.394 (3)
V3) 1024.0 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.22 × 0.15 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.653, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32090, 3460, 2542
Rint 0.055
(sin θ/λ)max−1) 0.738
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.145, 1.04
No. of reflections 3460
No. of parameters 146
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.21
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2017/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Mercury (Macrae et al., 2020).

1,4-Dimethoxy-2,5-bis[2-(4-nitrophenyl)ethenyl]benzene top
Crystal data top
C24H20N2O6F(000) = 452
Mr = 432.42Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9074 (10) ÅCell parameters from 6481 reflections
b = 12.4794 (16) Åθ = 2.6–31.3°
c = 10.6248 (14) ŵ = 0.10 mm1
β = 102.394 (3)°T = 100 K
V = 1024.0 (2) Å3Block, red
Z = 20.22 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2542 reflections with I > 2σ(I)
φ and ω scansRint = 0.055
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 31.7°, θmin = 2.6°
Tmin = 0.653, Tmax = 0.746h = 1111
32090 measured reflectionsk = 1818
3460 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.3749P]
where P = (Fo2 + 2Fc2)/3
3460 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.12432 (11)0.50902 (7)0.27624 (8)0.0223 (2)
O20.13219 (13)0.91355 (10)0.42105 (12)0.0423 (3)
O30.08612 (15)0.85312 (11)0.61675 (12)0.0453 (3)
N10.04597 (14)0.86252 (10)0.51181 (12)0.0301 (3)
C11.05803 (14)0.50680 (9)0.38485 (11)0.0176 (2)
C20.90285 (14)0.55533 (9)0.39523 (11)0.0185 (2)
H20.8369440.5928010.3233660.022*
C30.84235 (14)0.54988 (9)0.50948 (11)0.0178 (2)
C100.18811 (15)0.73214 (10)0.58176 (12)0.0215 (2)
H100.1376550.7131540.6521370.026*
C40.67887 (14)0.59782 (10)0.52387 (11)0.0202 (2)
H40.6407010.5803520.6002630.024*
C60.41503 (15)0.71106 (10)0.46101 (11)0.0196 (2)
C110.33818 (15)0.68241 (9)0.56370 (11)0.0198 (2)
H110.3898520.6279750.6219090.024*
C90.11358 (14)0.81049 (10)0.49411 (12)0.0217 (2)
C50.57748 (16)0.66340 (10)0.44141 (12)0.0225 (2)
H50.6130110.6806850.3639230.027*
C80.18426 (16)0.84114 (11)0.39171 (12)0.0249 (3)
H80.1314010.8954510.3337750.030*
C70.33514 (17)0.79047 (11)0.37539 (12)0.0252 (3)
H70.3847490.8101520.3048350.030*
C121.03435 (16)0.57061 (12)0.16982 (12)0.0269 (3)
H12A1.0979950.5683370.1002340.040*
H12B1.0250260.6450170.1970310.040*
H12C0.9181530.5408340.1389920.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (4)0.0287 (5)0.0177 (4)0.0069 (3)0.0058 (3)0.0033 (3)
O20.0253 (5)0.0519 (7)0.0485 (7)0.0170 (5)0.0054 (5)0.0069 (5)
O30.0363 (6)0.0580 (8)0.0491 (7)0.0163 (5)0.0260 (5)0.0067 (6)
N10.0192 (5)0.0331 (6)0.0387 (6)0.0057 (4)0.0082 (4)0.0013 (5)
C10.0175 (5)0.0183 (5)0.0172 (5)0.0007 (4)0.0040 (4)0.0014 (4)
C20.0168 (5)0.0200 (5)0.0180 (5)0.0027 (4)0.0018 (4)0.0010 (4)
C30.0152 (5)0.0181 (5)0.0198 (5)0.0018 (4)0.0029 (4)0.0014 (4)
C100.0191 (5)0.0228 (6)0.0237 (5)0.0025 (4)0.0071 (4)0.0014 (4)
C40.0180 (5)0.0234 (5)0.0195 (5)0.0026 (4)0.0049 (4)0.0007 (4)
C60.0167 (5)0.0211 (5)0.0206 (5)0.0023 (4)0.0033 (4)0.0012 (4)
C110.0180 (5)0.0199 (5)0.0212 (5)0.0000 (4)0.0034 (4)0.0003 (4)
C90.0148 (5)0.0246 (6)0.0257 (6)0.0028 (4)0.0045 (4)0.0043 (4)
C50.0211 (5)0.0250 (6)0.0235 (6)0.0059 (4)0.0092 (4)0.0036 (4)
C80.0227 (6)0.0284 (6)0.0235 (6)0.0083 (5)0.0044 (4)0.0030 (5)
C70.0247 (6)0.0301 (6)0.0225 (6)0.0085 (5)0.0091 (5)0.0052 (5)
C120.0212 (5)0.0388 (7)0.0211 (6)0.0048 (5)0.0055 (4)0.0086 (5)
Geometric parameters (Å, º) top
O1—C11.3663 (14)C4—C51.3337 (16)
O1—C121.4248 (15)C6—C111.4043 (16)
O2—N11.2321 (16)C6—C51.4704 (16)
O3—N11.2287 (16)C6—C71.4007 (17)
N1—C91.4665 (16)C11—H110.9500
C1—C21.3938 (15)C9—C81.3796 (18)
C1—C3i1.4148 (16)C5—H50.9500
C2—H20.9500C8—H80.9500
C2—C31.3986 (16)C8—C71.3936 (17)
C3—C41.4619 (15)C7—H70.9500
C10—H100.9500C12—H12A0.9800
C10—C111.3885 (16)C12—H12B0.9800
C10—C91.3910 (17)C12—H12C0.9800
C4—H40.9500
C1—O1—C12117.68 (9)C10—C11—C6121.25 (11)
O2—N1—C9118.37 (12)C10—C11—H11119.4
O3—N1—O2123.52 (12)C6—C11—H11119.4
O3—N1—C9118.11 (11)C10—C9—N1118.55 (11)
O1—C1—C2124.19 (10)C8—C9—N1118.92 (11)
O1—C1—C3i115.54 (10)C8—C9—C10122.53 (11)
C2—C1—C3i120.27 (10)C4—C5—C6125.13 (11)
C1—C2—H2119.4C4—C5—H5117.4
C1—C2—C3121.23 (10)C6—C5—H5117.4
C3—C2—H2119.4C9—C8—H8120.8
C1i—C3—C4118.41 (10)C9—C8—C7118.35 (11)
C2—C3—C1i118.50 (10)C7—C8—H8120.8
C2—C3—C4123.08 (10)C6—C7—H7119.4
C11—C10—H10120.9C8—C7—C6121.27 (11)
C11—C10—C9118.26 (11)C8—C7—H7119.4
C9—C10—H10120.9O1—C12—H12A109.5
C3—C4—H4116.5O1—C12—H12B109.5
C5—C4—C3127.07 (11)O1—C12—H12C109.5
C5—C4—H4116.5H12A—C12—H12B109.5
C11—C6—C5122.95 (11)H12A—C12—H12C109.5
C7—C6—C11118.34 (10)H12B—C12—H12C109.5
C7—C6—C5118.69 (11)
O1—C1—C2—C3179.95 (11)C11—C10—C9—N1179.35 (11)
O2—N1—C9—C10164.27 (12)C11—C10—C9—C80.84 (19)
O2—N1—C9—C815.92 (19)C11—C6—C5—C47.6 (2)
O3—N1—C9—C1015.98 (19)C11—C6—C7—C80.74 (19)
O3—N1—C9—C8163.83 (13)C9—C10—C11—C60.93 (18)
N1—C9—C8—C7179.49 (12)C9—C8—C7—C60.6 (2)
C1—C2—C3—C1i0.34 (18)C5—C6—C11—C10177.54 (11)
C1—C2—C3—C4178.81 (11)C5—C6—C7—C8177.76 (12)
C1i—C3—C4—C5172.08 (12)C7—C6—C11—C100.89 (18)
C2—C3—C4—C59.4 (2)C7—C6—C5—C4170.84 (13)
C3i—C1—C2—C30.34 (19)C12—O1—C1—C24.15 (17)
C3—C4—C5—C6179.01 (12)C12—O1—C1—C3i176.23 (11)
C10—C9—C8—C70.7 (2)
Symmetry code: (i) x+2, y+1, z+1.
Selected energy parameters (gas phase) top
Total Energy (eV)-40479.535
EHOMO (eV)-5.813
ELUMO (eV)-3.096
HOMO–LUMO gap (eV)2.717
S0–S1 vertical excitation (nm)497.44
S1–S0 vertical emission (nm)546.03
Selected X-ray and DFT ground-state geometry parameter (Å, °) comparison top
Bonds/anglesExperimentalCalculated
O1—C11.3663 (14)1.3652
O1—C121.4248 (15)1.4207
O2—N11.2321 (16)1.2253
N1—C91.4665 (16)1.4723
C5—C4—C3127.07 (11)126.76
C4—C5—C6125.13 (11)126.38
C1—O1—C12117.68 (9)119.05
C8—C9—N1118.92 (11)119.26
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. DMR-0934212 ; grant No. DMR-1523611); Foundation for the National Institutes of Health (grant No. 1R21NS084353-01).

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCárdenas, J. C., Aguirre-Díaz, L. M., Galindo, J. F., Alí-Torres, J., Ochoa-Puentes, C., Echeverri, M., Gómez-Lor, B., Monge, M. Á., Gutiérrez-Puebla, E. & Sierra, C. A. (2019). Cryst. Growth Des. 19, 3913–3922.  Google Scholar
First citationCaruso, U., Casalboni, M., Fort, A., Fusco, M., Panunzi, B., Quatela, A., Roviello, A. & Sarcinelli, F. (2005). Opt. Mater. 27, 1800–1810.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN16. Revision C. 01 Gaussian Inc., Wallingford, CT, USA. https://www.gaussian.com.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, G. S., Tan, L.-S., Zheng, Q. & Prasad, P. N. (2008). Chem. Rev. 108, 1245–1330.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNakaya, T. & Imoto, M. (1966). Bull. Chem. Soc. Jpn, 39, 1547–1551.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, C.-L., Li, J., Geng, H.-W., Li, H., Ai, Y., Wang, Q., Pan, S.-L. & Zhang, H.-L. (2013). Chem. Asian J. 8, 3091–3100.  Google Scholar
First citationXu, Z., Liao, Q., Shi, X., Li, H., Zhang, H. & Fu, H. (2013). J. Mater. Chem. B, 1, 6035–6041.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds