organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-Benzyl­­idene-N-phenyl­hydrazinecarboxamide

aDepartment of Chemistry, Mahatma Gandhi College, Thiruvananthapuram 695 004, Kerala, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, cDepartment of Chemistry, All Saints College, Thiruvananthapuram 695 007, Kerala, India, and dDepartment of Chemistry, Sree Narayana College, Chempazhanthy, Thiruvananthapuram 695 587, Kerala, India
*Correspondence e-mail: eesans@yahoo.com

(Received 17 March 2014; accepted 13 April 2014; online 26 April 2014)

The mol­ecule of the title compound, C14H13N3O, adopts an E conformation with respect to the azomethine C=N bond, and is roughly planar, with an r.m.s. deviation of the non-H atoms from the least-squares plane of 0.100 (2) Å and a dihedral angle between the terminal benzene rings of 5.74 (12)°. An intramolecular N—H⋯N hydrogen bond closes an S(6) ring. In the crystal, mol­ecules are linked by the pairs of N—H⋯O hydrogen bonds into centrosymmetric dimers. Dimers related by translation along [010] form slanted stacks, the shortest C⋯C inter­molecular distance within the stack being 3.283 (3) Å. Weak C—H⋯π inter­actions link the stacks into a three-dimensional structure.

Related literature

For the synthesis of related compounds, see: Siji et al. (2010[Siji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta Part A, 76, 22-28.]). For biological applications of hydrazinecarboxamide and its derivatives, see: Rivadeneira et al. (2009[Rivadeneira, J., Barrio, D. A., Arrambide, G., Gambino, D., Bruzzone, L. & Etcheverry, S. B. (2009). J. Inorg. Biochem. 103, 633-642.]); Shalini et al. (2009[Shalini, M., Yogeeswari, P., Sriram, D. & Stables, J. P. (2009). Biomed. Pharmacother. 63, 187-193.]). For related structures, see: Annie et al. (2012[Annie, C. F., Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2985-o2986.]); Aravindakshan et al. (2013[Aravindakshan, A. A., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o586-o587.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O

  • Mr = 239.27

  • Monoclinic, P 2/c

  • a = 13.6308 (14) Å

  • b = 5.4023 (5) Å

  • c = 17.5751 (19) Å

  • β = 93.065 (4)°

  • V = 1292.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.29 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.983

  • 9857 measured reflections

  • 2302 independent reflections

  • 1655 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.146

  • S = 1.04

  • 2300 reflections

  • 171 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3′⋯N1 0.88 (1) 2.20 (2) 2.634 (2) 110 (2)
N2—H2′⋯O1i 0.88 (1) 2.00 (1) 2.860 (2) 167 (2)
C3—H3⋯Cg1ii 0.93 2.99 3.800 (3) 146
Symmetry codes: (i) -x, -y-1, -z; (ii) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazinecarboxamides with versatile structural features are good ligands for both the neutral and anionic complexes (Rivadeneira et al., 2009). The aryl hydrazinecarboxamides were found to be devoid of sedative hypnotic activity and exhibited anticonvulsant activity with less neurotoxicity (Shalini et al., 2009).

The title compound (Scheme 1, Fig. 1) crystallizes in the monoclinic space group P2/c. The molecule adopts an E configuration with respect to C7N1 bond and the N3–C8–N2–N1 torsion angle of 4.3 (3)° reveals that N1 and N3 atoms are cis to each other with respect to C8—N2 bond. The central fragment N3–C8(O1)–N2–N1 is almost planar and forms diherdal angles with two benzene rings of 13.24 (11)° (C1—C6) and of 7.60 (12)° (C9—C14).

The C7—N1 (1.273 (2) Å) and C8—O1 (1.225 (2) Å) bond distances are very close to the reported bond lengths of azomethine and keto groups, respectively, in similar structures (Annie et al., 2012), confirming the azomethine bond formation and existence of semicarbazone in amido form. A five-membered ring is formed by N1/N2/C8/N3 and H3' through an intramolecular H-bonding interaction with a D···A distance of 2.634 Å. In the crystal, a centrosymmetric dimer (Aravindakshan et al., 2013) is formed by means of a classical intermolecular N—H···O hydrogen bond (Fig. 2) with a D···A distance of 2.860 (2) Å. A C—H···π interaction (Fig. 3) is present in the crystal between the hydrogen attached to the carbon C3 and the C9—C14 benzene ring with H···π distance of 2.99 Å, interconnects the adjacent centrosymmetric dimers to build a three-dimensional supramolecular architecture in the system. Fig. 4 shows the packing diagram of the title compound along b axis.

Related literature top

For the synthesis of related compounds, see: Siji et al. (2010). For biological applications of hydrazinecarboxamide and its derivatives, see: Rivadeneira et al. (2009); Shalini et al. (2009). For related structures, see: Annie et al. (2012); Aravindakshan et al. (2013).

Experimental top

The title compound was prepared by adapting a reported procedure (Siji et al., 2010). Hot methanolic solutions (25 ml) of equimolar amounts of benzaldehyde (0.106 g, 1 mmol) and N-phenylhydrazinecarboxamide (0.151 g, 1 mmol) were mixed and refluxed for 3 h after adding a few drops of dilute acetic acid. The resulting solution was cooled to room temperature. The colourless block shaped crystals were collected, washed with few drops of methanol and dried over P4O10 in vacuo. Single crystals suitable for X-ray analysis were obtained by slow evaporation of solution in air for few days.

IR (KBr, υ in cm-1): 3356, 2959, 1684, 1540, 1024. 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 9.51 (s, 1H), 8.13 (s, 1H), 7.85 (s, 1H), 7.09–7.58 (m, 5H), 7.09–7.67 (m, 10H). 13C NMR (400 MHz, CDCl3, δ, p.p.m.): 153.61, 141.78, 137.84, 133.66, 130.02, 129.02, 128.79, 126.94, 123.54, 119.68.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93 Å. H atoms were assigned Uiso(H) values of 1.2Ueq(carrier). H atoms of N3—H3' and N2—H2' bonds were located from difference maps and the bond distances are restrained to 0.88±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Centrosymmetric dimer formed by pair of hydrogen bonds in the title compound.
[Figure 3] Fig. 3. C—H···π interaction in the title compound.
[Figure 4] Fig. 4. A view of the unit cell along b axis.
(2E)-2-Benzylidene-N-phenylhydrazinecarboxamide top
Crystal data top
C14H13N3OF(000) = 504
Mr = 239.27Dx = 1.230 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3449 reflections
a = 13.6308 (14) Åθ = 2.7–25.1°
b = 5.4023 (5) ŵ = 0.08 mm1
c = 17.5751 (19) ÅT = 296 K
β = 93.065 (4)°Block, colourless
V = 1292.3 (2) Å30.29 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2302 independent reflections
Radiation source: fine-focus sealed tube1655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.33 pixels mm-1θmax = 25.1°, θmin = 2.3°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 66
Tmin = 0.977, Tmax = 0.983l = 2020
9857 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3096P]
where P = (Fo2 + 2Fc2)/3
2300 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C14H13N3OV = 1292.3 (2) Å3
Mr = 239.27Z = 4
Monoclinic, P2/cMo Kα radiation
a = 13.6308 (14) ŵ = 0.08 mm1
b = 5.4023 (5) ÅT = 296 K
c = 17.5751 (19) Å0.29 × 0.24 × 0.21 mm
β = 93.065 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2302 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1655 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.983Rint = 0.023
9857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
2300 reflectionsΔρmin = 0.14 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12555 (9)0.4737 (3)0.03527 (9)0.0743 (4)
N10.03540 (11)0.0322 (3)0.10278 (9)0.0613 (4)
N20.00160 (11)0.2374 (3)0.06671 (10)0.0678 (5)
N30.15497 (11)0.1014 (3)0.09396 (10)0.0642 (4)
C10.12124 (15)0.3641 (4)0.18518 (12)0.0718 (6)
H10.05350.34560.19240.086*
C20.1678 (2)0.5526 (4)0.22135 (14)0.0879 (7)
H20.13150.66010.25320.105*
C30.2675 (2)0.5831 (5)0.21077 (16)0.0924 (8)
H30.29890.71080.23530.111*
C40.32004 (18)0.4260 (5)0.16432 (16)0.0885 (7)
H40.38750.44740.15670.106*
C50.27437 (14)0.2354 (4)0.12843 (12)0.0735 (6)
H50.31140.12780.09720.088*
C60.17410 (13)0.2018 (3)0.13822 (10)0.0585 (5)
C70.12822 (13)0.0028 (4)0.09942 (11)0.0605 (5)
H70.16770.11450.07150.073*
C80.09629 (13)0.2821 (4)0.06361 (11)0.0596 (5)
C90.25809 (13)0.0996 (3)0.10287 (11)0.0593 (5)
C100.29986 (15)0.0908 (4)0.14580 (15)0.0811 (7)
H100.26010.21150.16590.097*
C110.40000 (17)0.1028 (5)0.15888 (18)0.0985 (8)
H110.42750.23000.18860.118*
C120.45930 (17)0.0700 (5)0.12867 (19)0.1017 (9)
H120.52710.05980.13700.122*
C130.41822 (16)0.2588 (5)0.08601 (17)0.0977 (8)
H130.45870.37680.06530.117*
C140.31741 (14)0.2772 (4)0.07315 (13)0.0773 (6)
H140.29010.40790.04480.093*
H2'0.0434 (12)0.336 (3)0.0420 (11)0.075 (6)*
H3'0.1243 (14)0.026 (3)0.1121 (12)0.078 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0593 (8)0.0682 (9)0.0949 (11)0.0025 (6)0.0021 (7)0.0228 (7)
N10.0535 (9)0.0662 (10)0.0646 (10)0.0012 (7)0.0064 (7)0.0066 (7)
N20.0501 (9)0.0714 (11)0.0820 (11)0.0038 (8)0.0036 (8)0.0216 (9)
N30.0520 (9)0.0623 (10)0.0776 (11)0.0030 (7)0.0022 (7)0.0141 (8)
C10.0687 (12)0.0747 (14)0.0718 (13)0.0010 (10)0.0009 (10)0.0056 (10)
C20.112 (2)0.0756 (15)0.0759 (15)0.0007 (13)0.0062 (13)0.0110 (12)
C30.112 (2)0.0763 (15)0.0919 (18)0.0256 (14)0.0291 (15)0.0068 (13)
C40.0737 (14)0.0932 (17)0.0995 (18)0.0234 (13)0.0137 (13)0.0107 (14)
C50.0582 (11)0.0841 (15)0.0783 (14)0.0038 (10)0.0046 (10)0.0023 (11)
C60.0564 (10)0.0630 (11)0.0566 (11)0.0001 (8)0.0072 (8)0.0048 (9)
C70.0528 (10)0.0684 (12)0.0603 (11)0.0057 (8)0.0018 (8)0.0053 (9)
C80.0532 (10)0.0630 (11)0.0623 (11)0.0005 (9)0.0009 (8)0.0040 (9)
C90.0517 (10)0.0605 (11)0.0651 (11)0.0007 (8)0.0017 (8)0.0039 (9)
C100.0625 (12)0.0685 (13)0.1114 (18)0.0038 (10)0.0036 (11)0.0131 (12)
C110.0678 (14)0.0837 (16)0.142 (2)0.0114 (12)0.0128 (14)0.0153 (15)
C120.0534 (12)0.0997 (19)0.151 (3)0.0060 (13)0.0056 (14)0.0021 (17)
C130.0603 (13)0.1020 (19)0.131 (2)0.0146 (13)0.0054 (13)0.0146 (16)
C140.0589 (11)0.0817 (14)0.0909 (15)0.0045 (10)0.0001 (10)0.0161 (12)
Geometric parameters (Å, º) top
O1—C81.225 (2)C4—H40.9300
N1—C71.273 (2)C5—C61.380 (3)
N1—N21.369 (2)C5—H50.9300
N2—C81.360 (2)C6—C71.457 (3)
N2—H2'0.877 (9)C7—H70.9300
N3—C81.353 (2)C9—C141.376 (3)
N3—C91.406 (2)C9—C101.380 (3)
N3—H3'0.876 (9)C10—C111.373 (3)
C1—C21.374 (3)C10—H100.9300
C1—C61.380 (3)C11—C121.361 (4)
C1—H10.9300C11—H110.9300
C2—C31.373 (4)C12—C131.368 (4)
C2—H20.9300C12—H120.9300
C3—C41.355 (4)C13—C141.384 (3)
C3—H30.9300C13—H130.9300
C4—C51.374 (3)C14—H140.9300
C7—N1—N2115.97 (15)N1—C7—C6121.55 (17)
C8—N2—N1121.18 (15)N1—C7—H7119.2
C8—N2—H2'119.0 (13)C6—C7—H7119.2
N1—N2—H2'119.7 (13)O1—C8—N3124.84 (16)
C8—N3—C9127.98 (16)O1—C8—N2120.54 (16)
C8—N3—H3'115.4 (14)N3—C8—N2114.62 (17)
C9—N3—H3'116.6 (14)C14—C9—C10119.58 (18)
C2—C1—C6120.6 (2)C14—C9—N3123.85 (17)
C2—C1—H1119.7C10—C9—N3116.54 (17)
C6—C1—H1119.7C11—C10—C9120.2 (2)
C3—C2—C1120.3 (2)C11—C10—H10119.9
C3—C2—H2119.8C9—C10—H10119.9
C1—C2—H2119.8C12—C11—C10120.5 (2)
C4—C3—C2119.6 (2)C12—C11—H11119.7
C4—C3—H3120.2C10—C11—H11119.7
C2—C3—H3120.2C11—C12—C13119.4 (2)
C3—C4—C5120.6 (2)C11—C12—H12120.3
C3—C4—H4119.7C13—C12—H12120.3
C5—C4—H4119.7C12—C13—C14121.1 (2)
C4—C5—C6120.7 (2)C12—C13—H13119.4
C4—C5—H5119.6C14—C13—H13119.4
C6—C5—H5119.6C9—C14—C13119.1 (2)
C1—C6—C5118.23 (19)C9—C14—H14120.4
C1—C6—C7122.55 (17)C13—C14—H14120.4
C5—C6—C7119.22 (18)
C7—N1—N2—C8177.05 (17)C9—N3—C8—N2176.29 (18)
C6—C1—C2—C30.5 (3)N1—N2—C8—O1175.52 (17)
C1—C2—C3—C40.1 (4)N1—N2—C8—N34.3 (3)
C2—C3—C4—C50.7 (4)C8—N3—C9—C147.8 (3)
C3—C4—C5—C60.8 (3)C8—N3—C9—C10170.6 (2)
C2—C1—C6—C50.4 (3)C14—C9—C10—C110.1 (4)
C2—C1—C6—C7179.21 (19)N3—C9—C10—C11178.4 (2)
C4—C5—C6—C10.2 (3)C9—C10—C11—C121.2 (4)
C4—C5—C6—C7179.83 (18)C10—C11—C12—C131.1 (5)
N2—N1—C7—C6177.24 (16)C11—C12—C13—C140.1 (4)
C1—C6—C7—N14.9 (3)C10—C9—C14—C131.0 (3)
C5—C6—C7—N1175.51 (18)N3—C9—C14—C13179.4 (2)
C9—N3—C8—O13.5 (3)C12—C13—C14—C91.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.88 (1)2.20 (2)2.634 (2)110 (2)
N2—H2···O1i0.88 (1)2.00 (1)2.860 (2)167 (2)
C3—H3···Cg1ii0.932.993.800 (3)146
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3'···N10.876 (9)2.20 (2)2.634 (2)110.4 (16)
N2—H2'···O1i0.877 (9)1.999 (11)2.860 (2)167.0 (19)
C3—H3···Cg1ii0.932.993.800 (3)146
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1/2.
 

Acknowledgements

We thank the Indian Institute for Science Education and Research (IISER), Thiruvananthapuram, for the diffraction measurements. LSR thanks the CSIR, New Delhi, for the award of a Junior Research Fellowship.

References

First citationAnnie, C. F., Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2985–o2986.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAravindakshan, A. A., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o586–o587.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRivadeneira, J., Barrio, D. A., Arrambide, G., Gambino, D., Bruzzone, L. & Etcheverry, S. B. (2009). J. Inorg. Biochem. 103, 633–642.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShalini, M., Yogeeswari, P., Sriram, D. & Stables, J. P. (2009). Biomed. Pharmacother. 63, 187–193.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta Part A, 76, 22-28.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds