metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(E)-3-(4-meth­­oxy­phen­yl)prop-2-enoato]tri­phenyl­anti­mony(V) benzene monosolvate

aDepartment of Physics, N. I. Lobachevsky State University of Nizhni Novgorod, 603950, pr. Gagarina 23-3, Nizhni Novgorod, Russian Federation, and bDepartment of Chemistry, N. I. Lobachevsky State University of Nizhni Novgorod, 603950, pr. Gagarina 23-2, Nizhni Novgorod, Russian Federation
*Correspondence e-mail: andreev@phys.unn.ru

(Received 30 November 2012; accepted 18 February 2013; online 23 February 2013)

The asymmetric unit of the title compound, [Sb(C6H5)3(C10H9O3)2]·C6H6, contains one organometallic mol­ecule and one benzene mol­ecule that is disordered over two sets of sites with an occupancy ratio of 0.556 (15):0.444 (15). The SbV atom is in a distorted trigonal–bipyramidal environment with the carboxyl­ate O atoms in axial positions and phenyl C atoms in the equatorial plane. As a result of additional Sb⋯O inter­actions, one of the C—Sb—C angles is widened to 140.19 (6)°.

Related literature

For the chemistry of triphenyanti­mony diacyl­ates, see: Gushchin et al. (2011[Gushchin, A. V., Shashkin, D. V., Prytkova, L. K., Somov, N. V., Baranov, E. V., Shavyrin, A. S. & Rykalin, V. I. (2011). Russ. J. Gen. Chem. 81, 493-496.]). For thermodynamic properties of tri­phenyl­anti­mony diacyl­ates, see: Letyanina et al. (2012[Letyanina, I. A., Markin, A. V., Smirnova, N. N., Gushchin, A. V. & Shashkin, D. V. (2012). Russ. J. Phys. Chem. A86, 1189-1195.]); Markin et al. (2011[Markin, A. V., Letyanina, I. A., Ruchenin, V. A., Smirnova, N. N., Gushchin, A. V. & Shashkin, D. V. (2011). J. Chem. Eng. Data, 56, 3657-3662.]) and for their applications, see: Dodonov et al. (2004[Dodonov, V. A., Gushchin, A. V., Kuznetsova, Yu. L. & Morgunova, V. A. (2004). Vestn. Nizhni Novg. Univ. 82, 86-94.]). For a closely related structure, see: Belsky (1996[Belsky, V. K. (1996). Private communication (refcode NAGXOI). CCDC, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • [Sb(C6H5)3(C10H9O3)2]·C6H6

  • Mr = 785.5

  • Triclinic, [P \overline 1]

  • a = 11.2047 (1) Å

  • b = 11.2337 (1) Å

  • c = 15.0317 (2) Å

  • α = 91.125 (1)°

  • β = 94.936 (1)°

  • γ = 95.496 (1)°

  • V = 1875.62 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 293 K

  • 0.22 × 0.16 × 0.07 mm

Data collection
  • Agilent Xcalibur Sapphire3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011[Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.841, Tmax = 1.000

  • 28524 measured reflections

  • 7595 independent reflections

  • 7254 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.052

  • S = 1.09

  • 7595 reflections

  • 551 parameters

  • 78 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Agilent, 2011[Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The triphenylantimony bis(p-methoxycinnamate), C44H39O6Sb, belongs to the family of triphenylantimony diacylates. It contains two double bonds C=C in its molecule, due to which it can be used for polymerization filling of polystyrene and polymethylmethacrylate. Especially, this compound is a very promising monomer for developing metal-containing organic scintillators, which have recently attracted much attention in high-energy physics. It was found that the participation of both acrylate groups in polymerization leads to spatial cross-linking, considerably decreasing the thermooxidative destruction of the resulting polymer (Dodonov et al., 2004). Organic glasses based on triphenylantimony diacrylate and methylmethacrylate having increased fungal resistance are now available (Dodonov et al., 2004).

In the organometallic molecule of the title compound, the O–Sb–O angle is 172.81 (4)°, and the Ph–Sb–Ph angles are 107.48 (6)°, 112.33 (6)°, and 140.19 (6)°. Such difference from 120° is typical of triphenylantomony diacylates because of additional Sb···O contacts. For example, similar geometry was observed in triphenylantimony dimethacrylate (Gushchin et al., 2011). The Sb–O2A and Sb–O2B distances being 2.937 (13) Å and 2.900 (13) Å, respectively, are significantly shorter than the sum of the van der Waals radii of these atoms (3.60 Å). The solvent benzene molecule was modelled as disordered over two sets of sites with an occupancy ratio of 0.556 (15):0.444 (15).

Related literature top

For the chemistry of triphenyantimony diacylates, see: Gushchin et al. (2011). For thermodynamic properties of triphenyantimony diacylates, see: Letyanina et al. (2012); Markin et al. (2011) and for their applications, see: Dodonov et al. (2004). For a closely related structure, see: Belsky (1996).

Experimental top

The synthesis was carried out on the oxidation addition reaction of triphenylantimony, p-methoxycinnamic acid and hydrogen peroxide. To a solution of 0.7 ml of 31.2% aqueous hydrogen peroxide and 2.46 g of p-methoxycinnamic acid in 35 ml of tetrahydrofuran was added a solution of 2.2 g of triphenylantimony. The mixture was kept for 12 h at room temperature. The colourless crystals formed were filtered off and dried to obtain 1.63 g (95%) of triphenylantimony di-p-methoxycinnamate. The product was recrystallized twice from chloroform-hexane mixture (1:4), m.p. 178°C. Crystal for X-ray diffraction analysis was obtained from benzene solution.

Refinement top

H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and refined using a riding model with the Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for methyl groups).

Computing details top

Data collection: CrysAlis CCD (Agilent, 2011); cell refinement: CrysAlis CCD (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of an asymmetric part of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. Two orientations of the solvent benzene molecule are shown by different colours.
Bis[(E)-3-(4-methoxyphenyl)prop-2-enoato]triphenylantimony(V) benzene monosolvate top
Crystal data top
[Sb(C6H5)3(C10H9O3)2]·C6H6Z = 2
Mr = 785.5F(000) = 804
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2047 (1) ÅCell parameters from 20589 reflections
b = 11.2337 (1) Åθ = 3.6–33.0°
c = 15.0317 (2) ŵ = 0.78 mm1
α = 91.125 (1)°T = 293 K
β = 94.936 (1)°Bulk, colourless
γ = 95.496 (1)°0.22 × 0.16 × 0.07 mm
V = 1875.62 (3) Å3
Data collection top
Agilent Xcalibur Sapphire3 CCD
diffractometer
7595 independent reflections
Graphite monochromator7254 reflections with I > 2σ(I)
Detector resolution: 16.0302 pixels mm-1Rint = 0.022
ω scansθmax = 26.4°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
h = 1313
Tmin = 0.841, Tmax = 1.000k = 1414
28524 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0248P)2 + 0.4754P]
where P = (Fo2 + 2Fc2)/3
7595 reflections(Δ/σ)max = 0.001
551 parametersΔρmax = 0.34 e Å3
78 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Sb(C6H5)3(C10H9O3)2]·C6H6γ = 95.496 (1)°
Mr = 785.5V = 1875.62 (3) Å3
Triclinic, P1Z = 2
a = 11.2047 (1) ÅMo Kα radiation
b = 11.2337 (1) ŵ = 0.78 mm1
c = 15.0317 (2) ÅT = 293 K
α = 91.125 (1)°0.22 × 0.16 × 0.07 mm
β = 94.936 (1)°
Data collection top
Agilent Xcalibur Sapphire3 CCD
diffractometer
7595 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
7254 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 1.000Rint = 0.022
28524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02078 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
7595 reflectionsΔρmin = 0.25 e Å3
551 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb0.218385 (8)0.298563 (8)0.372245 (6)0.03567 (4)
C1C0.21079 (14)0.48201 (14)0.39945 (9)0.0382 (3)
C2C0.31247 (16)0.56356 (15)0.40952 (11)0.0460 (4)
H2C0.38850.53810.4060.055*
C3C0.2993 (2)0.68249 (16)0.42481 (12)0.0572 (5)
H3C0.36670.73810.43040.069*
C4C0.1873 (2)0.71945 (17)0.43181 (14)0.0650 (5)
H4C0.17950.80.44260.078*
C5C0.0867 (2)0.63916 (19)0.42315 (15)0.0643 (5)
H5C0.01120.6650.42860.077*
C6C0.09797 (16)0.51918 (17)0.40616 (12)0.0503 (4)
H6C0.03010.46420.39930.06*
C1D0.04561 (14)0.20684 (15)0.33960 (11)0.0425 (3)
C2D0.02135 (17)0.22894 (19)0.26182 (14)0.0592 (5)
H2D0.00740.28740.22390.071*
C3D0.13217 (19)0.1638 (2)0.23982 (16)0.0729 (6)
H3D0.17760.17970.18740.087*
C4D0.17495 (18)0.0770 (2)0.29407 (16)0.0706 (6)
H4D0.24840.03270.27820.085*
C5D0.1102 (2)0.0556 (2)0.37109 (17)0.0767 (7)
H5D0.13980.0030.40860.092*
C6D0.00029 (19)0.1203 (2)0.39475 (14)0.0643 (5)
H6D0.04390.10510.44810.077*
C1E0.34500 (14)0.17259 (14)0.36646 (10)0.0410 (3)
C2E0.3032 (2)0.06290 (19)0.32898 (17)0.0712 (6)
H2E0.22310.04810.30640.085*
C3E0.3800 (2)0.0262 (2)0.3246 (2)0.0848 (8)
H3E0.35180.10040.29840.102*
C4E0.4962 (2)0.0051 (2)0.35859 (17)0.0730 (6)
H4E0.54740.06530.35640.088*
C5E0.5381 (2)0.1036 (2)0.39573 (15)0.0700 (6)
H5E0.61820.11740.41860.084*
C6E0.46365 (17)0.19373 (19)0.39993 (13)0.0573 (4)
H6E0.49310.26820.42510.069*
C0A0.2877 (2)0.5977 (2)0.33971 (13)0.0671 (5)
H0A10.26310.60950.40140.101*
H0A20.35090.54560.33570.101*
H0A30.31640.67330.3110.101*
C1A0.32163 (15)0.38933 (15)0.21471 (10)0.0445 (4)
O1A0.21965 (10)0.33407 (11)0.23530 (7)0.0469 (3)
C2A0.32431 (16)0.42905 (17)0.12203 (11)0.0507 (4)
H2A0.39730.46260.10430.061*
O2A0.40867 (11)0.40838 (13)0.26879 (8)0.0563 (3)
C3A0.23030 (17)0.42025 (17)0.06284 (11)0.0504 (4)
H3A0.15880.38480.08190.06*
O3A0.18849 (12)0.54539 (14)0.29707 (8)0.0616 (3)
C4A0.22464 (16)0.45949 (16)0.02952 (11)0.0474 (4)
C5A0.32322 (16)0.50851 (17)0.06998 (11)0.0507 (4)
H5A0.39720.5210.03640.061*
C6A0.31586 (16)0.53964 (17)0.15873 (11)0.0493 (4)
H6A0.38390.57230.18420.059*
C7A0.20639 (16)0.52176 (16)0.20900 (11)0.0479 (4)
C8A0.10605 (18)0.4750 (2)0.16940 (13)0.0630 (5)
H8A0.03170.46420.20270.076*
C9A0.11518 (18)0.4445 (2)0.08156 (13)0.0616 (5)
H9A0.04670.4130.05610.074*
C0B0.5056 (4)0.1339 (3)1.1230 (2)0.1347 (15)
H0B10.49020.10481.18090.202*
H0B20.54180.2151.12890.202*
H0B30.55920.08491.09630.202*
C1B0.28748 (15)0.29644 (14)0.56128 (10)0.0416 (3)
O1B0.19336 (10)0.25803 (10)0.50719 (7)0.0445 (2)
C2B0.27826 (16)0.26299 (15)0.65452 (11)0.0459 (4)
H2B0.20450.2310.67190.055*
O2B0.37549 (11)0.35276 (11)0.53445 (8)0.0503 (3)
C3B0.37252 (17)0.27738 (15)0.71443 (11)0.0479 (4)
H3B0.44280.31560.69540.057*
O3B0.3990 (2)0.1298 (2)1.06980 (12)0.1140 (7)
C4B0.37851 (18)0.23995 (16)0.80714 (11)0.0500 (4)
C5B0.2787 (2)0.19744 (19)0.84934 (13)0.0620 (5)
H5B0.2030.19260.8180.074*
C6B0.2886 (3)0.1623 (2)0.93644 (15)0.0764 (6)
H6B0.220.13490.96350.092*
C7B0.3999 (3)0.1674 (2)0.98391 (14)0.0741 (6)
C8B0.4988 (3)0.2095 (2)0.94436 (15)0.0803 (7)
H8B0.57410.21390.97620.096*
C9B0.4887 (2)0.2464 (2)0.85619 (14)0.0694 (6)
H9B0.55740.27590.83010.083*
C1F0.0632 (16)0.9174 (17)0.1729 (13)0.088 (3)0.556 (15)
H1F0.01610.97050.19830.106*0.556 (15)
C2F0.0867 (12)0.8159 (13)0.2132 (10)0.092 (3)0.556 (15)
H2F0.05970.79970.26890.111*0.556 (15)
C3F0.1514 (17)0.7351 (12)0.1718 (13)0.093 (6)0.556 (15)
H3F0.17280.66730.20130.112*0.556 (15)
C4F0.1827 (13)0.7544 (12)0.0904 (13)0.111 (5)0.556 (15)
H4F0.21730.69630.05920.134*0.556 (15)
C5F0.1634 (13)0.8610 (14)0.0527 (8)0.159 (6)0.556 (15)
H5F0.18850.87810.00340.19*0.556 (15)
C6F0.1086 (11)0.9397 (10)0.0966 (8)0.125 (4)0.556 (15)
H6F0.10191.01450.07240.15*0.556 (15)
C1G0.1532 (9)0.7766 (9)0.0315 (8)0.087 (3)0.444 (15)
H1G0.17870.74330.01990.105*0.444 (15)
C2G0.173 (2)0.7231 (14)0.1135 (11)0.095 (5)0.444 (15)
H2G0.21460.65530.11670.114*0.444 (15)
C3G0.132 (2)0.769 (2)0.1913 (13)0.115 (11)0.444 (15)
H3G0.14080.7290.24480.138*0.444 (15)
C4G0.0777 (19)0.875 (2)0.1863 (12)0.131 (13)0.444 (15)
H4G0.05670.91140.23820.157*0.444 (15)
C5G0.0546 (16)0.9287 (17)0.1041 (12)0.160 (8)0.444 (15)
H5G0.01250.99610.10070.192*0.444 (15)
C6G0.0950 (15)0.8804 (10)0.0272 (9)0.135 (5)0.444 (15)
H6G0.08280.91770.0270.162*0.444 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb0.03384 (6)0.03966 (6)0.03304 (6)0.00126 (4)0.00262 (4)0.00237 (4)
C1C0.0428 (8)0.0399 (8)0.0322 (7)0.0039 (6)0.0037 (6)0.0038 (6)
C2C0.0468 (9)0.0481 (9)0.0419 (8)0.0021 (7)0.0039 (7)0.0026 (7)
C3C0.0738 (13)0.0461 (9)0.0485 (10)0.0071 (9)0.0013 (9)0.0022 (7)
C4C0.0948 (16)0.0439 (10)0.0575 (11)0.0122 (10)0.0069 (11)0.0019 (8)
C5C0.0688 (13)0.0622 (12)0.0679 (13)0.0273 (10)0.0147 (10)0.0078 (10)
C6C0.0469 (9)0.0517 (10)0.0537 (10)0.0080 (8)0.0086 (7)0.0064 (8)
C1D0.0367 (8)0.0447 (8)0.0454 (8)0.0006 (6)0.0042 (6)0.0049 (7)
C2D0.0446 (9)0.0682 (12)0.0621 (11)0.0004 (9)0.0050 (8)0.0079 (9)
C3D0.0460 (10)0.0924 (16)0.0756 (14)0.0015 (11)0.0136 (10)0.0053 (12)
C4D0.0431 (10)0.0773 (14)0.0873 (16)0.0135 (10)0.0093 (10)0.0265 (12)
C5D0.0687 (14)0.0785 (15)0.0768 (15)0.0302 (12)0.0138 (11)0.0008 (12)
C6D0.0619 (12)0.0718 (13)0.0539 (11)0.0190 (10)0.0016 (9)0.0058 (9)
C1E0.0426 (8)0.0410 (8)0.0403 (8)0.0059 (6)0.0071 (6)0.0040 (6)
C2E0.0550 (11)0.0527 (11)0.1040 (18)0.0040 (9)0.0002 (11)0.0137 (11)
C3E0.0812 (16)0.0427 (11)0.131 (2)0.0073 (11)0.0140 (15)0.0140 (12)
C4E0.0738 (14)0.0593 (12)0.0937 (17)0.0285 (11)0.0252 (12)0.0165 (11)
C5E0.0559 (11)0.0864 (15)0.0708 (13)0.0286 (11)0.0005 (10)0.0058 (11)
C6E0.0475 (10)0.0652 (11)0.0594 (11)0.0129 (9)0.0006 (8)0.0121 (9)
C0A0.0817 (14)0.0789 (14)0.0427 (10)0.0084 (11)0.0131 (9)0.0151 (9)
C1A0.0488 (9)0.0493 (9)0.0372 (8)0.0080 (7)0.0101 (7)0.0052 (7)
O1A0.0455 (6)0.0604 (7)0.0344 (5)0.0013 (5)0.0050 (5)0.0059 (5)
C2A0.0483 (9)0.0644 (11)0.0406 (9)0.0041 (8)0.0111 (7)0.0102 (8)
O2A0.0480 (7)0.0745 (9)0.0454 (7)0.0004 (6)0.0022 (5)0.0102 (6)
C3A0.0514 (10)0.0583 (10)0.0417 (9)0.0010 (8)0.0100 (7)0.0062 (7)
O3A0.0604 (8)0.0843 (10)0.0394 (6)0.0042 (7)0.0003 (6)0.0168 (6)
C4A0.0511 (9)0.0525 (9)0.0385 (8)0.0031 (8)0.0049 (7)0.0041 (7)
C5A0.0448 (9)0.0660 (11)0.0402 (8)0.0023 (8)0.0001 (7)0.0045 (8)
C6A0.0461 (9)0.0597 (10)0.0420 (9)0.0007 (8)0.0069 (7)0.0067 (7)
C7A0.0531 (10)0.0528 (9)0.0377 (8)0.0064 (8)0.0012 (7)0.0068 (7)
C8A0.0483 (10)0.0873 (14)0.0501 (10)0.0044 (10)0.0049 (8)0.0148 (10)
C9A0.0487 (10)0.0825 (14)0.0519 (10)0.0060 (9)0.0051 (8)0.0168 (9)
C0B0.207 (4)0.120 (3)0.0670 (17)0.010 (3)0.045 (2)0.0233 (17)
C1B0.0479 (9)0.0398 (8)0.0381 (8)0.0090 (7)0.0038 (6)0.0010 (6)
O1B0.0472 (6)0.0516 (6)0.0337 (5)0.0011 (5)0.0019 (4)0.0033 (5)
C2B0.0520 (9)0.0471 (9)0.0387 (8)0.0045 (7)0.0043 (7)0.0005 (7)
O2B0.0480 (7)0.0566 (7)0.0456 (6)0.0011 (6)0.0046 (5)0.0009 (5)
C3B0.0546 (10)0.0488 (9)0.0406 (8)0.0073 (8)0.0038 (7)0.0009 (7)
O3B0.167 (2)0.1158 (16)0.0544 (10)0.0039 (15)0.0111 (12)0.0258 (10)
C4B0.0635 (11)0.0472 (9)0.0388 (8)0.0094 (8)0.0020 (7)0.0037 (7)
C5B0.0700 (13)0.0689 (12)0.0456 (10)0.0034 (10)0.0004 (9)0.0030 (9)
C6B0.0946 (17)0.0814 (15)0.0525 (12)0.0017 (13)0.0122 (11)0.0105 (10)
C7B0.112 (2)0.0635 (12)0.0441 (10)0.0060 (13)0.0051 (12)0.0075 (9)
C8B0.0881 (17)0.0912 (17)0.0564 (12)0.0107 (14)0.0254 (12)0.0035 (11)
C9B0.0675 (13)0.0846 (15)0.0536 (11)0.0051 (11)0.0071 (10)0.0052 (10)
C1F0.068 (5)0.092 (5)0.105 (7)0.009 (4)0.003 (4)0.003 (4)
C2F0.077 (5)0.101 (8)0.097 (7)0.009 (5)0.007 (4)0.010 (5)
C3F0.070 (5)0.070 (4)0.135 (18)0.003 (4)0.009 (9)0.013 (8)
C4F0.087 (6)0.101 (8)0.149 (15)0.013 (6)0.030 (9)0.019 (8)
C5F0.203 (13)0.163 (11)0.138 (9)0.075 (10)0.099 (9)0.053 (8)
C6F0.127 (9)0.112 (6)0.154 (9)0.052 (6)0.055 (7)0.055 (7)
C1G0.088 (5)0.086 (5)0.093 (6)0.019 (4)0.019 (5)0.019 (5)
C2G0.115 (11)0.091 (8)0.075 (8)0.010 (6)0.026 (7)0.012 (6)
C3G0.099 (19)0.15 (3)0.081 (6)0.034 (15)0.003 (9)0.023 (12)
C4G0.097 (11)0.18 (4)0.109 (18)0.01 (2)0.012 (11)0.047 (17)
C5G0.108 (11)0.185 (14)0.195 (18)0.067 (10)0.010 (10)0.058 (12)
C6G0.156 (11)0.111 (8)0.146 (11)0.063 (7)0.003 (8)0.016 (7)
Geometric parameters (Å, º) top
Sb—C1E2.1034 (16)C5A—H5A0.93
Sb—C1C2.1042 (15)C6A—C7A1.380 (2)
Sb—O1A2.1054 (11)C6A—H6A0.93
Sb—C1D2.1177 (16)C7A—C8A1.381 (3)
Sb—O1B2.1238 (11)C8A—C9A1.369 (3)
C1C—C6C1.380 (2)C8A—H8A0.93
C1C—C2C1.388 (2)C9A—H9A0.93
C2C—C3C1.375 (3)C0B—O3B1.376 (4)
C2C—H2C0.93C0B—H0B10.96
C3C—C4C1.371 (3)C0B—H0B20.96
C3C—H3C0.93C0B—H0B30.96
C4C—C5C1.370 (3)C1B—O2B1.222 (2)
C4C—H4C0.93C1B—O1B1.3080 (19)
C5C—C6C1.387 (3)C1B—C2B1.468 (2)
C5C—H5C0.93C2B—C3B1.323 (2)
C6C—H6C0.93C2B—H2B0.93
C1D—C2D1.374 (2)C3B—C4B1.461 (2)
C1D—C6D1.379 (3)C3B—H3B0.93
C2D—C3D1.390 (3)O3B—C7B1.367 (3)
C2D—H2D0.93C4B—C9B1.377 (3)
C3D—C4D1.362 (3)C4B—C5B1.383 (3)
C3D—H3D0.93C5B—C6B1.373 (3)
C4D—C5D1.351 (3)C5B—H5B0.93
C4D—H4D0.93C6B—C7B1.378 (4)
C5D—C6D1.389 (3)C6B—H6B0.93
C5D—H5D0.93C7B—C8B1.353 (4)
C6D—H6D0.93C8B—C9B1.395 (3)
C1E—C2E1.368 (3)C8B—H8B0.93
C1E—C6E1.377 (2)C9B—H9B0.93
C2E—C3E1.385 (3)C1F—C2F1.34 (2)
C2E—H2E0.93C1F—C6F1.313 (19)
C3E—C4E1.354 (4)C1F—H1F0.93
C3E—H3E0.93C2F—C3F1.39 (2)
C4E—C5E1.357 (3)C2F—H2F0.93
C4E—H4E0.93C3F—C4F1.317 (15)
C5E—C6E1.376 (3)C3F—H3F0.93
C5E—H5E0.93C4F—C5F1.362 (14)
C6E—H6E0.93C4F—H4F0.93
C0A—O3A1.415 (2)C5F—C6F1.322 (14)
C0A—H0A10.96C5F—H5F0.93
C0A—H0A20.96C6F—H6F0.93
C0A—H0A30.96C1G—C2G1.393 (5)
C1A—O2A1.214 (2)C1G—C6G1.389 (5)
C1A—O1A1.311 (2)C1G—H1G0.93
C1A—C2A1.473 (2)C2G—C3G1.397 (5)
C2A—C3A1.314 (3)C2G—H2G0.93
C2A—H2A0.93C3G—C4G1.397 (5)
C3A—C4A1.463 (2)C3G—H3G0.93
C3A—H3A0.93C4G—C5G1.398 (5)
O3A—C7A1.357 (2)C4G—H4G0.93
C4A—C5A1.380 (2)C5G—C6G1.395 (5)
C4A—C9A1.391 (3)C5G—H5G0.93
C5A—C6A1.383 (2)C6G—H6G0.93
C1E—Sb—C1C140.19 (6)C4A—C5A—H5A118.8
C1E—Sb—O1A92.88 (5)C6A—C5A—H5A118.8
C1C—Sb—O1A89.43 (5)C7A—C6A—C5A119.24 (16)
C1E—Sb—C1D107.48 (6)C7A—C6A—H6A120.4
C1C—Sb—C1D112.33 (6)C5A—C6A—H6A120.4
O1A—Sb—C1D86.57 (6)O3A—C7A—C6A124.72 (16)
C1E—Sb—O1B91.28 (5)O3A—C7A—C8A115.87 (16)
C1C—Sb—O1B91.12 (5)C6A—C7A—C8A119.41 (16)
O1A—Sb—O1B172.81 (4)C9A—C8A—C7A120.50 (17)
C1D—Sb—O1B86.60 (5)C9A—C8A—H8A119.8
C6C—C1C—C2C120.57 (16)C7A—C8A—H8A119.8
C6C—C1C—Sb116.60 (12)C8A—C9A—C4A121.47 (18)
C2C—C1C—Sb122.83 (12)C8A—C9A—H9A119.3
C3C—C2C—C1C119.15 (17)C4A—C9A—H9A119.3
C3C—C2C—H2C120.4O3B—C0B—H0B1109.5
C1C—C2C—H2C120.4O3B—C0B—H0B2109.5
C4C—C3C—C2C120.32 (18)H0B1—C0B—H0B2109.5
C4C—C3C—H3C119.8O3B—C0B—H0B3109.5
C2C—C3C—H3C119.8H0B1—C0B—H0B3109.5
C5C—C4C—C3C120.82 (18)H0B2—C0B—H0B3109.5
C5C—C4C—H4C119.6O2B—C1B—O1B121.75 (14)
C3C—C4C—H4C119.6O2B—C1B—C2B124.10 (15)
C4C—C5C—C6C119.67 (19)O1B—C1B—C2B114.13 (14)
C4C—C5C—H5C120.2C1B—O1B—Sb111.99 (10)
C6C—C5C—H5C120.2C3B—C2B—C1B121.50 (16)
C1C—C6C—C5C119.45 (18)C3B—C2B—H2B119.2
C1C—C6C—H6C120.3C1B—C2B—H2B119.2
C5C—C6C—H6C120.3C2B—C3B—C4B127.26 (17)
C2D—C1D—C6D118.76 (16)C2B—C3B—H3B116.4
C2D—C1D—Sb120.91 (13)C4B—C3B—H3B116.4
C6D—C1D—Sb120.28 (13)C7B—O3B—C0B119.4 (3)
C1D—C2D—C3D119.9 (2)C9B—C4B—C5B117.31 (18)
C1D—C2D—H2D120C9B—C4B—C3B119.17 (19)
C3D—C2D—H2D120C5B—C4B—C3B123.52 (17)
C4D—C3D—C2D120.8 (2)C6B—C5B—C4B121.5 (2)
C4D—C3D—H3D119.6C6B—C5B—H5B119.2
C2D—C3D—H3D119.6C4B—C5B—H5B119.2
C5D—C4D—C3D119.67 (19)C5B—C6B—C7B120.3 (2)
C5D—C4D—H4D120.2C5B—C6B—H6B119.9
C3D—C4D—H4D120.2C7B—C6B—H6B119.9
C4D—C5D—C6D120.5 (2)C8B—C7B—O3B125.5 (2)
C4D—C5D—H5D119.7C8B—C7B—C6B119.3 (2)
C6D—C5D—H5D119.7O3B—C7B—C6B115.2 (3)
C1D—C6D—C5D120.4 (2)C7B—C8B—C9B120.5 (2)
C1D—C6D—H6D119.8C7B—C8B—H8B119.8
C5D—C6D—H6D119.8C9B—C8B—H8B119.8
C2E—C1E—C6E119.65 (17)C4B—C9B—C8B121.1 (2)
C2E—C1E—Sb116.39 (13)C4B—C9B—H9B119.5
C6E—C1E—Sb123.93 (13)C8B—C9B—H9B119.5
C1E—C2E—C3E120.1 (2)C2F—C1F—C6F118 (2)
C1E—C2E—H2E120C2F—C1F—H1F121
C3E—C2E—H2E120C6F—C1F—H1F121
C4E—C3E—C2E119.9 (2)C3F—C2F—C1F119.9 (17)
C4E—C3E—H3E120.1C3F—C2F—H2F120.1
C2E—C3E—H3E120.1C1F—C2F—H2F120.1
C3E—C4E—C5E120.3 (2)C2F—C3F—C4F119.9 (14)
C3E—C4E—H4E119.9C2F—C3F—H3F120
C5E—C4E—H4E119.9C4F—C3F—H3F120
C4E—C5E—C6E120.8 (2)C5F—C4F—C3F118.9 (10)
C4E—C5E—H5E119.6C5F—C4F—H4F120.6
C6E—C5E—H5E119.6C3F—C4F—H4F120.6
C5E—C6E—C1E119.34 (19)C6F—C5F—C4F119.3 (9)
C5E—C6E—H6E120.3C6F—C5F—H5F120.3
C1E—C6E—H6E120.3C4F—C5F—H5F120.3
O3A—C0A—H0A1109.5C5F—C6F—C1F123.2 (11)
O3A—C0A—H0A2109.5C5F—C6F—H6F118.4
H0A1—C0A—H0A2109.5C1F—C6F—H6F118.4
O3A—C0A—H0A3109.5C2G—C1G—C6G119.3 (11)
H0A1—C0A—H0A3109.5C2G—C1G—H1G120.4
H0A2—C0A—H0A3109.5C6G—C1G—H1G120.4
O2A—C1A—O1A122.33 (15)C1G—C2G—C3G121.7 (15)
O2A—C1A—C2A121.57 (16)C1G—C2G—H2G119.2
O1A—C1A—C2A116.09 (15)C3G—C2G—H2G119.2
C1A—O1A—Sb113.18 (10)C2G—C3G—C4G118.2 (17)
C3A—C2A—C1A124.28 (16)C2G—C3G—H3G120.9
C3A—C2A—H2A117.9C4G—C3G—H3G120.9
C1A—C2A—H2A117.9C5G—C4G—C3G120.7 (16)
C2A—C3A—C4A127.75 (17)C5G—C4G—H4G119.7
C2A—C3A—H3A116.1C3G—C4G—H4G119.7
C4A—C3A—H3A116.1C6G—C5G—C4G119.8 (13)
C7A—O3A—C0A117.89 (15)C6G—C5G—H5G120.1
C5A—C4A—C9A117.04 (16)C4G—C5G—H5G120.1
C5A—C4A—C3A123.78 (16)C5G—C6G—C1G120.2 (10)
C9A—C4A—C3A119.16 (16)C5G—C6G—H6G119.9
C4A—C5A—C6A122.33 (16)C1G—C6G—H6G119.9
C1E—Sb—C1C—C6C171.05 (11)C1D—Sb—O1A—C1A175.72 (12)
O1A—Sb—C1C—C6C95.13 (13)O2A—C1A—C2A—C3A173.88 (19)
C1D—Sb—C1C—C6C9.07 (14)O1A—C1A—C2A—C3A5.2 (3)
O1B—Sb—C1C—C6C77.71 (13)C1A—C2A—C3A—C4A178.64 (18)
C1E—Sb—C1C—C2C9.60 (17)C2A—C3A—C4A—C5A3.2 (3)
O1A—Sb—C1C—C2C84.22 (13)C2A—C3A—C4A—C9A178.6 (2)
C1D—Sb—C1C—C2C170.28 (12)C9A—C4A—C5A—C6A1.3 (3)
O1B—Sb—C1C—C2C102.95 (13)C3A—C4A—C5A—C6A176.94 (18)
C6C—C1C—C2C—C3C1.1 (2)C4A—C5A—C6A—C7A0.2 (3)
Sb—C1C—C2C—C3C178.24 (12)C0A—O3A—C7A—C6A3.3 (3)
C1C—C2C—C3C—C4C1.3 (3)C0A—O3A—C7A—C8A177.63 (19)
C2C—C3C—C4C—C5C0.4 (3)C5A—C6A—C7A—O3A178.01 (17)
C3C—C4C—C5C—C6C0.7 (3)C5A—C6A—C7A—C8A1.1 (3)
C2C—C1C—C6C—C5C0.0 (3)O3A—C7A—C8A—C9A177.9 (2)
Sb—C1C—C6C—C5C179.39 (14)C6A—C7A—C8A—C9A1.2 (3)
C4C—C5C—C6C—C1C0.9 (3)C7A—C8A—C9A—C4A0.1 (4)
C1E—Sb—C1D—C2D112.33 (15)C5A—C4A—C9A—C8A1.1 (3)
C1C—Sb—C1D—C2D67.58 (16)C3A—C4A—C9A—C8A177.2 (2)
O1A—Sb—C1D—C2D20.39 (15)O2B—C1B—O1B—Sb2.65 (19)
O1B—Sb—C1D—C2D157.39 (15)C2B—C1B—O1B—Sb175.76 (10)
C1E—Sb—C1D—C6D65.18 (16)C1E—Sb—O1B—C1B70.43 (11)
C1C—Sb—C1D—C6D114.90 (16)C1C—Sb—O1B—C1B69.83 (11)
O1A—Sb—C1D—C6D157.12 (16)C1D—Sb—O1B—C1B177.87 (11)
O1B—Sb—C1D—C6D25.10 (16)O2B—C1B—C2B—C3B9.7 (3)
C6D—C1D—C2D—C3D0.5 (3)O1B—C1B—C2B—C3B168.66 (16)
Sb—C1D—C2D—C3D177.10 (16)C1B—C2B—C3B—C4B174.99 (16)
C1D—C2D—C3D—C4D0.7 (4)C2B—C3B—C4B—C9B170.5 (2)
C2D—C3D—C4D—C5D1.4 (4)C2B—C3B—C4B—C5B9.3 (3)
C3D—C4D—C5D—C6D0.8 (4)C9B—C4B—C5B—C6B0.4 (3)
C2D—C1D—C6D—C5D1.0 (3)C3B—C4B—C5B—C6B179.43 (19)
Sb—C1D—C6D—C5D176.57 (18)C4B—C5B—C6B—C7B0.7 (4)
C4D—C5D—C6D—C1D0.4 (4)C0B—O3B—C7B—C8B0.2 (4)
C1C—Sb—C1E—C2E168.71 (14)C0B—O3B—C7B—C6B178.7 (3)
O1A—Sb—C1E—C2E76.13 (16)C5B—C6B—C7B—C8B1.2 (4)
C1D—Sb—C1E—C2E11.17 (17)C5B—C6B—C7B—O3B179.8 (2)
O1B—Sb—C1E—C2E98.01 (16)O3B—C7B—C8B—C9B179.4 (2)
C1C—Sb—C1E—C6E13.2 (2)C6B—C7B—C8B—C9B0.6 (4)
O1A—Sb—C1E—C6E105.73 (15)C5B—C4B—C9B—C8B1.1 (3)
C1D—Sb—C1E—C6E166.97 (15)C3B—C4B—C9B—C8B178.8 (2)
O1B—Sb—C1E—C6E80.13 (15)C7B—C8B—C9B—C4B0.6 (4)
C6E—C1E—C2E—C3E0.1 (3)C6F—C1F—C2F—C3F4 (3)
Sb—C1E—C2E—C3E178.4 (2)C1F—C2F—C3F—C4F5 (3)
C1E—C2E—C3E—C4E0.9 (4)C2F—C3F—C4F—C5F8 (3)
C2E—C3E—C4E—C5E0.9 (4)C3F—C4F—C5F—C6F3 (2)
C3E—C4E—C5E—C6E0.3 (4)C4F—C5F—C6F—C1F5 (2)
C4E—C5E—C6E—C1E0.4 (3)C2F—C1F—C6F—C5F9 (3)
C2E—C1E—C6E—C5E0.5 (3)C6G—C1G—C2G—C3G2 (3)
Sb—C1E—C6E—C5E177.59 (15)C1G—C2G—C3G—C4G5 (4)
O2A—C1A—O1A—Sb5.7 (2)C2G—C3G—C4G—C5G6 (4)
C2A—C1A—O1A—Sb173.38 (12)C3G—C4G—C5G—C6G5 (3)
C1E—Sb—O1A—C1A68.37 (12)C4G—C5G—C6G—C1G3 (2)
C1C—Sb—O1A—C1A71.87 (12)C2G—C1G—C6G—C5G1 (2)

Experimental details

Crystal data
Chemical formula[Sb(C6H5)3(C10H9O3)2]·C6H6
Mr785.5
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.2047 (1), 11.2337 (1), 15.0317 (2)
α, β, γ (°)91.125 (1), 94.936 (1), 95.496 (1)
V3)1875.62 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.22 × 0.16 × 0.07
Data collection
DiffractometerAgilent Xcalibur Sapphire3 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Agilent, 2011)
Tmin, Tmax0.841, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
28524, 7595, 7254
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.09
No. of reflections7595
No. of parameters551
No. of restraints78
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.25

Computer programs: CrysAlis CCD (Agilent, 2011), CrysAlis RED (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported financially by the Ministry of Education and Science of the Russian Federation, project 14.B37.21.1158.

References

First citationAgilent (2011). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBelsky, V. K. (1996). Private communication (refcode NAGXOI). CCDC, Cambridge, England.  Google Scholar
First citationDodonov, V. A., Gushchin, A. V., Kuznetsova, Yu. L. & Morgunova, V. A. (2004). Vestn. Nizhni Novg. Univ. 82, 86–94.  Google Scholar
First citationGushchin, A. V., Shashkin, D. V., Prytkova, L. K., Somov, N. V., Baranov, E. V., Shavyrin, A. S. & Rykalin, V. I. (2011). Russ. J. Gen. Chem. 81, 493–496.  Web of Science CrossRef CAS Google Scholar
First citationLetyanina, I. A., Markin, A. V., Smirnova, N. N., Gushchin, A. V. & Shashkin, D. V. (2012). Russ. J. Phys. Chem. A86, 1189–1195.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarkin, A. V., Letyanina, I. A., Ruchenin, V. A., Smirnova, N. N., Gushchin, A. V. & Shashkin, D. V. (2011). J. Chem. Eng. Data, 56, 3657–3662.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds