metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(μ3-2-hy­dr­oxy­naphthalene-1-carboxaldehyde thio­semicarbazonato-κ3N2:S:S)hexa­silver(I) N,N-di­methyl­formamide tetra­solvate

aDepartment of Materials Chemistry, School of Materials Science and Engineering, Key Laboratory of Nonferrous Metal of the Ministry of Education, Central South University, Changsha 410083, People's Republic of China, and bChinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC–CTHMP), Environmental Engineering Institute, School of Metallurgical Science and Engineering, Central South University, Changsha 410083, People's Republic of China
*Correspondence e-mail: rosesunqz@yahoo.com.cn

(Received 9 November 2012; accepted 8 December 2012; online 15 December 2012)

In the title compound, [Ag6(C12H10N3OS)6]·4C3H7NO, the hexa­nuclear complex mol­ecule lies about an inversion center. The six Ag atoms form a distorted octa­hedron, with Ag⋯Ag distances in the range 2.933 (1)–3.401 (1) Å. Each Ag atom is surrounded by one N atom and two thiol­ate S atoms from two deprotonated 2-hy­droxy-1-naphthaldehyde thio­semi­carb­a­zone ligands. Each ligand coordinates three Ag atoms via a bridging thiol­ate S atom and a monodentate N atom, thus two Ag3S3 hexa­gonal rings are linked together. Two dimethyl­formamide solvent mol­ecules are located in four sets of sites with half-occupancy and form O⋯H—N hydrogen bonds to the complex mol­ecule. Intra­molecular O—H⋯N hydrogen bonds are also present. The discrete hexa­nuclear clusters are further linked through ππ inter­actions into layers parallel to (001), the shortest distance between the centroids of aromatic rings being 3.698 (2) Å.

Related literature

For the structure and luminescent properties of d10 metal complexes, see: Brito et al. (2011[Brito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897-901.]); Forward et al. (1995[Forward, J. M., Bohmann, D., Fackler, J. P. & Staples, R. J. (1995). Inorg. Chem. 34, 6330-6336.]). For structures of related compexes with thio­semicarbazone Schiff base ligands, see: Ashfield et al. (2004[Ashfield, L. J., Cowley, A. R., Dilworth, J. R. & Donnelly, P. S. (2004). Inorg. Chem. 43, 4121-4123.]); Castiñeiras & Pedrido (2009[Castiñeiras, A. & Pedrido, R. (2009). Inorg. Chem. 48, 4847-4855.]); Li et al. (2010[Li, M. X., Zhang, D., Zhang, L. Z. & Niu, J. Y. (2010). Inorg. Chem. Commun. 13, 1268-1271.]); Onodera et al. (2007[Onodera, K., Kasuga, N. C., Takashima, T., Hara, A., Amano, A., Murakami, H. & Nomiya, K. (2007). Dalton Trans. pp. 3646-3652.]); Pedrido et al. (2009[Pedrido, R., Romero, M. J., Bermejo, M. R., Martínez-Calvo, M., González-Noya, A. M. & Zaragoza, G. (2009). Dalton Trans. pp. 8329-8340.]); Sun (2011[Sun, Q. Z. (2011). Chin. J. Struct. Chem. 30, 1355-1360.]); Sun et al. (2012[Sun, Q. Z., Liao, S. Y., Chai, L. Y., Xu, X. W., Yao, J. J. & Fang, Q. J. L. (2012). Chin. J. Struct. Chem. 31, 1229-1234.]); Sun & Chai (2012[Sun, Q. Z. & Chai, L. Y. (2012). Chin. J. Struct. Chem. 31, 408-414.]); Xu et al. (2011[Xu, C. Y., Sun, Q. Z., Chen, P. & Chai, L. Y. (2011). Chin. J. Struct. Chem. 30, 951-956.]). For bond-length data, see: Han et al. (2004[Han, W., Yi, L., Liu, Z. Q., Gu, W., Yan, S. P., Cheng, P., Liao, D. Z. & Jiang, Z. H. (2004). Eur. J. Inorg. Chem. pp. 2130-2136.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag6(C12H10N3OS)6]·4C3H7NO

  • Mr = 2405.34

  • Monoclinic, C 2/c

  • a = 24.604 (3) Å

  • b = 18.877 (3) Å

  • c = 24.816 (3) Å

  • β = 94.763 (3)°

  • V = 11486 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.238, Tmax = 0.373

  • 28454 measured reflections

  • 10056 independent reflections

  • 7829 reflections with I > 2s(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.145

  • S = 1.08

  • 10056 reflections

  • 667 parameters

  • 63 restraints

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O4 0.86 1.98 2.835 (8) 175
N6—H6B⋯O6i 0.86 2.00 2.845 (7) 166
N9—H9A⋯O5ii 0.86 2.31 3.049 (8) 145
N9—H9B⋯O7 0.86 2.02 2.870 (6) 172
O1—H1B⋯N1 0.82 1.86 2.588 (5) 147
O2—H2B⋯N4 0.82 1.85 2.583 (4) 148
O3—H3C⋯N7 0.82 1.86 2.587 (5) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal-chalcogen compounds, especially for d10 metal complexes, have attracted a great deal of attention for their interesting structures and excellent luminescent properties (Brito et al., 2011; Forward et al., 1995). Of which many coordination complexes with thiosemicarbazone Schiff base ligands have been reported (Ashfield et al., 2004; Castiñeiras & Pedrido, 2009; Li et al., 2010; Onodera et al., 2007; Pedrido et al., 2009). As a part of our studies on this class of compounds (Sun, 2011; Sun et al., 2012; Sun & Chai, 2012; Xu et al., 2011), we describe here the structure of the title compound.

The structure of the title compound is shown in Fig. 1. It contains an Ag6 hexanuclear cluster with the Ag···Ag distances varying from 2.93 Å to 3.40 Å (Fig. 2), which is shorter than the sum of van der Waals radii of two silver atoms (3.44 Å) (Han et al., 2004). In the cluster, each Ag(I) ion is surrounded by one nitrogen atom and two thiolate sulfur atoms from two deprotonated ligands L5. Each ligand coordinates to three Ag(I) ions using a bridged thiolate sulfur atom and a monodentate nitrogen atom, from which two Ag3S3 hexagonal rings are linked together to give the overall Ferris wheel structure.

There are intramolecular hydrogen bonds of O—H···N type. Besides this, solvent DMF molecules are linked to the hexanuclear cluster via O···H—N hydrogen bonds.

Packing of the title compound (Fig. 3) is facilitated through ππ stacking interactions between aromatic rings I, II [defined by the atoms C(1), C(2), C(3), C(4), C(9) and C(10) and the atoms C(13), C(14), C(15), C(16), C(21) and C(22), respectively] and the symmetry related ones (ring centroid distances: 3.78 Å and 3.70 Å, respectively).

Related literature top

For the structure and luminescent properties of d10 metal complexes, see: Brito et al. (2011); Forward et al. (1995). For structures of related compexes with thiosemicarbazone Schiff base ligands, see: Ashfield et al. (2004); Castiñeiras & Pedrido (2009); Li et al. (2010); Onodera et al. (2007); Pedrido et al. (2009); Sun (2011); Sun et al. (2012); Sun & Chai (2012); Xu et al. (2011). For bond-length data, see: Han et al. (2004).

Experimental top

Triethylamine (25 µL, 0.175 mmol) was added to a solution of L5 (0.175 mmol, 0.043 g) in 3 ml DMF. After stirring for 30 min, a DMF solution (2 ml) of AgNO3 (0.175 mmol, 0.030 g) was added. Block yellow crystals were formed by standing the solution in air for two months. Anal. Calcd for C84H88Ag6N22O10S6: C, 41.9; H, 3.7; N, 12.8. Found: C, 41.9; H, 3.6; N, 12.8.

Refinement top

In the compound, all the DMF molecules were found to be disordered, and the s.o.f. for the four disordered molecules were fixed at 0.5. All of the non-hydrogen atoms were refined with anisotropic thermal displacement parameters. The H atoms were placed in calculated positions using the riding model approximation with C—H distances of 0.93–0.96 Å, O—H distances of 0.82 Å and N—H distances of 0.86 Å. Uiso(H) were set to 1.2Ueq (C, N) or 1.5Ueq(C, O).

Structure description top

Transition metal-chalcogen compounds, especially for d10 metal complexes, have attracted a great deal of attention for their interesting structures and excellent luminescent properties (Brito et al., 2011; Forward et al., 1995). Of which many coordination complexes with thiosemicarbazone Schiff base ligands have been reported (Ashfield et al., 2004; Castiñeiras & Pedrido, 2009; Li et al., 2010; Onodera et al., 2007; Pedrido et al., 2009). As a part of our studies on this class of compounds (Sun, 2011; Sun et al., 2012; Sun & Chai, 2012; Xu et al., 2011), we describe here the structure of the title compound.

The structure of the title compound is shown in Fig. 1. It contains an Ag6 hexanuclear cluster with the Ag···Ag distances varying from 2.93 Å to 3.40 Å (Fig. 2), which is shorter than the sum of van der Waals radii of two silver atoms (3.44 Å) (Han et al., 2004). In the cluster, each Ag(I) ion is surrounded by one nitrogen atom and two thiolate sulfur atoms from two deprotonated ligands L5. Each ligand coordinates to three Ag(I) ions using a bridged thiolate sulfur atom and a monodentate nitrogen atom, from which two Ag3S3 hexagonal rings are linked together to give the overall Ferris wheel structure.

There are intramolecular hydrogen bonds of O—H···N type. Besides this, solvent DMF molecules are linked to the hexanuclear cluster via O···H—N hydrogen bonds.

Packing of the title compound (Fig. 3) is facilitated through ππ stacking interactions between aromatic rings I, II [defined by the atoms C(1), C(2), C(3), C(4), C(9) and C(10) and the atoms C(13), C(14), C(15), C(16), C(21) and C(22), respectively] and the symmetry related ones (ring centroid distances: 3.78 Å and 3.70 Å, respectively).

For the structure and luminescent properties of d10 metal complexes, see: Brito et al. (2011); Forward et al. (1995). For structures of related compexes with thiosemicarbazone Schiff base ligands, see: Ashfield et al. (2004); Castiñeiras & Pedrido (2009); Li et al. (2010); Onodera et al. (2007); Pedrido et al. (2009); Sun (2011); Sun et al. (2012); Sun & Chai (2012); Xu et al. (2011). For bond-length data, see: Han et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of title compound showing the atom-numbering scheme with H atoms omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 0.5, -y + 1.5, -z + 2]
[Figure 2] Fig. 2. Ag6 octahedron in the title compound
[Figure 3] Fig. 3. Packing diagram of the title compound, viewed along the a axis direction.
Hexakis(µ3-2-hydroxynaphthalene-1-carboxaldehyde thiosemicarbazonato-κ3N2:S:S)hexasilver(I) N,N'-dimethylformamide tetrasolvate top
Crystal data top
[Ag6(C12H10N3OS)6]·4C3H7NOF(000) = 4816
Mr = 2405.34Dx = 1.391 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6309 reflections
a = 24.604 (3) Åθ = 2.2–27.2°
b = 18.877 (3) ŵ = 1.17 mm1
c = 24.816 (3) ÅT = 293 K
β = 94.763 (3)°Block, yellow
V = 11486 (3) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
10056 independent reflections
Radiation source: fine-focus sealed tube7829 reflections with I > 2s(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2829
Tmin = 0.238, Tmax = 0.373k = 2221
28454 measured reflectionsl = 2916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
10056 reflections(Δ/σ)max = 0.002
667 parametersΔρmax = 0.92 e Å3
63 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ag6(C12H10N3OS)6]·4C3H7NOV = 11486 (3) Å3
Mr = 2405.34Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.604 (3) ŵ = 1.17 mm1
b = 18.877 (3) ÅT = 293 K
c = 24.816 (3) Å0.22 × 0.20 × 0.18 mm
β = 94.763 (3)°
Data collection top
Bruker SMART CCD
diffractometer
10056 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7829 reflections with I > 2s(I)
Tmin = 0.238, Tmax = 0.373Rint = 0.042
28454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04663 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.08Δρmax = 0.92 e Å3
10056 reflectionsΔρmin = 0.42 e Å3
667 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.171626 (12)0.813538 (16)0.482106 (12)0.05265 (8)
Ag20.240712 (12)0.788788 (17)0.582419 (12)0.05635 (9)
Ag30.191030 (13)0.661685 (16)0.509778 (12)0.05414 (8)
S10.16540 (4)0.75257 (5)0.39220 (4)0.0510 (2)
S20.16228 (4)0.70906 (5)0.59592 (4)0.0520 (2)
S30.27035 (4)0.57841 (5)0.51287 (4)0.0499 (2)
N10.09822 (14)0.57526 (18)0.43441 (14)0.0591 (9)
N20.13114 (13)0.63483 (17)0.43751 (13)0.0531 (8)
N30.08875 (19)0.6661 (3)0.35352 (18)0.0993 (14)
H3A0.06730.63010.35270.119*
H3B0.08680.69560.32710.119*
N40.05033 (12)0.83205 (16)0.52337 (13)0.0475 (8)
N50.10008 (12)0.79779 (16)0.53377 (12)0.0476 (8)
N60.06729 (14)0.76102 (19)0.61488 (13)0.0614 (9)
H6A0.03800.78580.60920.074*
H6B0.07250.73600.64380.074*
N70.27039 (15)0.5619 (2)0.35485 (14)0.0656 (10)
N80.27440 (14)0.59230 (18)0.40692 (12)0.0575 (9)
N90.25925 (15)0.47922 (19)0.43895 (15)0.0671 (10)
H9A0.25860.46100.40710.080*
H9B0.25470.45270.46640.080*
O10.02497 (15)0.48899 (18)0.39190 (13)0.0853 (10)
H1B0.04630.52240.39300.128*
O20.05009 (11)0.86290 (17)0.53609 (12)0.0686 (8)
H2B0.02090.84200.54130.103*
O30.2174 (2)0.4973 (3)0.27494 (18)0.1230 (16)
H3C0.22450.50960.30640.184*
C10.0316 (2)0.4524 (2)0.4389 (2)0.0696 (12)
C20.0022 (2)0.3926 (3)0.4433 (2)0.0858 (16)
H2A0.02640.37880.41440.103*
C30.0012 (2)0.3550 (3)0.4907 (2)0.0824 (15)
H3D0.02130.31570.49360.099*
C40.0369 (2)0.3736 (2)0.5340 (2)0.0710 (13)
C50.0388 (3)0.3357 (3)0.5855 (3)0.0961 (18)
H5A0.01550.29750.58920.115*
C60.0736 (3)0.3551 (3)0.6272 (3)0.109 (2)
H6C0.07390.33030.65960.131*
C70.1083 (3)0.4100 (3)0.6233 (2)0.104 (2)
H7B0.13240.42200.65270.125*
C80.1084 (2)0.4484 (3)0.5761 (2)0.0873 (16)
H8B0.13300.48560.57420.105*
C90.07184 (19)0.4329 (2)0.53019 (19)0.0678 (12)
C100.06846 (18)0.4728 (2)0.48118 (18)0.0633 (11)
C110.10170 (17)0.5363 (2)0.47600 (18)0.0600 (11)
H11A0.12660.54870.50470.072*
C120.12505 (16)0.6761 (2)0.39585 (16)0.0529 (10)
C130.04809 (15)0.9071 (2)0.49380 (17)0.0547 (10)
C140.09473 (17)0.9478 (2)0.47924 (19)0.0659 (12)
H14A0.12540.94280.49840.079*
C150.09576 (17)0.9941 (3)0.4380 (2)0.0671 (12)
H15A0.12711.02070.42940.080*
C160.05039 (17)1.0030 (2)0.40773 (17)0.0602 (11)
C170.0514 (2)1.0516 (3)0.36387 (19)0.0711 (13)
H17A0.08231.07900.35560.085*
C180.0087 (2)1.0587 (3)0.3344 (2)0.0818 (15)
H18A0.01031.09060.30580.098*
C190.0376 (2)1.0188 (3)0.3463 (2)0.0780 (14)
H19A0.06671.02350.32490.094*
C200.04169 (19)0.9720 (2)0.38905 (18)0.0654 (12)
H20A0.07390.94680.39680.078*
C210.00225 (15)0.9620 (2)0.42120 (16)0.0521 (10)
C220.00177 (15)0.9137 (2)0.46551 (15)0.0497 (9)
C230.04720 (15)0.87334 (19)0.48270 (15)0.0484 (9)
H23A0.07760.87800.46300.058*
C240.10444 (14)0.76144 (19)0.57889 (14)0.0435 (8)
C250.2510 (3)0.5314 (4)0.2427 (2)0.104 (2)
C260.2459 (3)0.5160 (4)0.1857 (3)0.1147 (18)
H26A0.22030.48360.17120.138*
C270.2789 (3)0.5496 (4)0.1544 (3)0.1144 (18)
H27A0.27450.53910.11770.137*
C280.3180 (3)0.5973 (3)0.1699 (2)0.0934 (15)
C290.3531 (3)0.6318 (4)0.1345 (2)0.1046 (18)
H29A0.34930.62130.09770.126*
C300.3886 (3)0.6755 (4)0.1515 (3)0.127 (2)
H30A0.40860.69880.12680.152*
C310.3996 (3)0.6910 (4)0.2081 (3)0.114 (2)
H31A0.42730.72230.21990.137*
C320.3687 (3)0.6590 (3)0.2442 (2)0.1015 (19)
H32A0.37570.66800.28090.122*
C330.3264 (2)0.6125 (3)0.2266 (2)0.0911 (16)
C340.2898 (2)0.5779 (3)0.26316 (19)0.0814 (15)
C350.29397 (18)0.5973 (3)0.32006 (16)0.0645 (12)
H35A0.31450.63680.33130.077*
C360.26717 (15)0.5477 (2)0.44566 (15)0.0488 (9)
C370.1231 (5)0.9297 (5)0.2325 (5)0.087 (3)0.50
H37A0.14190.93250.26790.130*0.50
H37B0.09730.96780.22770.130*0.50
H37C0.14890.93310.20560.130*0.50
C380.0619 (5)0.8437 (6)0.1746 (5)0.089 (3)0.50
H38A0.04550.79800.17850.133*0.50
H38B0.08540.84230.14560.133*0.50
H38C0.03380.87840.16670.133*0.50
C390.0960 (4)0.8193 (6)0.2672 (4)0.078 (3)0.50
H39A0.11130.83420.30080.093*0.50
N100.0949 (3)0.8634 (3)0.2267 (3)0.0561 (17)0.50
O40.0773 (3)0.7578 (4)0.2628 (3)0.095 (2)0.50
C400.2559 (5)0.7879 (6)0.2711 (4)0.087 (3)0.50
H40A0.27540.83080.28060.130*0.50
H40B0.28010.74820.27670.130*0.50
H40C0.22600.78280.29320.130*0.50
C410.2129 (6)0.7401 (7)0.2012 (6)0.161 (6)0.50
H41A0.20070.74540.16360.242*0.50
H41B0.18200.73280.22170.242*0.50
H41C0.23690.70010.20570.242*0.50
C420.2428 (7)0.8450 (8)0.1807 (6)0.125 (5)0.50
H42A0.26560.87990.19650.150*0.50
N110.2359 (3)0.7908 (4)0.2164 (3)0.0563 (18)0.50
O50.2296 (5)0.8580 (5)0.1406 (3)0.136 (4)0.50
O60.4334 (3)0.8328 (4)0.2955 (3)0.090 (2)0.50
C430.4240 (4)1.0056 (5)0.2406 (4)0.081 (3)0.50
H43A0.43501.02540.27540.121*0.50
H43B0.38891.02390.22790.121*0.50
H43C0.45021.01800.21550.121*0.50
C440.4052 (4)0.8921 (6)0.1971 (4)0.084 (3)0.50
H44A0.40480.84240.20510.126*0.50
H44B0.43070.90120.17070.126*0.50
H44C0.36940.90690.18320.126*0.50
C450.4319 (4)0.8969 (7)0.2912 (5)0.089 (3)0.50
H45A0.43890.92390.32240.107*0.50
N120.4210 (3)0.9304 (4)0.2449 (2)0.063 (2)0.50
O70.2454 (2)0.3792 (3)0.5239 (2)0.0587 (13)0.50
C460.1547 (4)0.2320 (4)0.5242 (4)0.075 (3)0.50
H46A0.17030.22010.55980.112*0.50
H46B0.16000.19340.50000.112*0.50
H46C0.11640.24100.52520.112*0.50
C470.1648 (4)0.3228 (5)0.4527 (4)0.073 (3)0.50
H47A0.18580.36430.44610.109*0.50
H47B0.12680.33510.45100.109*0.50
H47C0.17040.28760.42590.109*0.50
C480.2207 (4)0.3293 (4)0.5356 (3)0.060 (2)0.50
H48A0.22940.31110.57010.072*0.50
N130.1815 (3)0.2954 (3)0.5052 (3)0.0468 (15)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05776 (17)0.05486 (17)0.04597 (16)0.00022 (13)0.00805 (13)0.00734 (12)
Ag20.05578 (17)0.06027 (18)0.05285 (18)0.00050 (13)0.00367 (14)0.00891 (13)
Ag30.06226 (18)0.05244 (17)0.04791 (17)0.00372 (13)0.00561 (14)0.00294 (12)
S10.0549 (5)0.0543 (5)0.0438 (5)0.0023 (4)0.0035 (4)0.0061 (4)
S20.0564 (5)0.0552 (5)0.0450 (5)0.0023 (4)0.0079 (4)0.0091 (4)
S30.0570 (5)0.0488 (5)0.0446 (5)0.0013 (4)0.0081 (4)0.0031 (4)
N10.0648 (19)0.0566 (19)0.0556 (19)0.0095 (16)0.0042 (16)0.0038 (16)
N20.0554 (17)0.0538 (18)0.0497 (18)0.0064 (15)0.0017 (14)0.0065 (15)
N30.109 (3)0.098 (3)0.085 (3)0.033 (2)0.027 (2)0.016 (2)
N40.0439 (15)0.0487 (17)0.0504 (17)0.0009 (13)0.0069 (13)0.0001 (14)
N50.0439 (15)0.0514 (17)0.0480 (17)0.0004 (13)0.0064 (13)0.0060 (13)
N60.0601 (19)0.073 (2)0.0532 (19)0.0072 (17)0.0165 (16)0.0100 (16)
N70.079 (2)0.068 (2)0.0490 (19)0.0157 (18)0.0009 (17)0.0046 (17)
N80.071 (2)0.063 (2)0.0390 (17)0.0076 (17)0.0063 (15)0.0032 (15)
N90.091 (3)0.057 (2)0.054 (2)0.0044 (18)0.0069 (18)0.0029 (16)
O10.116 (3)0.073 (2)0.0638 (19)0.0227 (19)0.0104 (18)0.0023 (16)
O20.0522 (15)0.084 (2)0.0713 (19)0.0015 (15)0.0128 (14)0.0191 (16)
O30.131 (3)0.137 (4)0.095 (3)0.006 (3)0.029 (3)0.024 (3)
C10.082 (3)0.057 (2)0.070 (3)0.012 (2)0.007 (2)0.005 (2)
C20.105 (4)0.064 (3)0.086 (4)0.028 (3)0.005 (3)0.007 (3)
C30.093 (3)0.056 (3)0.099 (4)0.024 (2)0.011 (3)0.001 (3)
C40.081 (3)0.053 (2)0.080 (3)0.011 (2)0.012 (2)0.006 (2)
C50.110 (4)0.067 (3)0.112 (5)0.018 (3)0.013 (4)0.020 (3)
C60.135 (5)0.097 (4)0.095 (4)0.015 (4)0.008 (4)0.041 (3)
C70.127 (5)0.093 (4)0.088 (4)0.028 (4)0.022 (3)0.032 (3)
C80.093 (3)0.075 (3)0.091 (4)0.023 (3)0.010 (3)0.019 (3)
C90.073 (3)0.056 (2)0.075 (3)0.005 (2)0.004 (2)0.007 (2)
C100.073 (3)0.054 (2)0.063 (3)0.012 (2)0.008 (2)0.0020 (19)
C110.063 (2)0.057 (2)0.059 (2)0.0090 (19)0.000 (2)0.001 (2)
C120.057 (2)0.053 (2)0.047 (2)0.0052 (17)0.0048 (17)0.0039 (17)
C130.048 (2)0.057 (2)0.058 (2)0.0037 (18)0.0050 (18)0.0016 (18)
C140.047 (2)0.071 (3)0.080 (3)0.001 (2)0.010 (2)0.001 (2)
C150.050 (2)0.069 (3)0.081 (3)0.011 (2)0.001 (2)0.007 (2)
C160.064 (2)0.052 (2)0.061 (2)0.0017 (19)0.011 (2)0.0077 (19)
C170.075 (3)0.064 (3)0.072 (3)0.004 (2)0.011 (2)0.008 (2)
C180.106 (4)0.068 (3)0.069 (3)0.001 (3)0.005 (3)0.019 (2)
C190.091 (3)0.079 (3)0.064 (3)0.003 (3)0.013 (3)0.013 (2)
C200.070 (3)0.067 (3)0.060 (3)0.003 (2)0.012 (2)0.006 (2)
C210.054 (2)0.048 (2)0.053 (2)0.0029 (17)0.0006 (17)0.0022 (17)
C220.050 (2)0.048 (2)0.050 (2)0.0012 (16)0.0007 (16)0.0053 (16)
C230.0459 (18)0.047 (2)0.053 (2)0.0008 (16)0.0070 (16)0.0009 (17)
C240.0447 (17)0.0476 (19)0.0386 (18)0.0071 (15)0.0062 (15)0.0008 (15)
C250.123 (5)0.123 (5)0.060 (3)0.036 (4)0.021 (3)0.018 (3)
C260.119 (3)0.127 (5)0.093 (4)0.025 (3)0.021 (2)0.002 (3)
C270.131 (3)0.117 (3)0.093 (3)0.036 (3)0.002 (2)0.010 (3)
C280.109 (3)0.105 (3)0.0665 (12)0.033 (3)0.009 (2)0.005 (2)
C290.126 (3)0.119 (3)0.072 (3)0.026 (3)0.022 (3)0.007 (3)
C300.137 (4)0.138 (4)0.109 (4)0.021 (3)0.032 (3)0.022 (3)
C310.123 (4)0.118 (4)0.103 (3)0.020 (3)0.025 (3)0.017 (3)
C320.126 (4)0.108 (4)0.076 (3)0.045 (4)0.043 (3)0.030 (3)
C330.116 (4)0.105 (4)0.0553 (15)0.061 (3)0.026 (2)0.022 (2)
C340.105 (3)0.088 (3)0.050 (3)0.045 (3)0.000 (2)0.002 (2)
C350.080 (3)0.072 (3)0.042 (2)0.021 (2)0.006 (2)0.0029 (19)
C360.0509 (19)0.048 (2)0.047 (2)0.0081 (16)0.0000 (16)0.0023 (16)
C370.098 (7)0.069 (6)0.091 (7)0.002 (5)0.009 (6)0.005 (5)
C380.104 (4)0.079 (4)0.081 (4)0.007 (3)0.013 (4)0.012 (3)
C390.091 (7)0.082 (6)0.056 (5)0.006 (5)0.024 (5)0.014 (5)
N100.071 (4)0.037 (3)0.057 (4)0.015 (3)0.020 (3)0.011 (3)
O40.105 (4)0.095 (4)0.078 (3)0.016 (3)0.027 (3)0.037 (3)
C400.116 (8)0.080 (7)0.063 (6)0.031 (6)0.002 (6)0.007 (5)
C410.162 (12)0.139 (11)0.189 (15)0.098 (9)0.052 (11)0.082 (10)
C420.157 (12)0.105 (10)0.112 (11)0.033 (9)0.004 (10)0.007 (8)
N110.079 (4)0.050 (4)0.041 (3)0.008 (3)0.015 (3)0.004 (3)
O50.222 (10)0.130 (6)0.054 (4)0.029 (7)0.002 (5)0.058 (4)
O60.115 (5)0.103 (5)0.055 (3)0.005 (4)0.030 (3)0.049 (3)
C430.086 (6)0.071 (6)0.084 (7)0.016 (5)0.003 (5)0.017 (5)
C440.092 (7)0.084 (7)0.076 (6)0.011 (5)0.004 (5)0.033 (5)
C450.082 (4)0.104 (5)0.082 (4)0.000 (4)0.014 (3)0.004 (4)
N120.049 (3)0.103 (5)0.038 (3)0.001 (4)0.000 (3)0.029 (3)
O70.086 (3)0.049 (2)0.038 (2)0.033 (2)0.010 (2)0.0095 (19)
C460.081 (6)0.048 (5)0.096 (7)0.031 (4)0.010 (5)0.001 (5)
C470.078 (6)0.060 (5)0.076 (6)0.007 (4)0.024 (5)0.009 (4)
C480.101 (6)0.051 (4)0.025 (3)0.008 (4)0.005 (4)0.007 (3)
N130.058 (3)0.031 (3)0.050 (4)0.010 (3)0.002 (3)0.009 (2)
Geometric parameters (Å, º) top
Ag1—N52.282 (3)C18—C191.377 (7)
Ag1—S3i2.4869 (10)C18—H18A0.9300
Ag1—S12.5039 (10)C19—C201.378 (6)
Ag1—Ag22.9329 (5)C19—H19A0.9300
Ag1—Ag32.9769 (6)C20—C211.409 (6)
Ag2—N8i2.294 (3)C20—H20A0.9300
Ag2—S1i2.4699 (10)C21—C221.428 (5)
Ag2—S22.4917 (11)C22—C231.459 (5)
Ag2—Ag3i3.0931 (5)C23—H23A0.9300
Ag2—Ag33.1835 (5)C25—C341.364 (8)
Ag3—N22.282 (3)C25—C261.438 (8)
Ag3—S22.4741 (11)C26—C271.330 (10)
Ag3—S32.5020 (10)C26—H26A0.9300
Ag3—Ag2i3.0931 (5)C27—C281.350 (9)
S1—C121.759 (4)C27—H27A0.9300
S1—Ag2i2.4699 (10)C28—C331.436 (7)
S2—C241.755 (4)C28—C291.438 (9)
S3—C361.762 (4)C29—C301.248 (10)
S3—Ag1i2.4869 (10)C29—H29A0.9300
N1—C111.264 (5)C30—C311.438 (10)
N1—N21.384 (5)C30—H30A0.9300
N2—C121.293 (5)C31—C321.363 (9)
N3—C121.335 (6)C31—H31A0.9300
N3—H3A0.8600C32—C331.403 (9)
N3—H3B0.8600C32—H32A0.9300
N4—C231.273 (5)C33—C341.480 (8)
N4—N51.390 (4)C34—C351.454 (6)
N5—C241.310 (5)C35—H35A0.9300
N6—C241.330 (5)C37—N101.432 (12)
N6—H6A0.8600C37—H37A0.9600
N6—H6B0.8600C37—H37B0.9600
N7—C351.270 (6)C37—H37C0.9600
N7—N81.410 (5)C38—N101.516 (12)
N8—C361.302 (5)C38—H38A0.9600
N8—Ag2i2.294 (3)C38—H38B0.9600
N9—C361.315 (5)C38—H38C0.9600
N9—H9A0.8600C39—O41.250 (12)
N9—H9B0.8600C39—N101.302 (11)
O1—C11.354 (6)C39—H39A0.9300
O1—H1B0.8200C40—N111.406 (11)
O2—C131.345 (5)C40—H40A0.9600
O2—H2B0.8200C40—H40B0.9600
O3—C251.361 (8)C40—H40C0.9600
O3—H3C0.8200C41—N111.159 (16)
C1—C101.384 (6)C41—H41A0.9600
C1—C21.411 (7)C41—H41B0.9600
C2—C31.369 (7)C41—H41C0.9600
C2—H2A0.9300C42—O51.052 (16)
C3—C41.377 (7)C42—N111.372 (16)
C3—H3D0.9300C42—H42A0.9300
C4—C91.419 (6)O6—C451.215 (14)
C4—C51.461 (8)C43—N121.425 (13)
C5—C61.340 (9)C43—H43A0.9600
C5—H5A0.9300C43—H43B0.9600
C6—C71.352 (8)C43—H43C0.9600
C6—H6C0.9300C44—N121.415 (13)
C7—C81.377 (8)C44—H44A0.9600
C7—H7B0.9300C44—H44B0.9600
C8—C91.422 (7)C44—H44C0.9600
C8—H8B0.9300C45—N121.320 (13)
C9—C101.428 (6)C45—H45A0.9300
C10—C111.463 (6)O7—C481.171 (10)
C11—H11A0.9300C46—N131.463 (10)
C13—C221.393 (5)C46—H46A0.9600
C13—C141.404 (6)C46—H46B0.9600
C14—C151.343 (7)C46—H46C0.9600
C14—H14A0.9300C47—N131.428 (11)
C15—C161.407 (6)C47—H47A0.9600
C15—H15A0.9300C47—H47B0.9600
C16—C171.423 (6)C47—H47C0.9600
C16—C211.431 (6)C48—N131.338 (10)
C17—C181.334 (7)C48—H48A0.9300
C17—H17A0.9300
N5—Ag1—S3i123.04 (8)C18—C19—C20121.5 (5)
N5—Ag1—S1116.61 (8)C18—C19—H19A119.3
S3i—Ag1—S1114.45 (3)C20—C19—H19A119.3
N5—Ag1—Ag285.53 (8)C19—C20—C21120.8 (4)
S3i—Ag1—Ag278.36 (2)C19—C20—H20A119.6
S1—Ag1—Ag2132.17 (3)C21—C20—H20A119.6
N5—Ag1—Ag382.03 (8)C20—C21—C22124.4 (4)
S3i—Ag1—Ag3134.25 (3)C20—C21—C16117.0 (4)
S1—Ag1—Ag376.10 (2)C22—C21—C16118.6 (4)
Ag2—Ag1—Ag365.183 (11)C13—C22—C21119.4 (3)
N8i—Ag2—S1i115.91 (9)C13—C22—C23119.8 (3)
N8i—Ag2—S2116.15 (9)C21—C22—C23120.8 (3)
S1i—Ag2—S2119.55 (4)N4—C23—C22123.1 (3)
N8i—Ag2—Ag181.60 (8)N4—C23—H23A118.5
S1i—Ag2—Ag1136.94 (3)C22—C23—H23A118.5
S2—Ag2—Ag179.02 (2)N5—C24—N6124.4 (3)
N8i—Ag2—Ag3i83.84 (8)N5—C24—S2120.5 (3)
S1i—Ag2—Ag3i74.37 (2)N6—C24—S2115.1 (3)
S2—Ag2—Ag3i139.12 (3)O3—C25—C34121.8 (5)
Ag1—Ag2—Ag3i68.654 (13)O3—C25—C26118.3 (6)
N8i—Ag2—Ag3138.11 (8)C34—C25—C26119.9 (6)
S1i—Ag2—Ag3102.31 (3)C27—C26—C25118.0 (7)
S2—Ag2—Ag349.88 (2)C27—C26—H26A121.0
Ag1—Ag2—Ag358.076 (12)C25—C26—H26A121.0
Ag3i—Ag2—Ag390.886 (14)C26—C27—C28127.3 (7)
N2—Ag3—S2123.17 (9)C26—C27—H27A116.3
N2—Ag3—S3109.62 (9)C28—C27—H27A116.3
S2—Ag3—S3118.61 (3)C27—C28—C33117.0 (6)
N2—Ag3—Ag187.24 (8)C27—C28—C29125.3 (6)
S2—Ag3—Ag178.42 (3)C33—C28—C29117.7 (6)
S3—Ag3—Ag1136.20 (3)C30—C29—C28122.0 (7)
N2—Ag3—Ag2i80.83 (8)C30—C29—H29A119.0
S2—Ag3—Ag2i137.87 (3)C28—C29—H29A119.0
S3—Ag3—Ag2i75.09 (2)C29—C30—C31122.4 (8)
Ag1—Ag3—Ag2i67.966 (11)C29—C30—H30A118.8
N2—Ag3—Ag2143.62 (8)C31—C30—H30A118.8
S2—Ag3—Ag250.37 (2)C32—C31—C30118.7 (7)
S3—Ag3—Ag2101.20 (3)C32—C31—H31A120.7
Ag1—Ag3—Ag256.741 (12)C30—C31—H31A120.7
Ag2i—Ag3—Ag289.114 (14)C31—C32—C33120.9 (6)
C12—S1—Ag2i104.32 (14)C31—C32—H32A119.5
C12—S1—Ag1108.93 (14)C33—C32—H32A119.5
Ag2i—S1—Ag186.06 (3)C32—C33—C28118.1 (5)
C24—S2—Ag3106.25 (12)C32—C33—C34124.0 (5)
C24—S2—Ag2104.41 (12)C28—C33—C34117.9 (6)
Ag3—S2—Ag279.74 (3)C25—C34—C35121.0 (5)
C36—S3—Ag1i107.32 (13)C25—C34—C33119.8 (5)
C36—S3—Ag3101.81 (12)C35—C34—C33119.1 (5)
Ag1i—S3—Ag385.95 (3)N7—C35—C34121.9 (5)
C11—N1—N2115.3 (3)N7—C35—H35A119.1
C12—N2—N1114.6 (3)C34—C35—H35A119.1
C12—N2—Ag3121.3 (3)N8—C36—N9124.8 (4)
N1—N2—Ag3124.1 (2)N8—C36—S3119.2 (3)
C12—N3—H3A120.0N9—C36—S3116.0 (3)
C12—N3—H3B120.0N10—C37—H37A109.5
H3A—N3—H3B120.0N10—C37—H37B109.5
C23—N4—N5115.3 (3)H37A—C37—H37B109.5
C24—N5—N4114.3 (3)N10—C37—H37C109.5
C24—N5—Ag1122.4 (2)H37A—C37—H37C109.5
N4—N5—Ag1122.9 (2)H37B—C37—H37C109.5
C24—N6—H6A120.0N10—C38—H38A109.5
C24—N6—H6B120.0N10—C38—H38B109.5
H6A—N6—H6B120.0H38A—C38—H38B109.5
C35—N7—N8114.1 (4)N10—C38—H38C109.5
C36—N8—N7114.2 (3)H38A—C38—H38C109.5
C36—N8—Ag2i121.0 (3)H38B—C38—H38C109.5
N7—N8—Ag2i120.3 (2)O4—C39—N10122.9 (9)
C36—N9—H9A120.0O4—C39—H39A118.5
C36—N9—H9B120.0N10—C39—H39A118.5
H9A—N9—H9B120.0C39—N10—C37120.2 (8)
C1—O1—H1B109.5C39—N10—C38118.4 (8)
C13—O2—H2B109.5C37—N10—C38121.3 (7)
C25—O3—H3C109.5N11—C40—H40A109.5
O1—C1—C10122.3 (4)N11—C40—H40B109.5
O1—C1—C2116.5 (4)H40A—C40—H40B109.5
C10—C1—C2121.1 (5)N11—C40—H40C109.5
C3—C2—C1119.2 (5)H40A—C40—H40C109.5
C3—C2—H2A120.4H40B—C40—H40C109.5
C1—C2—H2A120.4N11—C41—H41A109.5
C2—C3—C4121.7 (5)N11—C41—H41B109.5
C2—C3—H3D119.1H41A—C41—H41B109.5
C4—C3—H3D119.1N11—C41—H41C109.5
C3—C4—C9120.1 (4)H41A—C41—H41C109.5
C3—C4—C5121.9 (5)H41B—C41—H41C109.5
C9—C4—C5118.0 (5)O5—C42—N11137.7 (15)
C6—C5—C4121.0 (5)O5—C42—H42A111.2
C6—C5—H5A119.5N11—C42—H42A111.2
C4—C5—H5A119.5C41—N11—C42119.4 (11)
C5—C6—C7121.3 (6)C41—N11—C40113.8 (10)
C5—C6—H6C119.3C42—N11—C40126.8 (9)
C7—C6—H6C119.3N12—C43—H43A109.5
C6—C7—C8120.7 (6)N12—C43—H43B109.5
C6—C7—H7B119.6H43A—C43—H43B109.5
C8—C7—H7B119.6N12—C43—H43C109.5
C7—C8—C9121.8 (5)H43A—C43—H43C109.5
C7—C8—H8B119.1H43B—C43—H43C109.5
C9—C8—H8B119.1N12—C44—H44A109.5
C4—C9—C8117.1 (4)N12—C44—H44B109.5
C4—C9—C10118.7 (4)H44A—C44—H44B109.5
C8—C9—C10124.2 (4)N12—C44—H44C109.5
C1—C10—C9119.1 (4)H44A—C44—H44C109.5
C1—C10—C11119.9 (4)H44B—C44—H44C109.5
C9—C10—C11120.9 (4)O6—C45—N12123.7 (11)
N1—C11—C10123.2 (4)O6—C45—H45A118.1
N1—C11—H11A118.4N12—C45—H45A118.1
C10—C11—H11A118.4C45—N12—C44120.4 (9)
N2—C12—N3124.7 (4)C45—N12—C43122.3 (9)
N2—C12—S1120.5 (3)C44—N12—C43117.2 (7)
N3—C12—S1114.8 (3)N13—C46—H46A109.5
O2—C13—C22122.2 (3)N13—C46—H46B109.5
O2—C13—C14117.3 (4)H46A—C46—H46B109.5
C22—C13—C14120.5 (4)N13—C46—H46C109.5
C15—C14—C13121.0 (4)H46A—C46—H46C109.5
C15—C14—H14A119.5H46B—C46—H46C109.5
C13—C14—H14A119.5N13—C47—H47A109.5
C14—C15—C16121.3 (4)N13—C47—H47B109.5
C14—C15—H15A119.4H47A—C47—H47B109.5
C16—C15—H15A119.4N13—C47—H47C109.5
C15—C16—C17121.5 (4)H47A—C47—H47C109.5
C15—C16—C21119.2 (4)H47B—C47—H47C109.5
C17—C16—C21119.3 (4)O7—C48—N13127.4 (7)
C18—C17—C16121.3 (4)O7—C48—H48A116.3
C18—C17—H17A119.3N13—C48—H48A116.3
C16—C17—H17A119.3C48—N13—C47118.8 (6)
C17—C18—C19120.1 (5)C48—N13—C46122.1 (7)
C17—C18—H18A119.9C47—N13—C46119.1 (7)
C19—C18—H18A119.9
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O40.861.982.835 (8)175
N6—H6B···O6i0.862.002.845 (7)166
N9—H9A···O5ii0.862.313.049 (8)145
N9—H9B···O70.862.022.870 (6)172
O1—H1B···N10.821.862.588 (5)147
O2—H2B···N40.821.852.583 (4)148
O3—H3C···N70.821.862.587 (5)147
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag6(C12H10N3OS)6]·4C3H7NO
Mr2405.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.604 (3), 18.877 (3), 24.816 (3)
β (°) 94.763 (3)
V3)11486 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.238, 0.373
No. of measured, independent and
observed [I > 2s(I)] reflections
28454, 10056, 7829
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.145, 1.08
No. of reflections10056
No. of parameters667
No. of restraints63
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.42

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O40.861.982.835 (8)174.7
N6—H6B···O6i0.862.002.845 (7)165.6
N9—H9A···O5ii0.862.313.049 (8)144.5
N9—H9B···O70.862.022.870 (6)172.2
O1—H1B···N10.821.862.588 (5)147.0
O2—H2B···N40.821.852.583 (4)147.6
O3—H3C···N70.821.862.587 (5)146.7
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the National Science and Technology Support Program (2012BAC12B03), the Postdoctoral Science Foundation of Central South University and the Fundamental Research Funds for the Central Universities (No. 2012QNZT001).

References

First citationAshfield, L. J., Cowley, A. R., Dilworth, J. R. & Donnelly, P. S. (2004). Inorg. Chem. 43, 4121–4123.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897–901.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastiñeiras, A. & Pedrido, R. (2009). Inorg. Chem. 48, 4847–4855.  Web of Science PubMed Google Scholar
First citationForward, J. M., Bohmann, D., Fackler, J. P. & Staples, R. J. (1995). Inorg. Chem. 34, 6330–6336.  CrossRef CAS Web of Science Google Scholar
First citationHan, W., Yi, L., Liu, Z. Q., Gu, W., Yan, S. P., Cheng, P., Liao, D. Z. & Jiang, Z. H. (2004). Eur. J. Inorg. Chem. pp. 2130–2136.  Web of Science CSD CrossRef Google Scholar
First citationLi, M. X., Zhang, D., Zhang, L. Z. & Niu, J. Y. (2010). Inorg. Chem. Commun. 13, 1268–1271.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnodera, K., Kasuga, N. C., Takashima, T., Hara, A., Amano, A., Murakami, H. & Nomiya, K. (2007). Dalton Trans. pp. 3646–3652.  Web of Science CSD CrossRef Google Scholar
First citationPedrido, R., Romero, M. J., Bermejo, M. R., Martínez-Calvo, M., González-Noya, A. M. & Zaragoza, G. (2009). Dalton Trans. pp. 8329–8340.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Q. Z. (2011). Chin. J. Struct. Chem. 30, 1355–1360.  CAS Google Scholar
First citationSun, Q. Z. & Chai, L. Y. (2012). Chin. J. Struct. Chem. 31, 408–414.  CAS Google Scholar
First citationSun, Q. Z., Liao, S. Y., Chai, L. Y., Xu, X. W., Yao, J. J. & Fang, Q. J. L. (2012). Chin. J. Struct. Chem. 31, 1229–1234.  CAS Google Scholar
First citationXu, C. Y., Sun, Q. Z., Chen, P. & Chai, L. Y. (2011). Chin. J. Struct. Chem. 30, 951–956.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds