organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2615-o2616

4-Methyl-3-phenyl-2,4-di­hydro­pyrazolo­[4,3-c][1,2]benzo­thia­zine 5,5-dioxide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, cApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: matloob_123@yahoo.com

(Received 12 July 2012; accepted 23 July 2012; online 1 August 2012)

In the title mol­ecule, C16H13N3O2S, the heterocyclic thia­zine ring adopts a twist chair conformation with the S atom and an adjacent C atom displaced by 0.946 (5) and 0.405 (6) Å, respectively, on the same side of the mean plane formed by the remaining ring atoms. The mean planes of the benzene rings make dihedral angles of 16.61 (10) and 15.32 (10)° with the mean plane of the pyrazole ring. The mol­ecular structure is consolidated by intra­molecular C—H⋯N inter­actions and the crystal packing is stabilized by N—H⋯O and C—H⋯N hydrogen bonds. The crystal studied was an inversion twin with the refined ratio of the twin components being 0.53 (11):0.47 (11).

Related literature

For the biological activity of related compounds, see: Turck et al. (1996[Turck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13-16.]); Silverstein et al. (2000[Silverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247-1255.]); Lombardino et al. (1973[Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493-496.]); Zinnes et al. (1973[Zinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44-48.]); Ahmad et al. (2010a[Ahmad, M., Siddiqui, H. L., Ahmad, S., Parvez, M. & Tizzard, G. J. (2010a). J. Chem. Crystallogr. 40, 1188-1194.],b[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010b). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.], 2009[Siddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279-o2280.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N3O2S

  • Mr = 311.35

  • Orthorhombic, P n a 21

  • a = 12.1028 (5) Å

  • b = 16.3934 (7) Å

  • c = 7.0962 (3) Å

  • V = 1407.93 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 K

  • 0.20 × 0.10 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.953, Tmax = 0.986

  • 8451 measured reflections

  • 3037 independent reflections

  • 2798 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.112

  • S = 1.08

  • 3037 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: inversion twin; used 1306 unmerged Friedel pairs (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.53 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2i 0.86 2.12 2.912 (3) 152
C3—H3⋯N3ii 0.93 2.56 3.429 (4) 155
C16—H16⋯N1 0.93 2.62 3.263 (4) 127
Symmetry codes: (i) [-x+2, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Among the broad class of heterocyclic compounds, pyrazole and benzothiazine nuclei are well known for their biological activity potential. Oxicam drugs are benzothiazine based potent anti-inflammatory and analgesic drugs (Turck et al. 1996; Lombardino et al., 1973; Zinnes et al., 1973), whereas celecoxib, an anti-inflammatory drug and selective inhibitor of cox-2 enzyme, contains pyrazole fragment (Silverstein et al., 2000). Keeping in view these facts and figures, we have prepared some pyrazolobenzothiazines which contain both of these medicinally important heterocycles fused with eachother (Ahmad et al., 2010a & b). We report here the crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles observed in closely related structures (Siddiqui et al., 2008; 2009). The heterocyclic thiazine ring adopts a twist chair conformation with atoms S1 and C1 displaced by 0.946 (5) and 0.405 (6) Å, respectively, on the same side from the mean plane formed by the remaining ring atoms (N1/C6–C8). The mean planes of the benzene rings C1–C6 and C11–C16 make dihedral angles 16.61 (10) and 15.32 (10)°, respectively, with the mean-plane of the pyrazole ring (N2/N3/C7/C8/C10).

The molecular structure of the title compound is consolidated by intramolecular interactions C10—H10C···O1 and C16—H16···N1. The crystal structure is stabilized by intermolecular hydrogen bonding interactions N2—H2N···O2 and C3—H3···N3 (Fig. 2 and Table 1).

Related literature top

For the biological activity of related compounds, see: Turck et al. (1996); Silverstein et al. (2000); Lombardino et al. (1973); Zinnes et al. (1973); Ahmad et al. (2010a,b). For related structures, see: Siddiqui et al. (2008, 2009).

Experimental top

A mixture of 3-benzoyl-4-hydroxy-2-methyl-2H-1,2-benzothiazine 1,1-dioxide (5.0 g, 0.020 mol), hydrazine hydrate (5 ml) and ethanol (30 ml) was refluxed for 5 h followed by the removal of solvent under vacuum. The residue obtained was washed with cold water to get the title compound as a white crystalline product. Transparent crystals suitable for X-ray crystallographic studies were grown from a CHCl3 solution at room temperature by slow evaporation.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å, for aryl and methyl type H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(N/C). An absolute structure was not determined as the crystal was a racemic twin with BASF parameter refined to 0.53 (11); 1306 Friedel pairs of reflections were not merged. A low angle reflection (0 1 1) was omitted as it was hindered by the beam stop.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding are omitted for clarity.
4-Methyl-3-phenyl-2,4-dihydropyrazolo[4,3-c][1,2]benzothiazine 5,5-dioxide top
Crystal data top
C16H13N3O2SF(000) = 648
Mr = 311.35Dx = 1.469 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1837 reflections
a = 12.1028 (5) Åθ = 1.0–27.5°
b = 16.3934 (7) ŵ = 0.24 mm1
c = 7.0962 (3) ÅT = 295 K
V = 1407.93 (10) Å3Prism, colourless
Z = 40.20 × 0.10 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3037 independent reflections
Radiation source: fine-focus sealed tube2798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω and ϕ scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1515
Tmin = 0.953, Tmax = 0.986k = 2121
8451 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0308P)2 + 1.3942P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3037 reflectionsΔρmax = 0.20 e Å3
201 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: racemic twin; used 1306 unmerged Friedel pairs (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.53 (11)
Crystal data top
C16H13N3O2SV = 1407.93 (10) Å3
Mr = 311.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.1028 (5) ŵ = 0.24 mm1
b = 16.3934 (7) ÅT = 295 K
c = 7.0962 (3) Å0.20 × 0.10 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3037 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2798 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.986Rint = 0.049
8451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.20 e Å3
S = 1.08Δρmin = 0.24 e Å3
3037 reflectionsAbsolute structure: racemic twin; used 1306 unmerged Friedel pairs (Flack, 1983)
201 parametersAbsolute structure parameter: 0.53 (11)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68932 (5)0.05378 (4)0.08389 (12)0.03515 (17)
O10.57190 (16)0.05177 (14)0.1024 (4)0.0499 (6)
O20.73666 (18)0.03884 (14)0.0982 (3)0.0431 (5)
N10.74275 (18)0.01482 (14)0.2279 (4)0.0337 (5)
N21.03707 (18)0.01490 (15)0.2736 (4)0.0382 (6)
H2N1.10190.03580.28520.046*
N31.0195 (2)0.06632 (14)0.2734 (4)0.0390 (6)
C10.7415 (2)0.14793 (18)0.1673 (4)0.0358 (6)
C20.6783 (3)0.2185 (2)0.1532 (5)0.0440 (8)
H20.60650.21640.10680.053*
C30.7239 (3)0.2915 (2)0.2091 (5)0.0495 (8)
H30.68260.33920.19970.059*
C40.8309 (3)0.29478 (19)0.2793 (5)0.0478 (8)
H40.86100.34470.31480.057*
C50.8928 (3)0.22450 (18)0.2968 (5)0.0408 (7)
H50.96370.22710.34710.049*
C60.8497 (2)0.14990 (17)0.2397 (4)0.0332 (6)
C70.9096 (2)0.07256 (17)0.2537 (4)0.0327 (6)
C80.8602 (2)0.00418 (16)0.2414 (4)0.0307 (6)
C90.9449 (2)0.06124 (16)0.2543 (4)0.0324 (6)
C100.6875 (3)0.0225 (2)0.4135 (5)0.0475 (8)
H10A0.71470.07000.47740.057*
H10B0.70270.02510.48800.057*
H10C0.60920.02750.39530.057*
C110.9476 (2)0.15030 (17)0.2437 (4)0.0330 (6)
C121.0427 (3)0.19349 (18)0.2942 (5)0.0399 (7)
H121.10400.16580.34040.048*
C131.0454 (3)0.2779 (2)0.2753 (5)0.0473 (8)
H131.10870.30640.30950.057*
C140.9552 (3)0.31974 (19)0.2063 (5)0.0466 (8)
H140.95770.37620.19350.056*
C150.8613 (3)0.2772 (2)0.1563 (5)0.0463 (8)
H150.80020.30510.10990.056*
C160.8575 (3)0.19346 (19)0.1748 (5)0.0405 (7)
H160.79370.16550.14070.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0238 (3)0.0454 (4)0.0363 (3)0.0041 (3)0.0014 (3)0.0004 (4)
O10.0255 (9)0.0642 (14)0.0602 (16)0.0059 (9)0.0010 (12)0.0025 (13)
O20.0328 (11)0.0613 (14)0.0351 (12)0.0066 (10)0.0014 (9)0.0053 (11)
N10.0255 (11)0.0361 (12)0.0394 (13)0.0005 (9)0.0004 (10)0.0021 (11)
N20.0275 (11)0.0361 (12)0.0511 (16)0.0026 (10)0.0064 (11)0.0006 (12)
N30.0299 (12)0.0363 (12)0.0508 (16)0.0026 (9)0.0067 (12)0.0013 (12)
C10.0328 (14)0.0401 (16)0.0343 (15)0.0047 (12)0.0035 (12)0.0021 (13)
C20.0412 (17)0.0538 (19)0.0370 (16)0.0166 (14)0.0052 (14)0.0069 (15)
C30.060 (2)0.0394 (17)0.049 (2)0.0164 (15)0.0029 (17)0.0051 (15)
C40.062 (2)0.0345 (15)0.0468 (19)0.0032 (14)0.0076 (17)0.0014 (14)
C50.0442 (16)0.0382 (16)0.0399 (17)0.0011 (13)0.0043 (14)0.0002 (13)
C60.0334 (13)0.0364 (14)0.0298 (14)0.0009 (11)0.0019 (12)0.0022 (12)
C70.0282 (13)0.0352 (13)0.0348 (15)0.0003 (11)0.0022 (12)0.0015 (12)
C80.0247 (12)0.0365 (14)0.0310 (14)0.0012 (10)0.0027 (11)0.0007 (12)
C90.0285 (13)0.0369 (14)0.0320 (14)0.0004 (10)0.0045 (12)0.0029 (13)
C100.0391 (18)0.0520 (19)0.051 (2)0.0004 (14)0.0098 (15)0.0118 (16)
C110.0320 (13)0.0386 (14)0.0283 (14)0.0022 (11)0.0004 (11)0.0007 (12)
C120.0375 (15)0.0390 (15)0.0433 (18)0.0030 (12)0.0069 (14)0.0004 (14)
C130.0493 (18)0.0417 (16)0.051 (2)0.0117 (14)0.0067 (16)0.0053 (16)
C140.061 (2)0.0300 (14)0.049 (2)0.0025 (14)0.0047 (16)0.0004 (13)
C150.0499 (19)0.0404 (16)0.0487 (19)0.0091 (14)0.0037 (16)0.0025 (15)
C160.0379 (15)0.0398 (15)0.0439 (18)0.0005 (12)0.0069 (14)0.0015 (14)
Geometric parameters (Å, º) top
S1—O11.428 (2)C5—H50.9300
S1—O21.435 (2)C6—C71.464 (4)
S1—N11.651 (3)C7—C81.395 (4)
S1—C11.770 (3)C8—C91.390 (4)
N1—C81.436 (3)C9—C111.462 (4)
N1—C101.483 (4)C10—H10A0.9600
N2—N31.348 (3)C10—H10B0.9600
N2—C91.356 (3)C10—H10C0.9600
N2—H2N0.8600C11—C161.388 (4)
N3—C71.342 (3)C11—C121.398 (4)
C1—C21.391 (4)C12—C131.390 (4)
C1—C61.406 (4)C12—H120.9300
C2—C31.377 (5)C13—C141.379 (5)
C2—H20.9300C13—H130.9300
C3—C41.389 (5)C14—C151.380 (5)
C3—H30.9300C14—H140.9300
C4—C51.380 (4)C15—C161.379 (4)
C4—H40.9300C15—H150.9300
C5—C61.390 (4)C16—H160.9300
O1—S1—O2118.47 (16)N3—C7—C6124.3 (2)
O1—S1—N1108.48 (14)C8—C7—C6124.4 (2)
O2—S1—N1106.54 (13)C9—C8—C7106.7 (2)
O1—S1—C1110.17 (14)C9—C8—N1130.7 (2)
O2—S1—C1107.91 (14)C7—C8—N1122.5 (2)
N1—S1—C1104.31 (14)N2—C9—C8103.6 (2)
C8—N1—C10113.4 (3)N2—C9—C11123.1 (2)
C8—N1—S1110.27 (19)C8—C9—C11133.2 (2)
C10—N1—S1115.5 (2)N1—C10—H10A109.5
N3—N2—C9115.1 (2)N1—C10—H10B109.5
N3—N2—H2N122.5H10A—C10—H10B109.5
C9—N2—H2N122.5N1—C10—H10C109.5
C7—N3—N2103.4 (2)H10A—C10—H10C109.5
C2—C1—C6121.3 (3)H10B—C10—H10C109.5
C2—C1—S1120.3 (2)C16—C11—C12118.6 (3)
C6—C1—S1118.3 (2)C16—C11—C9120.6 (3)
C3—C2—C1118.8 (3)C12—C11—C9120.7 (3)
C3—C2—H2120.6C13—C12—C11119.9 (3)
C1—C2—H2120.6C13—C12—H12120.0
C2—C3—C4120.7 (3)C11—C12—H12120.0
C2—C3—H3119.6C14—C13—C12120.7 (3)
C4—C3—H3119.6C14—C13—H13119.6
C5—C4—C3120.4 (3)C12—C13—H13119.6
C5—C4—H4119.8C15—C14—C13119.4 (3)
C3—C4—H4119.8C15—C14—H14120.3
C4—C5—C6120.3 (3)C13—C14—H14120.3
C4—C5—H5119.9C16—C15—C14120.4 (3)
C6—C5—H5119.9C16—C15—H15119.8
C5—C6—C1118.4 (3)C14—C15—H15119.8
C5—C6—C7123.8 (3)C15—C16—C11120.9 (3)
C1—C6—C7117.8 (3)C15—C16—H16119.5
N3—C7—C8111.2 (2)C11—C16—H16119.5
O1—S1—N1—C8168.8 (2)C5—C6—C7—C8163.6 (3)
O2—S1—N1—C862.7 (2)C1—C6—C7—C815.2 (4)
C1—S1—N1—C851.3 (2)N3—C7—C8—C90.0 (4)
O1—S1—N1—C1038.5 (3)C6—C7—C8—C9177.8 (3)
O2—S1—N1—C10167.1 (2)N3—C7—C8—N1177.3 (3)
C1—S1—N1—C1078.9 (2)C6—C7—C8—N14.9 (5)
C9—N2—N3—C70.3 (4)C10—N1—C8—C986.5 (4)
O1—S1—C1—C230.8 (3)S1—N1—C8—C9142.1 (3)
O2—S1—C1—C299.9 (3)C10—N1—C8—C790.0 (3)
N1—S1—C1—C2147.0 (2)S1—N1—C8—C741.3 (4)
O1—S1—C1—C6152.0 (2)N3—N2—C9—C80.3 (4)
O2—S1—C1—C677.3 (3)N3—N2—C9—C11177.4 (3)
N1—S1—C1—C635.8 (3)C7—C8—C9—N20.2 (3)
C6—C1—C2—C30.9 (5)N1—C8—C9—N2176.8 (3)
S1—C1—C2—C3176.2 (3)C7—C8—C9—C11177.2 (3)
C1—C2—C3—C40.4 (5)N1—C8—C9—C115.8 (6)
C2—C3—C4—C51.0 (6)N2—C9—C11—C16162.7 (3)
C3—C4—C5—C61.7 (5)C8—C9—C11—C1614.3 (5)
C4—C5—C6—C11.1 (5)N2—C9—C11—C1214.2 (5)
C4—C5—C6—C7179.8 (3)C8—C9—C11—C12168.7 (3)
C2—C1—C6—C50.2 (4)C16—C11—C12—C130.1 (5)
S1—C1—C6—C5176.9 (2)C9—C11—C12—C13177.2 (3)
C2—C1—C6—C7178.6 (3)C11—C12—C13—C140.3 (6)
S1—C1—C6—C74.2 (4)C12—C13—C14—C150.2 (6)
N2—N3—C7—C80.2 (3)C13—C14—C15—C160.1 (6)
N2—N3—C7—C6178.0 (3)C14—C15—C16—C110.0 (5)
C5—C6—C7—N318.9 (5)C12—C11—C16—C150.0 (5)
C1—C6—C7—N3162.4 (3)C9—C11—C16—C15177.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.862.122.912 (3)152
C3—H3···N3ii0.932.563.429 (4)155
C10—H10C···O10.962.492.883 (4)104
C16—H16···N10.932.623.263 (4)127
Symmetry codes: (i) x+2, y, z+1/2; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H13N3O2S
Mr311.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)12.1028 (5), 16.3934 (7), 7.0962 (3)
V3)1407.93 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.10 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.953, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
8451, 3037, 2798
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.112, 1.08
No. of reflections3037
No. of parameters201
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24
Absolute structureRacemic twin; used 1306 unmerged Friedel pairs (Flack, 1983)
Absolute structure parameter0.53 (11)

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.862.122.912 (3)152.4
C3—H3···N3ii0.932.563.429 (4)155.1
C16—H16···N10.932.623.263 (4)126.7
Symmetry codes: (i) x+2, y, z+1/2; (ii) x1/2, y1/2, z.
 

Footnotes

This paper is dedicated to Dr Hamid Latif Siddiqui who passed away to heaven on July 26, 2012.

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Ahmad, S., Parvez, M. & Tizzard, G. J. (2010a). J. Chem. Crystallogr. 40, 1188–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010b). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279–o2280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSilverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247–1255.  Web of Science CrossRef CAS Google Scholar
First citationTurck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13–16.  CrossRef PubMed Google Scholar
First citationZinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44–48.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2615-o2616
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds