metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tri­aqua­copper(II)]-μ-2,2′-bi­pyridine-3,3′-di­carboxyl­ato-κ3N,N′:O] monohydrate]

aDepartment of Materials and Chemical Engineering, Ministry of Education Key Laboratory of Application Technology of Hainan Superior Resources Chemical Materials, Hainan University, Haikou 570228, Hainan Province, People's Republic of China
*Correspondence e-mail: panqinhe@163.com

(Received 12 October 2011; accepted 3 November 2011; online 9 November 2011)

The title compound, {[Cu(C12H6N2O4)(H2O)3]·H2O}n, was synthesized under hydro­thermal conditions. The Cu2+ ion is six-coordinated by three water O atoms, and two N atoms and one O atom of the 2,2′-bipyridine-3,3′-dicarboxyl­ate bridging ligand in a sligthly distorted octa­hedral environment. The 2,2-bipyridine-3,3′-dicarboxyl­ate bridges link the Cu2+ ions into chains along the b-axis direction. These chains are further linked by O—H⋯O hydrogen bonds involving the water solvent mol­ecules, forming a three-dimensional framework.

Related literature

For potential applications of coordination polymers in drug delivery, shape-selective sorption/separation and catalysis, see: Chen & Tong (2007[Chen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162-170.]); Zeng et al. (2009[Zeng, T.-F., Hu, X. & Bu, X.-H. (2009). Chem. Soc. Rev. 38, 469-480.]). Their structures vary from one-dimensional to three-dimensional architectures, see: Du & Bu (2009[Du, M. & Bu, X.-H. (2009). Bull. Chem. Soc. Jpn, 80, 539-554.]); Qiu & Zhu (2009[Qiu, S.-L. & Zhu, G.-S. (2009). Coord. Chem. Rev. 253, 2891-2911.]). For our recent research on the synthesis of coordination polymers, see: Pan et al. (2010a[Pan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453-457.],b[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198-4204.],c[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010c). Chin. J. Inorg. Chem. 26, 2299-2302.], 2011[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527-531.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H6N2O4)(H2O)3]·H2O

  • Mr = 377.79

  • Monoclinic, P 21 /n

  • a = 9.950 (4) Å

  • b = 9.161 (4) Å

  • c = 15.974 (7) Å

  • β = 96.848 (8)°

  • V = 1445.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 296 K

  • 0.30 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.722, Tmax = 0.792

  • 10263 measured reflections

  • 3585 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.153

  • S = 1.08

  • 3585 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1Wi 0.85 1.84 2.669 (5) 167
O5—H5⋯O4ii 0.85 1.86 2.689 (4) 167
O6—H6A⋯O3iii 0.85 1.88 2.715 (5) 169
O6—H6⋯O1i 0.85 2.43 3.282 (5) 180
O7—H7A⋯O4i 0.85 1.80 2.642 (4) 170
O7—H7⋯O1ii 0.85 1.95 2.711 (4) 149
O1W—H1WA⋯O1 0.85 2.11 2.850 (5) 146
O1W—H1W⋯O3 0.85 2.01 2.854 (6) 170
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of coordination polymers have attracted increasing attention in recent years because of their potential applications in drug delivery, shape-selective sorption/separation, and catalysis (Chen et al., 2007 and Zeng et al., 2009). Their structures vary from one-dimensional to three-dimensional architectures (Qiu et al., 2009 and Du et al., 2009). In our recent works, our research interest has been focused on the synthesis of coordination polymers (Pan et al., 2010a,b,c and 2011). Here we present a Cu-containing coordination polymer with one-dimensional chain structure.

As shown in Fig. 1, the asymmetric part of crystal structure of the title compound consists of an Cu atoms, a 2,2'-bipyridine-3,3'-dicarboxylate (bpdc) unit, three coordinated water molecules and one solvate water molecules. The Cu center is six-coordinated by four O atoms and two N atoms. Three of the four O atoms are from three coordination water molecules and the last one is from the carboxylate of the bpdc unit, whereas both N atoms are from the bridging bpdc unit. By this way, the Cu centers and the bpdc units form a chain-like structure, and these chains are further linked by hrydrogen bonds involving the solvent water molecules to from a three-dimensional superamolecular framework (see Table 1).

Related literature top

For potential applications of coordination polymers in drug delivery, shape-selective sorption/separation and catalysis, see: Chen & Tong (2007); Zeng et al. (2009). Their structures vary from one-dimensional to three-dimensional architectures, see: Du & Bu (2009); Qiu & Zhu (2009). For our recent research on the synthesis of coordination polymers, see: Pan et al. (2010a,b,c, 2011).

Experimental top

In a typical synthesis, a mixture of CuSO4 (0.032 g), bpdc (0.026 g), NaOH (0.008 g), 2,2'-bipyridine (0.016 g) and H2O (10 ml), was placed into a 25 ml Teflon-lined reactor under autogenous pressure at 100 °C for 3 days.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.85 Å) and allowed to ride on their parent atoms with Uĩso~(H) = 1.2Ueq(parent atom).

Structure description top

The design and synthesis of coordination polymers have attracted increasing attention in recent years because of their potential applications in drug delivery, shape-selective sorption/separation, and catalysis (Chen et al., 2007 and Zeng et al., 2009). Their structures vary from one-dimensional to three-dimensional architectures (Qiu et al., 2009 and Du et al., 2009). In our recent works, our research interest has been focused on the synthesis of coordination polymers (Pan et al., 2010a,b,c and 2011). Here we present a Cu-containing coordination polymer with one-dimensional chain structure.

As shown in Fig. 1, the asymmetric part of crystal structure of the title compound consists of an Cu atoms, a 2,2'-bipyridine-3,3'-dicarboxylate (bpdc) unit, three coordinated water molecules and one solvate water molecules. The Cu center is six-coordinated by four O atoms and two N atoms. Three of the four O atoms are from three coordination water molecules and the last one is from the carboxylate of the bpdc unit, whereas both N atoms are from the bridging bpdc unit. By this way, the Cu centers and the bpdc units form a chain-like structure, and these chains are further linked by hrydrogen bonds involving the solvent water molecules to from a three-dimensional superamolecular framework (see Table 1).

For potential applications of coordination polymers in drug delivery, shape-selective sorption/separation and catalysis, see: Chen & Tong (2007); Zeng et al. (2009). Their structures vary from one-dimensional to three-dimensional architectures, see: Du & Bu (2009); Qiu & Zhu (2009). For our recent research on the synthesis of coordination polymers, see: Pan et al. (2010a,b,c, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of complex. Ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1/2 - x, -1/2 + y, 1/2 - z; (ii) 1/2 - x, 1/2 - y, 1/2 - z.]
catena-Poly[[[triaquacopper(II)]-µ-2,2'-bipyridine-3,3'-dicarboxylato- κ3N,N':O] monohydrate] top
Crystal data top
[Cu(C12H6N2O4)(H2O)3]·H2OZ = 4
Mr = 377.79F(000) = 772
Monoclinic, P21/nDx = 1.736 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.950 (4) Åθ = 1.0–28.4°
b = 9.161 (4) ŵ = 1.56 mm1
c = 15.974 (7) ÅT = 296 K
β = 96.848 (8)°Rod-like, blue
V = 1445.7 (10) Å30.3 × 0.18 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3585 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 5.00 pixels mm-1θmax = 28.4°, θmin = 2.3°
phi and ω scansh = 1013
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.722, Tmax = 0.792l = 2121
10263 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.4177P]
where P = (Fo2 + 2Fc2)/3
3585 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[Cu(C12H6N2O4)(H2O)3]·H2OV = 1445.7 (10) Å3
Mr = 377.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.950 (4) ŵ = 1.56 mm1
b = 9.161 (4) ÅT = 296 K
c = 15.974 (7) Å0.3 × 0.18 × 0.15 mm
β = 96.848 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3585 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2268 reflections with I > 2σ(I)
Tmin = 0.722, Tmax = 0.792Rint = 0.062
10263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.08Δρmax = 1.02 e Å3
3585 reflectionsΔρmin = 1.13 e Å3
208 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.03139 (5)0.32126 (5)0.24233 (3)0.02945 (18)
O10.5391 (3)0.5386 (4)0.1205 (3)0.0636 (12)
O20.4238 (3)0.6377 (3)0.21712 (17)0.0274 (6)
O30.4864 (3)0.2420 (4)0.2535 (2)0.0508 (9)
O40.6054 (3)0.4033 (3)0.3363 (2)0.0453 (9)
O50.1561 (3)0.1917 (3)0.1632 (2)0.0487 (9)
H5A0.23900.21190.14890.058*
H50.12670.10450.16420.058*
O60.1426 (3)0.5059 (3)0.19990 (19)0.0373 (7)
H6A0.10260.58630.21260.045*
H60.22520.51420.17950.045*
O70.1432 (3)0.3074 (3)0.3421 (2)0.0375 (7)
H7A0.22690.32780.33980.045*
H70.12940.22760.36890.045*
N10.1256 (3)0.4331 (3)0.31322 (19)0.0232 (7)
N20.1029 (3)0.3501 (3)0.1547 (2)0.0243 (7)
C10.0730 (4)0.3334 (5)0.0718 (3)0.0346 (10)
H10.01090.29450.05140.042*
C20.1597 (5)0.3706 (6)0.0152 (3)0.0438 (12)
H20.13730.35410.04220.053*
C30.2821 (5)0.4335 (5)0.0460 (3)0.0399 (11)
H30.34300.45990.00880.048*
C40.3149 (4)0.4575 (4)0.1313 (2)0.0264 (8)
C50.2231 (4)0.4074 (4)0.1854 (2)0.0225 (8)
C60.2437 (4)0.4159 (4)0.2795 (2)0.0230 (8)
C70.3662 (4)0.4059 (4)0.3308 (2)0.0261 (9)
C80.3664 (4)0.4325 (5)0.4164 (3)0.0370 (10)
H80.44770.42970.45170.044*
C90.2479 (5)0.4629 (6)0.4497 (3)0.0420 (11)
H90.24830.48650.50630.050*
C100.1292 (4)0.4572 (5)0.3962 (3)0.0336 (10)
H100.04790.47070.41860.040*
C110.4367 (4)0.5507 (5)0.1593 (3)0.0335 (10)
C120.4963 (4)0.3469 (4)0.3029 (3)0.0304 (9)
O1W0.5895 (3)0.2368 (4)0.0943 (3)0.0610 (11)
H1WA0.58350.32650.08080.073*
H1W0.54920.23920.13830.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0221 (3)0.0281 (3)0.0382 (3)0.0002 (2)0.0039 (2)0.0025 (2)
O10.054 (2)0.065 (2)0.082 (3)0.0323 (19)0.051 (2)0.039 (2)
O20.0259 (14)0.0270 (14)0.0306 (15)0.0058 (12)0.0086 (11)0.0046 (12)
O30.0329 (17)0.044 (2)0.076 (3)0.0054 (15)0.0063 (17)0.0190 (19)
O40.0202 (15)0.0339 (17)0.079 (3)0.0038 (13)0.0036 (15)0.0010 (17)
O50.0301 (17)0.0296 (17)0.081 (3)0.0008 (13)0.0178 (16)0.0044 (16)
O60.0261 (15)0.0325 (16)0.0517 (19)0.0042 (12)0.0018 (13)0.0067 (14)
O70.0219 (14)0.0347 (17)0.058 (2)0.0061 (12)0.0150 (13)0.0121 (14)
N10.0223 (16)0.0232 (16)0.0243 (17)0.0012 (13)0.0033 (13)0.0001 (13)
N20.0232 (16)0.0259 (17)0.0237 (17)0.0036 (13)0.0018 (13)0.0011 (13)
C10.034 (2)0.038 (2)0.031 (2)0.0079 (19)0.0003 (18)0.0036 (19)
C20.057 (3)0.049 (3)0.026 (2)0.006 (2)0.002 (2)0.006 (2)
C30.049 (3)0.043 (3)0.030 (2)0.008 (2)0.016 (2)0.003 (2)
C40.027 (2)0.026 (2)0.028 (2)0.0050 (16)0.0089 (16)0.0048 (16)
C50.0226 (18)0.0193 (18)0.026 (2)0.0027 (15)0.0040 (15)0.0014 (15)
C60.0201 (18)0.0187 (18)0.030 (2)0.0027 (15)0.0026 (15)0.0003 (15)
C70.0236 (19)0.0221 (19)0.031 (2)0.0005 (15)0.0016 (16)0.0004 (16)
C80.033 (2)0.040 (3)0.034 (2)0.003 (2)0.0097 (19)0.001 (2)
C90.045 (3)0.060 (3)0.021 (2)0.007 (2)0.0029 (19)0.003 (2)
C100.034 (2)0.038 (2)0.031 (2)0.0007 (19)0.0101 (18)0.0053 (19)
C110.030 (2)0.032 (2)0.040 (3)0.0075 (18)0.0146 (18)0.0015 (19)
C120.0213 (19)0.025 (2)0.044 (3)0.0033 (16)0.0005 (17)0.0032 (18)
O1W0.040 (2)0.056 (2)0.086 (3)0.0137 (18)0.0043 (19)0.014 (2)
Geometric parameters (Å, º) top
Cu1—O52.043 (3)N2—C51.344 (5)
Cu1—O72.053 (3)C1—C21.365 (6)
Cu1—O2i2.056 (3)C1—H10.9300
Cu1—N22.064 (3)C2—C31.383 (6)
Cu1—N12.085 (3)C2—H20.9300
Cu1—O62.090 (3)C3—C41.380 (6)
O1—C111.259 (5)C3—H30.9300
O2—C111.239 (5)C4—C51.408 (5)
O2—Cu1ii2.056 (3)C4—C111.506 (5)
O3—C121.241 (5)C5—C61.495 (5)
O4—C121.261 (5)C6—C71.388 (5)
O5—H5A0.8500C7—C81.389 (6)
O5—H50.8500C7—C121.518 (5)
O6—H6A0.8501C8—C91.379 (6)
O6—H60.8509C8—H80.9300
O7—H7A0.8500C9—C101.373 (6)
O7—H70.8499C9—H90.9300
N1—C101.341 (5)C10—H100.9300
N1—C61.359 (5)O1W—H1WA0.8500
N2—C11.332 (5)O1W—H1W0.8500
O5—Cu1—O795.69 (14)C1—C2—C3117.9 (4)
O5—Cu1—O2i88.56 (12)C1—C2—H2121.1
O7—Cu1—O2i90.86 (11)C3—C2—H2121.1
O5—Cu1—N292.82 (14)C4—C3—C2120.8 (4)
O7—Cu1—N2171.37 (12)C4—C3—H3119.6
O2i—Cu1—N287.91 (12)C2—C3—H3119.6
O5—Cu1—N1169.05 (13)C3—C4—C5117.4 (4)
O7—Cu1—N192.80 (12)C3—C4—C11118.1 (4)
O2i—Cu1—N184.41 (12)C5—C4—C11124.1 (3)
N2—Cu1—N178.58 (12)N2—C5—C4121.2 (3)
O5—Cu1—O690.61 (12)N2—C5—C6113.4 (3)
O7—Cu1—O689.24 (11)C4—C5—C6125.4 (3)
O2i—Cu1—O6179.16 (12)N1—C6—C7121.0 (4)
N2—Cu1—O692.12 (12)N1—C6—C5112.5 (3)
N1—Cu1—O696.42 (12)C7—C6—C5126.5 (3)
C11—O2—Cu1ii131.7 (3)C6—C7—C8117.8 (4)
Cu1—O5—H5A122.6C6—C7—C12124.8 (4)
Cu1—O5—H5110.6C8—C7—C12116.7 (4)
H5A—O5—H5122.0C9—C8—C7121.0 (4)
Cu1—O6—H6A114.2C9—C8—H8119.5
Cu1—O6—H6130.3C7—C8—H8119.5
H6A—O6—H6114.7C10—C9—C8117.7 (4)
Cu1—O7—H7A124.9C10—C9—H9121.2
Cu1—O7—H7111.9C8—C9—H9121.2
H7A—O7—H7108.0N1—C10—C9122.8 (4)
C10—N1—C6119.2 (3)N1—C10—H10118.6
C10—N1—Cu1123.3 (3)C9—C10—H10118.6
C6—N1—Cu1110.8 (2)O2—C11—O1125.8 (4)
C1—N2—C5119.4 (3)O2—C11—C4115.8 (3)
C1—N2—Cu1125.1 (3)O1—C11—C4118.3 (4)
C5—N2—Cu1115.0 (2)O3—C12—O4125.9 (4)
N2—C1—C2123.1 (4)O3—C12—C7117.1 (4)
N2—C1—H1118.4O4—C12—C7116.8 (4)
C2—C1—H1118.4H1WA—O1W—H1W99.2
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1Wiii0.851.842.669 (5)167
O5—H5···O4i0.851.862.689 (4)167
O6—H6A···O3ii0.851.882.715 (5)169
O6—H6···O1iii0.852.433.282 (5)180
O7—H7A···O4iii0.851.802.642 (4)170
O7—H7···O1i0.851.952.711 (4)149
O1W—H1WA···O10.852.112.850 (5)146
O1W—H1W···O30.852.012.854 (6)170
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C12H6N2O4)(H2O)3]·H2O
Mr377.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.950 (4), 9.161 (4), 15.974 (7)
β (°) 96.848 (8)
V3)1445.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.3 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.722, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
10263, 3585, 2268
Rint0.062
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.153, 1.08
No. of reflections3585
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 1.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1Wi0.851.842.669 (5)166.5
O5—H5···O4ii0.851.862.689 (4)166.5
O6—H6A···O3iii0.851.882.715 (5)169.4
O6—H6···O1i0.852.433.282 (5)179.7
O7—H7A···O4i0.851.802.642 (4)170.0
O7—H7···O1ii0.851.952.711 (4)148.6
O1W—H1WA···O10.852.112.850 (5)145.7
O1W—H1W···O30.852.012.854 (6)170.0
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21101047), the Natural Science Foundation of Hainan Province (No. 211010) and the Priming Scientific Research Foundation of Hainan University (No. kyqd1051).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162–170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDu, M. & Bu, X.-H. (2009). Bull. Chem. Soc. Jpn, 80, 539–554.  Web of Science CrossRef Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2010c). Chin. J. Inorg. Chem. 26, 2299–2302.  CAS Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.  CAS Google Scholar
First citationPan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453–457.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, S.-L. & Zhu, G.-S. (2009). Coord. Chem. Rev. 253, 2891–2911.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, T.-F., Hu, X. & Bu, X.-H. (2009). Chem. Soc. Rev. 38, 469–480.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds