metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine)(pyridin-2-olato)ruthenium(II) hexa­fluorido­phosphate benzene hemisolvate

aDepartment of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
*Correspondence e-mail: thama@fukuoka-u.ac.jp

(Received 24 September 2011; accepted 29 October 2011; online 5 November 2011)

In the title compound, [Ru(C5H4NO)(C10H8N2)2]PF6·0.5C6H6, the Ru2+ cation has a distorted octa­hedral RuN5O coordination environment. This complex is more distorted than the closely related ruthenium complex containing a pyridine-2-thiol­ate ligand [Santra et al. (1997[Santra, B. K., Menon, M., Pal, C. K. & Lahiri, G. K. (1997). J. Chem. Soc. Dalton Trans. pp. 1387-1393.]). J. Chem. Soc. Dalton Trans. pp. 1387–1393]. The distortion is caused by the difference in size between the O and S atoms. The benzene solvent mol­ecule is situated on a twofold rotation axis.

Related literature

For the Ru–(pyridine-2-thiol­ate) complex, see: Santra et al. (1997[Santra, B. K., Menon, M., Pal, C. K. & Lahiri, G. K. (1997). J. Chem. Soc. Dalton Trans. pp. 1387-1393.]). For similar Ru–(pyridin-2-o­late) complexes, see: Clegg et al. (1980[Clegg, W., Berry, M. & Garner, C. D. (1980). Acta Cryst. B36, 3110-3112.]); Cotton & Yokochi (1998[Cotton, F. A. & Yokochi, A. (1998). Inorg. Chim. Acta, 275, 557-561.]). For an Ru–bipyridine complex, see: Holligan et al. (1992[Holligan, B. M., Jeffery, J. C., Norgett, M. K., Schatz, E. & Ward, M. D. (1992). J. Chem. Soc. Dalton Trans. pp. 3345-3351.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C5H4NO)(C10H8N2)2]PF6·0.5C6H6

  • Mr = 688.53

  • Monoclinic, C 2/c

  • a = 21.4180 (4) Å

  • b = 17.5316 (4) Å

  • c = 16.8375 (3) Å

  • β = 113.3866 (7)°

  • V = 5802.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 200 K

  • 0.26 × 0.22 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.846, Tmax = 0.937

  • 28444 measured reflections

  • 6649 independent reflections

  • 6068 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.155

  • S = 1.14

  • 6649 reflections

  • 364 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 2.15 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ru1—N2 2.019 (3)
Ru1—N3 2.023 (3)
Ru1—N4 2.050 (3)
Ru1—N5 2.059 (3)
Ru1—N1 2.073 (3)
Ru1—O1 2.146 (3)
N2—Ru1—N3 79.60 (13)
N2—Ru1—N5 172.74 (12)
N4—Ru1—N5 79.11 (12)
N4—Ru1—N1 165.81 (12)
N3—Ru1—O1 165.07 (11)
N1—Ru1—O1 62.79 (12)

Data collection: RAPID-AUTO (Rigaku, 2002[Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari.]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: Yadokari-XG and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Polypyridine ruthenium complexes have been attracted the interest of researchers for their electrochemistry and photochemistry and also their potential applications as molecular devices. Santra et al. (1997) have reported two ruthenium complexes with pyridine-2-thiolate (2-pyS) or pyridin-2-olate (2-pyO). They have revealed the crystal structure of [RuII(bpy)2(2-pyS)]ClO4 (bpy = 2,2'-bipyridine) complex (1), but X-ray structure study has not been carried out for the 2-pyO complex. Here, we report the crystal structure of [RuII(bpy)2(2-pyO)](PF6)(C6H6)0.5 (2) and discuss the structural difference between them.

The crystal structure of 2 is shown in Fig. 1. Bond lengths of Ru–O and Ru–N(2-pyO) in 2 are 2.146 (3) and 2.073 (3) Å, respectively. Comparing the bond lengths and that of six-coordinated ruthenium complexes with bidentate 2-pyO derivatives, the Ru–O bond length lies within the range of the reported distances, but Ru–N(2-pyO) is a little shorter than they. For example, in Ru(PPh3)2(6-methylpyridin-2-olate)2 (Clegg et al., (1980), Ru–O and Ru–N(2-pyO) lengths are 2.151 (4) and 2.0919 (5) Å, respectively. In [Ru(PMe3)4(6-chloropyridin-2-olate)]CF3SO3 (Cotton et al., (1998), Ru–O and Ru–N(2-pyO) lengths are 2.184 (3) and 2.213 (6) Å, respectively. Average Ru–N(bpy) length in 2 is ca 2.04 Å, which is typical length for Ru-bpy complexes (Holligan et al., (1992).

The compound 2 has distorted octahedral geometry on Ru–N5O1 coordination environment. Coordination polyhedron of 1 is also distorted; however, the distortion of the 2-pyO complex is much more than that of the 2-pyS complex. For example, N1–Ru1–O1 bite angle of 2 is 62.79 (12)° which is steeper than N(2-pyS)–Ru–S(2-pyS) bite angle in 1 (68.6 (2)°). O1–Ru1–N3 and N1–Ru1–N4 angles are 165.07 (11)° and 165.81 (12)°, respectively, that are also steeper than corresponding angles in 1 (167.3 (2)°, 170.1 (3)°) On the other hands, N(bpy)–Ru–N(bpy) angles and Ru–N(bpy) distances in these complexes are almost equal (the average N(bpy)–Ru–N(bpy) bidentate angle: 78.9° (1), 79.36° (2); the trans-N(bpy)–Ru–N(bpy) angle: 173.6 (3)° (1), 172.74 (12)° (2); the average Ru–N(bpy) distance: 2.05 Å (1), 2.04 Å (2)) The equality shows that the difference in the degree of distortion is caused by the distinction between the N,S- and N,O-chelating ligands. Bond lengths of Ru–N(2-pyO) (2.073 (3) Å) and Ru–N(2-pyS) (2.060 (7) Å) are almost same, but the Ru–O bond length (2.146 (3) Å) is shorter than the Ru–S bond length (2.434 (3) Å). Due to the smaller size of O atom with respect to the S atom, the short Ru–O bond would make 2-pyO ligand tilt up to horizontal.

Related literature top

For the Ru–(pyridine-2-thiolate) complex, see: Santra et al. (1997). For similar Ru–(pyridin-2-olate) complexes, see: Clegg et al. (1980); Cotton et al. (1998). For an Ru–bpy complex, see: Holligan et al. (1992).

Experimental top

A mixture of [Ru(bpy)2Cl2].2H2O (0.30 g, 0.58 mmol) and 2-hydroxypyridine (0.30 g, 3.2 mmol) in 90 ml ethanol was refluxed. After 1 h, NaOH (0.60 g, 15 mmol) in H2O (45 ml) was added, and the mixture was refluxed again for 2 h. After cooling to room temperature, the mixture was concentrated to ca 10 ml under reduced pressure. The precipitates were collected by filtration and were washed with a small amount of H2O. The precipitates and KPF6 (1.12 g) in acetone/methanol (20 ml/20 ml) were evaporated to dryness. 50 ml CHCl3 was added to the residium, and the mixture was washed five times with 20 ml H2O. The organic layer was dried with Na2SO4 and was evaporated to dryness. The crude product was recrystallized by vapor diffusion of benzene into an acetone solution at room temperature. Single crystals suitable for single-crystal X-ray analysis were obtained after 1 week.

Refinement top

1H NMR spectrum showed that this complex contains a benzene molecule as a crystallization solvent (δ = 7.40 ppm in CD3CN). The C atoms of benzene molecule (C26–C29) were refined isotropically, and all other non-hydrogen atoms were refined anisotropically. Bond-length restraints of 1.40 (2) Å were applied to all C—C bonds of the benzene, but were not refined except for C27–C28. The H atoms of benzene molecule were not discernible from difference Fourier maps and hence were not included in the final refinement. Other H atoms were placed in calculated positions and were constrained to ride on their parent atoms, with C–H distances of 0.93 Å and with Uiso(H) = 1.2 Ueq(C). The highest residual peak was 0.79 Å from Ru1 atom, and the deepest residual hole was 0.61 Å from C28 atom.

Structure description top

Polypyridine ruthenium complexes have been attracted the interest of researchers for their electrochemistry and photochemistry and also their potential applications as molecular devices. Santra et al. (1997) have reported two ruthenium complexes with pyridine-2-thiolate (2-pyS) or pyridin-2-olate (2-pyO). They have revealed the crystal structure of [RuII(bpy)2(2-pyS)]ClO4 (bpy = 2,2'-bipyridine) complex (1), but X-ray structure study has not been carried out for the 2-pyO complex. Here, we report the crystal structure of [RuII(bpy)2(2-pyO)](PF6)(C6H6)0.5 (2) and discuss the structural difference between them.

The crystal structure of 2 is shown in Fig. 1. Bond lengths of Ru–O and Ru–N(2-pyO) in 2 are 2.146 (3) and 2.073 (3) Å, respectively. Comparing the bond lengths and that of six-coordinated ruthenium complexes with bidentate 2-pyO derivatives, the Ru–O bond length lies within the range of the reported distances, but Ru–N(2-pyO) is a little shorter than they. For example, in Ru(PPh3)2(6-methylpyridin-2-olate)2 (Clegg et al., (1980), Ru–O and Ru–N(2-pyO) lengths are 2.151 (4) and 2.0919 (5) Å, respectively. In [Ru(PMe3)4(6-chloropyridin-2-olate)]CF3SO3 (Cotton et al., (1998), Ru–O and Ru–N(2-pyO) lengths are 2.184 (3) and 2.213 (6) Å, respectively. Average Ru–N(bpy) length in 2 is ca 2.04 Å, which is typical length for Ru-bpy complexes (Holligan et al., (1992).

The compound 2 has distorted octahedral geometry on Ru–N5O1 coordination environment. Coordination polyhedron of 1 is also distorted; however, the distortion of the 2-pyO complex is much more than that of the 2-pyS complex. For example, N1–Ru1–O1 bite angle of 2 is 62.79 (12)° which is steeper than N(2-pyS)–Ru–S(2-pyS) bite angle in 1 (68.6 (2)°). O1–Ru1–N3 and N1–Ru1–N4 angles are 165.07 (11)° and 165.81 (12)°, respectively, that are also steeper than corresponding angles in 1 (167.3 (2)°, 170.1 (3)°) On the other hands, N(bpy)–Ru–N(bpy) angles and Ru–N(bpy) distances in these complexes are almost equal (the average N(bpy)–Ru–N(bpy) bidentate angle: 78.9° (1), 79.36° (2); the trans-N(bpy)–Ru–N(bpy) angle: 173.6 (3)° (1), 172.74 (12)° (2); the average Ru–N(bpy) distance: 2.05 Å (1), 2.04 Å (2)) The equality shows that the difference in the degree of distortion is caused by the distinction between the N,S- and N,O-chelating ligands. Bond lengths of Ru–N(2-pyO) (2.073 (3) Å) and Ru–N(2-pyS) (2.060 (7) Å) are almost same, but the Ru–O bond length (2.146 (3) Å) is shorter than the Ru–S bond length (2.434 (3) Å). Due to the smaller size of O atom with respect to the S atom, the short Ru–O bond would make 2-pyO ligand tilt up to horizontal.

For the Ru–(pyridine-2-thiolate) complex, see: Santra et al. (1997). For similar Ru–(pyridin-2-olate) complexes, see: Clegg et al. (1980); Cotton et al. (1998). For an Ru–bpy complex, see: Holligan et al. (1992).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO (Rigaku, 2002); data reduction: RAPID-AUTO (Rigaku, 2002); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing for 2 showing 50% probability displacement ellipsoids and arbitrary spheres for H atoms. Symmetry codes: (i) -x + 1, y, -z + 1/2
Bis(2,2'-bipyridine)(pyridin-2-olato)ruthenium(II) hexafluoridophosphate benzene hemisolvate top
Crystal data top
[Ru(C5H4NO)(C10H8N2)2]PF6·0.5C6H6F(000) = 2752
Mr = 688.53Dx = 1.576 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 24054 reflections
a = 21.4180 (4) Åθ = 3.0–27.6°
b = 17.5316 (4) ŵ = 0.67 mm1
c = 16.8375 (3) ÅT = 200 K
β = 113.3866 (7)°Block, black
V = 5802.9 (2) Å30.26 × 0.22 × 0.10 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6068 reflections with I > 2σ(I)
ω scansRint = 0.026
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995))
θmax = 27.5°, θmin = 3.0°
Tmin = 0.846, Tmax = 0.937h = 2527
28444 measured reflectionsk = 2222
6649 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0839P)2 + 20.9991P]
where P = (Fo2 + 2Fc2)/3
6649 reflections(Δ/σ)max = 0.001
364 parametersΔρmax = 2.15 e Å3
3 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Ru(C5H4NO)(C10H8N2)2]PF6·0.5C6H6V = 5802.9 (2) Å3
Mr = 688.53Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.4180 (4) ŵ = 0.67 mm1
b = 17.5316 (4) ÅT = 200 K
c = 16.8375 (3) Å0.26 × 0.22 × 0.10 mm
β = 113.3866 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6649 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995))
6068 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.937Rint = 0.026
28444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0839P)2 + 20.9991P]
where P = (Fo2 + 2Fc2)/3
6649 reflectionsΔρmax = 2.15 e Å3
364 parametersΔρmin = 0.52 e Å3
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.280946 (13)0.392843 (15)0.163094 (17)0.02747 (12)
O10.17546 (13)0.36260 (16)0.10031 (17)0.0372 (6)
N10.22692 (17)0.38041 (18)0.2407 (2)0.0339 (6)
N20.26308 (16)0.50618 (18)0.14929 (19)0.0317 (6)
N30.37222 (15)0.43350 (17)0.24506 (19)0.0302 (6)
N40.31600 (15)0.38774 (16)0.06626 (19)0.0286 (6)
N50.30459 (16)0.27879 (17)0.16586 (19)0.0308 (6)
C10.16864 (19)0.3599 (2)0.1738 (3)0.0363 (8)
C20.1113 (2)0.3371 (3)0.1884 (3)0.0540 (11)
H10.07070.32150.14200.065*
C30.1159 (3)0.3380 (4)0.2720 (4)0.0644 (14)
H20.07760.32360.28350.077*
C40.1753 (3)0.3597 (3)0.3397 (3)0.0601 (13)
H30.17800.36000.39740.072*
C50.2304 (2)0.3807 (3)0.3224 (3)0.0436 (9)
H40.27140.39570.36850.052*
C60.2038 (2)0.5384 (2)0.0970 (3)0.0401 (8)
H50.16490.50690.07130.048*
C70.1978 (3)0.6152 (2)0.0796 (3)0.0458 (10)
H60.15540.63590.04200.055*
C80.2535 (2)0.6619 (2)0.1170 (3)0.0449 (9)
H70.25030.71490.10430.054*
C90.3143 (2)0.6303 (2)0.1736 (3)0.0428 (9)
H80.35310.66170.20150.051*
C100.3179 (2)0.5522 (2)0.1889 (2)0.0330 (7)
C110.37965 (19)0.5111 (2)0.2461 (2)0.0328 (7)
C120.4391 (2)0.5460 (2)0.2990 (3)0.0420 (9)
H90.44370.59980.29790.050*
C130.4921 (2)0.5020 (3)0.3539 (3)0.0491 (10)
H100.53330.52540.39120.059*
C140.4850 (2)0.4241 (3)0.3545 (3)0.0482 (10)
H110.52080.39320.39250.058*
C150.4241 (2)0.3915 (2)0.2981 (3)0.0386 (8)
H120.41940.33760.29740.046*
C160.32495 (19)0.4469 (2)0.0210 (2)0.0350 (7)
H130.31420.49670.03390.042*
C170.3490 (2)0.4385 (2)0.0435 (3)0.0407 (8)
H140.35510.48190.07350.049*
C180.3641 (2)0.3664 (3)0.0639 (3)0.0418 (9)
H150.37980.35910.10880.050*
C190.35571 (19)0.3049 (2)0.0169 (2)0.0360 (8)
H160.36610.25470.02920.043*
C200.33226 (16)0.3167 (2)0.0476 (2)0.0290 (7)
C210.32396 (17)0.2552 (2)0.1020 (2)0.0299 (7)
C220.3350 (2)0.1789 (2)0.0904 (2)0.0364 (8)
H170.34750.16350.04450.044*
C230.3277 (2)0.1252 (2)0.1467 (3)0.0431 (9)
H180.33490.07260.13980.052*
C240.3098 (2)0.1493 (2)0.2127 (3)0.0451 (9)
H190.30530.11360.25250.054*
C250.2985 (2)0.2257 (2)0.2202 (2)0.0382 (8)
H200.28580.24170.26560.046*
C260.50000.060 (2)0.25000.261 (14)*
C270.5069 (15)0.0841 (17)0.1670 (15)0.315 (14)*
C280.5073 (13)0.1660 (16)0.1687 (14)0.298 (13)*
C290.50000.195 (2)0.25000.280 (15)*
P10.08171 (6)0.20091 (7)0.47206 (7)0.0441 (3)
F10.00943 (19)0.1814 (3)0.4681 (3)0.1085 (16)
F20.15314 (17)0.2239 (2)0.4717 (2)0.0824 (11)
F30.0591 (2)0.2868 (2)0.4424 (3)0.0974 (13)
F40.05521 (19)0.1762 (2)0.3729 (2)0.0841 (11)
F50.1062 (3)0.11723 (19)0.5001 (3)0.1089 (18)
F60.10849 (19)0.2264 (2)0.5700 (2)0.0755 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02940 (17)0.02765 (17)0.02682 (17)0.00189 (9)0.01271 (12)0.00315 (9)
O10.0341 (13)0.0431 (15)0.0339 (13)0.0043 (11)0.0131 (11)0.0066 (11)
N10.0383 (16)0.0330 (15)0.0337 (16)0.0018 (12)0.0177 (14)0.0043 (12)
N20.0361 (15)0.0319 (15)0.0305 (14)0.0024 (12)0.0169 (12)0.0018 (12)
N30.0316 (14)0.0308 (15)0.0306 (14)0.0012 (11)0.0149 (12)0.0031 (11)
N40.0276 (14)0.0309 (15)0.0278 (14)0.0024 (11)0.0117 (12)0.0032 (11)
N50.0342 (15)0.0284 (14)0.0311 (14)0.0036 (12)0.0143 (12)0.0024 (11)
C10.0350 (18)0.0373 (19)0.0374 (19)0.0013 (15)0.0153 (16)0.0033 (15)
C20.040 (2)0.065 (3)0.061 (3)0.008 (2)0.024 (2)0.002 (2)
C30.058 (3)0.078 (4)0.077 (4)0.003 (3)0.047 (3)0.004 (3)
C40.075 (3)0.071 (3)0.049 (3)0.003 (3)0.041 (3)0.003 (2)
C50.053 (2)0.045 (2)0.035 (2)0.0014 (18)0.0199 (19)0.0035 (16)
C60.042 (2)0.040 (2)0.0370 (19)0.0065 (16)0.0151 (17)0.0008 (16)
C70.057 (3)0.041 (2)0.042 (2)0.0138 (18)0.022 (2)0.0058 (17)
C80.063 (3)0.033 (2)0.047 (2)0.0104 (18)0.031 (2)0.0062 (16)
C90.058 (2)0.0318 (19)0.049 (2)0.0037 (17)0.033 (2)0.0042 (17)
C100.0435 (19)0.0289 (17)0.0350 (18)0.0001 (14)0.0244 (16)0.0039 (13)
C110.0375 (18)0.0317 (17)0.0364 (18)0.0061 (14)0.0221 (15)0.0066 (14)
C120.043 (2)0.038 (2)0.051 (2)0.0098 (16)0.0244 (19)0.0139 (17)
C130.035 (2)0.057 (3)0.052 (2)0.0104 (18)0.0133 (19)0.014 (2)
C140.035 (2)0.053 (3)0.050 (2)0.0005 (18)0.0089 (18)0.001 (2)
C150.036 (2)0.038 (2)0.038 (2)0.0004 (15)0.0105 (17)0.0023 (15)
C160.0395 (19)0.0323 (18)0.0345 (18)0.0007 (14)0.0162 (15)0.0011 (14)
C170.051 (2)0.038 (2)0.040 (2)0.0022 (17)0.0255 (18)0.0046 (16)
C180.050 (2)0.044 (2)0.042 (2)0.0015 (18)0.0287 (19)0.0015 (17)
C190.0385 (19)0.0352 (19)0.0380 (19)0.0012 (15)0.0191 (16)0.0058 (15)
C200.0253 (15)0.0320 (17)0.0279 (16)0.0033 (12)0.0087 (13)0.0024 (13)
C210.0283 (16)0.0318 (17)0.0279 (16)0.0021 (13)0.0092 (13)0.0029 (13)
C220.0409 (19)0.0336 (18)0.0350 (18)0.0016 (15)0.0153 (16)0.0032 (14)
C230.054 (2)0.0284 (17)0.047 (2)0.0025 (17)0.021 (2)0.0012 (16)
C240.059 (3)0.034 (2)0.043 (2)0.0004 (18)0.021 (2)0.0060 (16)
C250.050 (2)0.0344 (19)0.0343 (18)0.0021 (16)0.0207 (17)0.0014 (15)
P10.0401 (5)0.0446 (6)0.0454 (6)0.0092 (4)0.0148 (5)0.0035 (5)
F10.063 (2)0.157 (4)0.120 (3)0.048 (2)0.051 (2)0.029 (3)
F20.0651 (19)0.107 (3)0.087 (2)0.0391 (19)0.0433 (18)0.044 (2)
F30.097 (3)0.055 (2)0.113 (3)0.0047 (19)0.013 (2)0.006 (2)
F40.091 (2)0.103 (3)0.0497 (17)0.043 (2)0.0180 (17)0.0177 (17)
F50.114 (3)0.0402 (17)0.110 (3)0.0007 (18)0.023 (3)0.0036 (18)
F60.098 (2)0.082 (2)0.0528 (17)0.0333 (19)0.0366 (17)0.0147 (16)
Geometric parameters (Å, º) top
Ru1—N22.019 (3)C12—C131.380 (7)
Ru1—N32.023 (3)C12—H90.9500
Ru1—N42.050 (3)C13—C141.374 (7)
Ru1—N52.059 (3)C13—H100.9500
Ru1—N12.073 (3)C14—C151.395 (6)
Ru1—O12.146 (3)C14—H110.9500
Ru1—C12.549 (4)C15—H120.9500
O1—C11.303 (5)C16—C171.383 (5)
N1—C51.347 (5)C16—H130.9500
N1—C11.357 (5)C17—C181.381 (6)
N2—C61.348 (5)C17—H140.9500
N2—C101.361 (5)C18—C191.391 (6)
N3—C151.337 (5)C18—H150.9500
N3—C111.369 (5)C19—C201.382 (5)
N4—C161.345 (5)C19—H160.9500
N4—C201.364 (4)C20—C211.469 (5)
N5—C251.347 (5)C21—C221.387 (5)
N5—C211.362 (5)C22—C231.388 (6)
C1—C21.403 (6)C22—H170.9500
C2—C31.370 (7)C23—C241.378 (6)
C2—H10.9500C23—H180.9500
C3—C41.383 (8)C24—C251.375 (6)
C3—H20.9500C24—H190.9500
C4—C51.373 (7)C25—H200.9500
C4—H30.9500C26—C271.521 (17)
C5—H40.9500C26—C27i1.521 (17)
C6—C71.372 (6)C27—C281.436 (18)
C6—H50.9500C28—C291.527 (16)
C7—C81.376 (7)C29—C28i1.527 (16)
C7—H60.9500P1—F11.561 (3)
C8—C91.388 (7)P1—F51.567 (4)
C8—H70.9500P1—F61.581 (3)
C9—C101.391 (5)P1—F21.585 (3)
C9—H80.9500P1—F41.595 (3)
C10—C111.478 (5)P1—F31.599 (4)
C11—C121.374 (5)
N2—Ru1—N379.60 (13)N2—C10—C9121.3 (4)
N2—Ru1—N493.66 (11)N2—C10—C11113.9 (3)
N3—Ru1—N489.89 (11)C9—C10—C11124.7 (4)
N2—Ru1—N5172.74 (12)N3—C11—C12121.6 (4)
N3—Ru1—N599.46 (12)N3—C11—C10114.0 (3)
N4—Ru1—N579.11 (12)C12—C11—C10124.4 (4)
N2—Ru1—N192.77 (12)C11—C12—C13119.3 (4)
N3—Ru1—N1103.71 (12)C11—C12—H9120.3
N4—Ru1—N1165.81 (12)C13—C12—H9120.3
N5—Ru1—N194.45 (12)C14—C13—C12119.8 (4)
N2—Ru1—O194.13 (12)C14—C13—H10120.1
N3—Ru1—O1165.07 (11)C12—C13—H10120.1
N4—Ru1—O1104.11 (11)C13—C14—C15118.6 (4)
N5—Ru1—O188.43 (11)C13—C14—H11120.7
N1—Ru1—O162.79 (12)C15—C14—H11120.7
N2—Ru1—C195.17 (12)N3—C15—C14122.2 (4)
N3—Ru1—C1135.66 (12)N3—C15—H12118.9
N4—Ru1—C1134.45 (12)C14—C15—H12118.9
N5—Ru1—C190.50 (12)N4—C16—C17123.0 (4)
N1—Ru1—C132.09 (13)N4—C16—H13118.5
O1—Ru1—C130.73 (11)C17—C16—H13118.5
C1—O1—Ru192.0 (2)C18—C17—C16119.2 (4)
C5—N1—C1120.6 (4)C18—C17—H14120.4
C5—N1—Ru1145.6 (3)C16—C17—H14120.4
C1—N1—Ru193.7 (2)C17—C18—C19118.3 (4)
C6—N2—C10118.5 (3)C17—C18—H15120.9
C6—N2—Ru1125.0 (3)C19—C18—H15120.9
C10—N2—Ru1116.1 (2)C20—C19—C18120.0 (4)
C15—N3—C11118.5 (3)C20—C19—H16120.0
C15—N3—Ru1125.7 (3)C18—C19—H16120.0
C11—N3—Ru1115.8 (2)N4—C20—C19121.6 (3)
C16—N4—C20117.8 (3)N4—C20—C21114.9 (3)
C16—N4—Ru1126.6 (2)C19—C20—C21123.5 (3)
C20—N4—Ru1115.5 (2)N5—C21—C22121.8 (3)
C25—N5—C21118.0 (3)N5—C21—C20114.8 (3)
C25—N5—Ru1126.6 (3)C22—C21—C20123.4 (3)
C21—N5—Ru1115.2 (2)C21—C22—C23119.1 (4)
O1—C1—N1111.5 (3)C21—C22—H17120.5
O1—C1—C2127.8 (4)C23—C22—H17120.4
N1—C1—C2120.7 (4)C24—C23—C22119.1 (4)
O1—C1—Ru157.31 (18)C24—C23—H18120.5
N1—C1—Ru154.24 (19)C22—C23—H18120.5
C2—C1—Ru1173.4 (3)C25—C24—C23119.3 (4)
C3—C2—C1117.7 (5)C25—C24—H19120.4
C3—C2—H1121.1C23—C24—H19120.4
C1—C2—H1121.1N5—C25—C24122.8 (4)
C2—C3—C4121.2 (4)N5—C25—H20118.6
C2—C3—H2119.4C24—C25—H20118.6
C4—C3—H2119.4C27—C26—C27i148 (4)
C5—C4—C3119.0 (5)C28—C27—C26105 (3)
C5—C4—H3120.5C27—C28—C29111 (3)
C3—C4—H3120.5C28i—C29—C28141 (4)
N1—C5—C4120.8 (4)F1—P1—F590.9 (3)
N1—C5—H4119.6F1—P1—F692.8 (2)
C4—C5—H4119.6F5—P1—F690.6 (2)
N2—C6—C7122.4 (4)F1—P1—F2176.8 (3)
N2—C6—H5118.8F5—P1—F291.8 (3)
C7—C6—H5118.8F6—P1—F288.93 (18)
C6—C7—C8119.7 (4)F1—P1—F487.8 (2)
C6—C7—H6120.2F5—P1—F489.9 (2)
C8—C7—H6120.2F6—P1—F4179.2 (2)
C7—C8—C9118.9 (4)F2—P1—F490.47 (19)
C7—C8—H7120.5F1—P1—F391.2 (3)
C9—C8—H7120.5F5—P1—F3177.8 (3)
C8—C9—C10119.2 (4)F6—P1—F390.0 (2)
C8—C9—H8120.4F2—P1—F386.1 (2)
C10—C9—H8120.4F4—P1—F389.5 (2)
N2—Ru1—O1—C193.2 (2)N5—Ru1—C1—O186.1 (2)
N3—Ru1—O1—C128.7 (6)N1—Ru1—C1—O1176.3 (4)
N4—Ru1—O1—C1172.0 (2)N2—Ru1—C1—N187.0 (2)
N5—Ru1—O1—C193.6 (2)N3—Ru1—C1—N16.6 (3)
N1—Ru1—O1—C12.2 (2)N4—Ru1—C1—N1172.8 (2)
N2—Ru1—N1—C590.5 (5)N5—Ru1—C1—N197.6 (2)
N3—Ru1—N1—C510.5 (5)O1—Ru1—C1—N1176.3 (4)
N4—Ru1—N1—C5152.6 (5)O1—C1—C2—C3179.3 (5)
N5—Ru1—N1—C590.4 (5)N1—C1—C2—C31.5 (7)
O1—Ru1—N1—C5176.3 (5)C1—C2—C3—C40.9 (8)
C1—Ru1—N1—C5174.2 (6)C2—C3—C4—C50.2 (9)
N2—Ru1—N1—C195.3 (2)C1—N1—C5—C40.6 (6)
N3—Ru1—N1—C1175.3 (2)Ru1—N1—C5—C4172.7 (4)
N4—Ru1—N1—C121.6 (6)C3—C4—C5—N10.0 (8)
N5—Ru1—N1—C183.8 (2)C10—N2—C6—C72.8 (6)
O1—Ru1—N1—C12.1 (2)Ru1—N2—C6—C7169.3 (3)
N3—Ru1—N2—C6179.9 (3)N2—C6—C7—C80.7 (6)
N4—Ru1—N2—C690.7 (3)C6—C7—C8—C91.7 (6)
N1—Ru1—N2—C676.7 (3)C7—C8—C9—C101.9 (6)
O1—Ru1—N2—C613.8 (3)C6—N2—C10—C92.6 (5)
C1—Ru1—N2—C644.6 (3)Ru1—N2—C10—C9170.2 (3)
N3—Ru1—N2—C107.5 (2)C6—N2—C10—C11178.7 (3)
N4—Ru1—N2—C1081.7 (3)Ru1—N2—C10—C118.4 (4)
N1—Ru1—N2—C10111.0 (3)C8—C9—C10—N20.3 (6)
O1—Ru1—N2—C10173.9 (2)C8—C9—C10—C11178.8 (3)
C1—Ru1—N2—C10143.1 (2)C15—N3—C11—C121.0 (5)
N2—Ru1—N3—C15173.5 (3)Ru1—N3—C11—C12179.8 (3)
N4—Ru1—N3—C1592.7 (3)C15—N3—C11—C10176.5 (3)
N5—Ru1—N3—C1513.8 (3)Ru1—N3—C11—C102.3 (4)
N1—Ru1—N3—C1583.2 (3)N2—C10—C11—N33.9 (4)
O1—Ru1—N3—C15107.3 (5)C9—C10—C11—N3174.7 (3)
C1—Ru1—N3—C1586.8 (3)N2—C10—C11—C12173.5 (3)
N2—Ru1—N3—C115.2 (2)C9—C10—C11—C127.9 (6)
N4—Ru1—N3—C1188.5 (2)N3—C11—C12—C131.5 (6)
N5—Ru1—N3—C11167.5 (2)C10—C11—C12—C13175.8 (4)
N1—Ru1—N3—C1195.6 (2)C11—C12—C13—C140.5 (7)
O1—Ru1—N3—C1171.4 (5)C12—C13—C14—C150.8 (7)
C1—Ru1—N3—C1192.0 (3)C11—N3—C15—C140.4 (6)
N2—Ru1—N4—C164.0 (3)Ru1—N3—C15—C14178.3 (3)
N3—Ru1—N4—C1675.5 (3)C13—C14—C15—N31.3 (7)
N5—Ru1—N4—C16175.2 (3)C20—N4—C16—C170.7 (5)
N1—Ru1—N4—C16120.8 (5)Ru1—N4—C16—C17179.9 (3)
O1—Ru1—N4—C1699.2 (3)N4—C16—C17—C180.7 (6)
C1—Ru1—N4—C16105.0 (3)C16—C17—C18—C191.3 (6)
N2—Ru1—N4—C20176.7 (2)C17—C18—C19—C200.6 (6)
N3—Ru1—N4—C20103.7 (2)C16—N4—C20—C191.5 (5)
N5—Ru1—N4—C204.1 (2)Ru1—N4—C20—C19179.2 (3)
N1—Ru1—N4—C2059.9 (6)C16—N4—C20—C21177.5 (3)
O1—Ru1—N4—C2081.5 (3)Ru1—N4—C20—C211.8 (4)
C1—Ru1—N4—C2075.8 (3)C18—C19—C20—N40.9 (6)
N3—Ru1—N5—C2590.8 (3)C18—C19—C20—C21178.1 (4)
N4—Ru1—N5—C25178.8 (3)C25—N5—C21—C222.2 (5)
N1—Ru1—N5—C2514.0 (3)Ru1—N5—C21—C22173.6 (3)
O1—Ru1—N5—C2576.5 (3)C25—N5—C21—C20177.6 (3)
C1—Ru1—N5—C2545.8 (3)Ru1—N5—C21—C206.6 (4)
N3—Ru1—N5—C2193.9 (3)N4—C20—C21—N53.2 (4)
N4—Ru1—N5—C215.9 (2)C19—C20—C21—N5175.8 (3)
N1—Ru1—N5—C21161.4 (3)N4—C20—C21—C22177.0 (3)
O1—Ru1—N5—C2198.8 (2)C19—C20—C21—C224.0 (5)
C1—Ru1—N5—C21129.5 (3)N5—C21—C22—C231.5 (6)
Ru1—O1—C1—N13.2 (3)C20—C21—C22—C23178.2 (4)
Ru1—O1—C1—C2174.8 (4)C21—C22—C23—C240.2 (6)
C5—N1—C1—O1179.5 (3)C22—C23—C24—C251.2 (7)
Ru1—N1—C1—O13.3 (3)C21—N5—C25—C241.1 (6)
C5—N1—C1—C21.3 (6)Ru1—N5—C25—C24174.1 (3)
Ru1—N1—C1—C2174.9 (4)C23—C24—C25—N50.5 (7)
C5—N1—C1—Ru1176.2 (4)C27i—C26—C27—C280.4 (17)
N2—Ru1—C1—O189.4 (2)C26—C27—C28—C291 (3)
N3—Ru1—C1—O1169.8 (2)C27—C28—C29—C28i0.4 (18)
N4—Ru1—C1—O110.9 (3)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru(C5H4NO)(C10H8N2)2]PF6·0.5C6H6
Mr688.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)21.4180 (4), 17.5316 (4), 16.8375 (3)
β (°) 113.3866 (7)
V3)5802.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.26 × 0.22 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995))
Tmin, Tmax0.846, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
28444, 6649, 6068
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.155, 1.14
No. of reflections6649
No. of parameters364
No. of restraints3
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0839P)2 + 20.9991P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.15, 0.52

Computer programs: RAPID-AUTO (Rigaku, 2002), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), Yadokari-XG (Wakita, 2001; Kabuto et al., 2009) and ORTEP-3 for Windows (Farrugia, 1997), Yadokari-XG (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Ru1—N22.019 (3)Ru1—N52.059 (3)
Ru1—N32.023 (3)Ru1—N12.073 (3)
Ru1—N42.050 (3)Ru1—O12.146 (3)
N2—Ru1—N379.60 (13)N4—Ru1—N1165.81 (12)
N2—Ru1—N5172.74 (12)N3—Ru1—O1165.07 (11)
N4—Ru1—N579.11 (12)N1—Ru1—O162.79 (12)
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClegg, W., Berry, M. & Garner, C. D. (1980). Acta Cryst. B36, 3110–3112.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCotton, F. A. & Yokochi, A. (1998). Inorg. Chim. Acta, 275, 557–561.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHolligan, B. M., Jeffery, J. C., Norgett, M. K., Schatz, E. & Ward, M. D. (1992). J. Chem. Soc. Dalton Trans. pp. 3345–3351.  CSD CrossRef Web of Science Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSantra, B. K., Menon, M., Pal, C. K. & Lahiri, G. K. (1997). J. Chem. Soc. Dalton Trans. pp. 1387–1393.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds