Download citation
Download citation
link to html
The carb­oxy­lic acid group is an example of a functional group which possess a good hydrogen-bond donor (–OH) and acceptor (C=O). For this reason, carb­oxy­lic acids have a tendency to self-assembly by the formation of hydrogen bonds between the donor and acceptor sites. We present here the crystal structure of N-tosyl-L-proline (TPOH) benzene hemisolvate {systematic name: (2S)-1-[(4-methyl­benzene)­sulfon­yl]pyrrolidine-2-carb­oxy­lic acid benzene hemisolvate}, C12H15NO4S·0.5C6H6, (I), in which a cyclic R22(8) hydrogen-bonded carb­oxy­lic acid dimer with a strong O—(1 \over 2H)...(1 \over 2H)—O hydrogen bond is observed. The compound was characterized by single-crystal X-ray diffraction and NMR spectroscopy, and crystallizes in the space group I2 with half a benzene mol­ecule and one TPOH mol­ecule in the asymmetric unit. The H atom of the carboxyl OH group is disordered over a twofold axis. An analysis of the inter­molecular inter­actions using the noncovalent inter­action (NCI) index showed that the TPOH mol­ecules form dimers due to the strong O—(1 \over 2H)...(1 \over 2H)—O hydrogen bond, while the packing of the benzene solvent mol­ecules is governed by weak dispersive inter­actions. A search of the Cambridge Structural Database revealed that the disordered dimeric motif observed in (I) was found previously only in six crystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619010829/yf3184sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619010829/yf3184Isup2.hkl
Contains datablock I

CCDC reference: 1921956

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

(2S)-1-[(4-Methylbenzene)sulfonyl]pyrrolidine-2-carboxylic acid benzene hemisolvate top
Crystal data top
C12H15NO4S·0.5C6H6F(000) = 652
Mr = 308.36Dx = 1.362 Mg m3
Monoclinic, I2Cu Kα radiation, λ = 1.54184 Å
a = 7.6965 (1) ÅCell parameters from 7445 reflections
b = 10.9470 (2) Åθ = 4.7–74.5°
c = 18.0806 (3) ŵ = 2.05 mm1
β = 99.098 (2)°T = 130 K
V = 1504.19 (4) Å3Block, colourless
Z = 40.20 × 0.10 × 0.06 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
2947 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source2794 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
ω scansθmax = 72.0°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 99
Tmin = 0.763, Tmax = 1.000k = 1313
14284 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.7682P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2947 reflectionsΔρmax = 0.16 e Å3
198 parametersΔρmin = 0.25 e Å3
3 restraintsAbsolute structure: Flack x determined using 1252 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.014 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.20625 (9)0.54940 (8)0.73058 (4)0.02313 (18)
O10.1232 (3)0.4554 (2)0.76792 (13)0.0297 (5)
O20.1349 (3)0.6710 (2)0.72600 (14)0.0320 (5)
O120.5122 (4)0.3556 (2)0.92834 (13)0.0393 (6)
H120.517 (13)0.365 (8)0.9747 (12)0.047*0.5
O110.4971 (3)0.5589 (3)0.92622 (12)0.0339 (5)
H110.521 (11)0.566 (8)0.9728 (10)0.041*0.5
N10.4078 (3)0.5602 (3)0.77370 (13)0.0246 (5)
C20.2229 (4)0.3773 (3)0.62250 (18)0.0263 (6)
H20.2222880.3181710.6609310.032*
C10.2151 (4)0.5004 (3)0.63819 (17)0.0236 (6)
C110.5009 (4)0.4571 (3)0.89442 (17)0.0250 (6)
C40.2359 (4)0.4272 (4)0.49284 (18)0.0320 (8)
C4A0.0000000.5847 (5)1.0000000.0361 (12)
H4A0.0000020.6714491.0000010.043*
C60.2147 (5)0.5878 (3)0.58237 (19)0.0314 (8)
H60.2070820.6722240.5935580.038*
C100.4966 (4)0.4514 (3)0.81035 (17)0.0260 (6)
H100.4369510.3750120.7892990.031*
C70.5324 (4)0.6431 (3)0.74423 (19)0.0303 (7)
H7A0.5136360.7289810.7582470.036*
H7B0.5205930.6371400.6890240.036*
C30.2318 (4)0.3414 (3)0.54953 (19)0.0325 (8)
H30.2352210.2568470.5380210.039*
C90.6836 (5)0.4603 (4)0.7903 (2)0.0343 (8)
H9A0.7718090.4257540.8306500.041*
H9B0.6912920.4166290.7429230.041*
C3A0.0565 (5)0.5215 (4)0.9418 (2)0.0372 (9)
H3A0.0945080.5648690.9017460.045*
C50.2256 (4)0.5497 (5)0.50985 (17)0.0356 (7)
H50.2260670.6088170.4714430.043*
C2A0.0574 (5)0.3960 (4)0.9420 (2)0.0382 (8)
H2A0.0973830.3527680.9023460.046*
C80.7111 (5)0.5968 (4)0.7818 (2)0.0356 (9)
H8A0.8025990.6130040.7502390.043*
H8B0.7463090.6359380.8312570.043*
C1A0.0000000.3321 (6)1.0000000.0423 (12)
H1A0.0000000.2453521.0000000.051*
C410.2484 (6)0.3864 (5)0.4139 (2)0.0471 (10)
H41A0.2007240.4502220.3784620.071*
H41B0.1806510.3109800.4027170.071*
H41C0.3718620.3713990.4095320.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0251 (3)0.0248 (4)0.0200 (3)0.0011 (3)0.0049 (2)0.0010 (3)
O10.0314 (12)0.0333 (12)0.0264 (11)0.0036 (10)0.0106 (9)0.0002 (10)
O20.0351 (13)0.0289 (13)0.0318 (12)0.0083 (10)0.0048 (10)0.0029 (10)
O120.0606 (17)0.0302 (14)0.0245 (12)0.0026 (12)0.0011 (11)0.0011 (10)
O110.0509 (13)0.0296 (13)0.0207 (9)0.0040 (12)0.0040 (9)0.0053 (11)
N10.0264 (11)0.0257 (14)0.0212 (11)0.0005 (13)0.0018 (9)0.0006 (12)
C20.0269 (15)0.0267 (17)0.0261 (15)0.0016 (13)0.0069 (12)0.0017 (13)
C10.0242 (15)0.0278 (15)0.0187 (15)0.0002 (12)0.0027 (11)0.0004 (12)
C110.0240 (14)0.0270 (15)0.0239 (15)0.0006 (12)0.0039 (11)0.0005 (13)
C40.0263 (16)0.048 (2)0.0222 (15)0.0003 (14)0.0043 (12)0.0062 (14)
C4A0.037 (3)0.035 (3)0.038 (3)0.0000.013 (2)0.000
C60.0371 (18)0.0299 (19)0.0263 (17)0.0025 (13)0.0021 (14)0.0014 (13)
C100.0311 (15)0.0254 (16)0.0209 (14)0.0022 (13)0.0021 (11)0.0024 (12)
C70.0298 (17)0.0308 (18)0.0308 (17)0.0053 (14)0.0062 (13)0.0001 (14)
C30.0321 (17)0.035 (2)0.0306 (18)0.0023 (14)0.0061 (13)0.0077 (14)
C90.0348 (18)0.042 (2)0.0274 (17)0.0086 (16)0.0092 (13)0.0029 (16)
C3A0.0336 (17)0.051 (3)0.0284 (17)0.0022 (15)0.0097 (13)0.0028 (14)
C50.0388 (16)0.0447 (19)0.0232 (14)0.000 (2)0.0045 (12)0.0100 (19)
C2A0.0342 (18)0.043 (2)0.038 (2)0.0021 (16)0.0072 (15)0.0075 (16)
C80.0277 (17)0.048 (2)0.0325 (18)0.0038 (15)0.0079 (14)0.0031 (16)
C1A0.037 (3)0.038 (3)0.051 (3)0.0000.006 (2)0.000
C410.043 (2)0.075 (3)0.0234 (17)0.007 (2)0.0060 (14)0.0087 (18)
Geometric parameters (Å, º) top
S1—O11.435 (3)C6—H60.9500
S1—O21.437 (3)C10—C91.543 (5)
S1—N11.626 (2)C10—H101.0000
S1—C11.766 (3)C7—C81.522 (5)
O12—C111.265 (4)C7—H7A0.9900
O12—H120.840 (14)C7—H7B0.9900
O11—C111.257 (4)C3—H30.9500
O11—H110.837 (14)C9—C81.520 (6)
N1—C101.477 (4)C9—H9A0.9900
N1—C71.480 (4)C9—H9B0.9900
C2—C11.381 (5)C3A—C2A1.373 (5)
C2—C31.388 (5)C3A—H3A0.9500
C2—H20.9500C5—H50.9500
C1—C61.390 (5)C2A—C1A1.389 (5)
C11—C101.516 (4)C2A—H2A0.9500
C4—C51.380 (6)C8—H8A0.9900
C4—C31.394 (5)C8—H8B0.9900
C4—C411.513 (5)C1A—H1A0.9500
C4A—C3Ai1.386 (4)C41—H41A0.9800
C4A—C3A1.386 (4)C41—H41B0.9800
C4A—H4A0.9500C41—H41C0.9800
C6—C51.391 (5)
O1—S1—O2119.78 (15)C8—C7—H7A111.1
O1—S1—N1106.76 (14)N1—C7—H7B111.1
O2—S1—N1106.67 (16)C8—C7—H7B111.1
O1—S1—C1108.31 (15)H7A—C7—H7B109.1
O2—S1—C1107.34 (15)C2—C3—C4121.2 (3)
N1—S1—C1107.41 (13)C2—C3—H3119.4
C11—O12—H12112 (6)C4—C3—H3119.4
C11—O11—H11122 (6)C8—C9—C10103.6 (3)
C10—N1—C7112.1 (3)C8—C9—H9A111.0
C10—N1—S1119.7 (2)C10—C9—H9A111.0
C7—N1—S1119.7 (2)C8—C9—H9B111.0
C1—C2—C3118.8 (3)C10—C9—H9B111.0
C1—C2—H2120.6H9A—C9—H9B109.0
C3—C2—H2120.6C2A—C3A—C4A120.0 (4)
C2—C1—C6121.2 (3)C2A—C3A—H3A120.0
C2—C1—S1120.0 (2)C4A—C3A—H3A120.0
C6—C1—S1118.8 (3)C4—C5—C6121.0 (4)
O11—C11—O12124.2 (3)C4—C5—H5119.5
O11—C11—C10119.7 (3)C6—C5—H5119.5
O12—C11—C10116.1 (3)C3A—C2A—C1A120.2 (4)
C5—C4—C3118.8 (3)C3A—C2A—H2A119.9
C5—C4—C41120.8 (4)C1A—C2A—H2A119.9
C3—C4—C41120.4 (4)C9—C8—C7104.0 (3)
C3Ai—C4A—C3A120.1 (5)C9—C8—H8A111.0
C3Ai—C4A—H4A120.0C7—C8—H8A111.0
C3A—C4A—H4A120.0C9—C8—H8B111.0
C1—C6—C5119.0 (4)C7—C8—H8B111.0
C1—C6—H6120.5H8A—C8—H8B109.0
C5—C6—H6120.5C2Ai—C1A—C2A119.6 (6)
N1—C10—C11110.6 (3)C2Ai—C1A—H1A120.2
N1—C10—C9103.1 (3)C2A—C1A—H1A120.2
C11—C10—C9111.1 (3)C4—C41—H41A109.5
N1—C10—H10110.6C4—C41—H41B109.5
C11—C10—H10110.6H41A—C41—H41B109.5
C9—C10—H10110.6C4—C41—H41C109.5
N1—C7—C8103.1 (3)H41A—C41—H41C109.5
N1—C7—H7A111.1H41B—C41—H41C109.5
O1—S1—N1—C1029.6 (3)O11—C11—C10—N126.5 (4)
O2—S1—N1—C10158.8 (2)O12—C11—C10—N1155.0 (3)
C1—S1—N1—C1086.4 (2)O11—C11—C10—C987.4 (4)
O1—S1—N1—C7175.0 (2)O12—C11—C10—C991.1 (4)
O2—S1—N1—C755.8 (3)C10—N1—C7—C814.0 (3)
C1—S1—N1—C759.0 (3)S1—N1—C7—C8161.8 (2)
C3—C2—C1—C60.5 (5)C1—C2—C3—C41.1 (5)
C3—C2—C1—S1179.3 (2)C5—C4—C3—C21.9 (5)
O1—S1—C1—C228.4 (3)C41—C4—C3—C2179.1 (3)
O2—S1—C1—C2159.1 (3)N1—C10—C9—C828.9 (3)
N1—S1—C1—C286.6 (3)C11—C10—C9—C889.7 (3)
O1—S1—C1—C6151.9 (3)C3Ai—C4A—C3A—C2A0.4 (3)
O2—S1—C1—C621.2 (3)C3—C4—C5—C61.2 (5)
N1—S1—C1—C693.2 (3)C41—C4—C5—C6179.8 (3)
C2—C1—C6—C51.2 (5)C1—C6—C5—C40.3 (5)
S1—C1—C6—C5178.6 (3)C4A—C3A—C2A—C1A0.7 (6)
C7—N1—C10—C11109.6 (3)C10—C9—C8—C738.1 (3)
S1—N1—C10—C11102.6 (3)N1—C7—C8—C931.9 (3)
C7—N1—C10—C99.3 (3)C3A—C2A—C1A—C2Ai0.4 (3)
S1—N1—C10—C9138.5 (2)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O12ii0.84 (1)1.81 (3)2.628 (5)166 (9)
O11—H11···O11ii0.84 (1)1.85 (3)2.661 (4)162 (8)
C10—H10···O2iii1.002.313.267 (4)161
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1/2, y1/2, z+3/2.
Number of crystal structures found in the CSD versus the symmetry of the carboxyl cyclic dimer (compare with Fig. 6a) top
Symmetry element (with orientation)Number of structures
-13066
1931
2 (z)87
2 (y)6
2/m (z)6
Sum4096*
Note: (*) the sum of the observed symmetry dependance of the carboxyl cyclic dimer is bigger than the total number of entries retrieved from the CSD (4089) as in several crystal structures, more than one dimer fragment was observed.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds