Download citation
Download citation
link to html
The synthesis and detailed description of the crystal structure and energetic features of the 1:1 cocrystal of carbamazepine (5H-dibenzo[b,f]azepine-5-car­boxamide, CBZ) with 3,5-di­nitro­benzoic acid (35DNBA), i.e. C15H12N2O·C7H4N2O6, are reported. The CBZ and 35DNBA mol­ecules are packed in alternately arranged layers. Two characteristic R22(8) and R22(16) hydrogen-bond ring motifs have been found. The supra­molecular architecture, besides the network of hydrogen bonds, is also stabilized by numerous C—H...π, C=O...π, N—O...π, N—O...C and C=O...N weak inter­molecular contacts involving neighbouring mol­ecules in the crystal network. Identified inter­actions have been discussed in detail on the basis of a structural and energetic analysis. The latter approach, performed using the Pixel and CrystalExplorer programs, yielded additional information about the lattice energy and energetic landscape of the respective inter­actions in the crystal of CBZ·3DNBA with the evaluation of electrostatic, polarization, repulsion and dispersion terms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619009896/yf3179sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619009896/yf3179Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619009896/yf3179sup3.pdf
Additional figures, beta/tau angles and geometric parameters

CCDC reference: 1889542

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and CrystalExplorer17 (Turner et al., 2017).

5H-Dibenzo[b,f]azepine-5-carboxamide–3,5-dinitrobenzoic acid (1/1) top
Crystal data top
C15H12N2O·C7H4N2O6F(000) = 928
Mr = 448.39Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.7545 (3) ÅCell parameters from 13769 reflections
b = 6.47168 (18) Åθ = 2.5–32.1°
c = 30.0313 (9) ŵ = 0.11 mm1
β = 96.456 (3)°T = 100 K
V = 2076.92 (11) Å3, clear yellowish colourless
Z = 40.50 × 0.20 × 0.12 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Eos detector
7052 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5960 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 8.0013 pixels mm-1θmax = 32.4°, θmin = 3.2°
ω scansh = 1615
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
k = 99
Tmin = 0.969, Tmax = 0.991l = 4244
37711 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.8471P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7052 reflectionsΔρmax = 0.42 e Å3
310 parametersΔρmin = 0.35 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A good-quality single crystal of the investigated system was selected for X-ray diffraction data collection. The crystal was mounted with paratone-N oil to the MiTeGen micromount. Diffraction data were collected on the Agilent Technologies SuperNova Single Source Eos diffractometer with Mo Kα radiation (λ = 0.71073 Å) at T = 100 (2) K. The lattice parameters were obtained by least-squares fit to the optimized setting angles of the reflections collected by using the CrysAlis CCD software (Rigaku OD, 2015). Data were reduced using the CrysAlis RED program (Rigaku OD, 2015). The Gaussian absorption correction (Rigaku OD, 2015) using the multi-faceted crystal model was applied. The structural determination procedure was carried out using the SHELX package (Sheldrick, 2008). The structure was solved with direct methods, and then least-squares refinements were carried out based on full-matrix least-squares on F2 using the SHELXL97 program (Sheldrick, 2008).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O170.10440 (6)0.02924 (12)0.35591 (2)0.01730 (14)
N10.28829 (7)0.08894 (14)0.32812 (3)0.01593 (15)
N180.28560 (8)0.04098 (15)0.39997 (3)0.01876 (17)
C20.22537 (8)0.12375 (15)0.28401 (3)0.01481 (17)
C30.15547 (9)0.30246 (16)0.27508 (3)0.01695 (18)
H30.1537550.4037360.2969730.020*
C40.08803 (9)0.32883 (16)0.23313 (3)0.01816 (18)
H40.0415910.4485720.2267780.022*
C50.09024 (9)0.17564 (17)0.20072 (3)0.01933 (19)
H50.0439380.1919900.1728690.023*
C60.16117 (10)0.00108 (16)0.20980 (3)0.01977 (19)
H60.1617170.1025450.1878980.024*
C70.23238 (9)0.02988 (16)0.25154 (3)0.01728 (18)
C80.30825 (11)0.21648 (17)0.25925 (4)0.0241 (2)
H80.2788340.3330700.2432980.029*
C90.41549 (12)0.24077 (19)0.28657 (4)0.0272 (2)
H90.4508270.3720700.2874370.033*
C100.48255 (10)0.08454 (19)0.31497 (4)0.0241 (2)
C110.61353 (11)0.0958 (2)0.32451 (4)0.0336 (3)
H110.6561270.2069150.3137290.040*
C120.67987 (11)0.0544 (3)0.34952 (4)0.0386 (4)
H120.7663450.0432950.3555240.046*
C130.61860 (11)0.2220 (3)0.36581 (4)0.0360 (3)
H130.6640770.3242380.3821720.043*
C140.48866 (10)0.2370 (2)0.35761 (4)0.0261 (2)
H140.4469050.3490520.3683700.031*
C150.42232 (9)0.08219 (17)0.33314 (3)0.01948 (19)
C160.22185 (9)0.02271 (15)0.36142 (3)0.01433 (16)
O260.48023 (9)0.26301 (19)0.50061 (4)0.0435 (3)
O270.52666 (9)0.2631 (2)0.43212 (3)0.0472 (3)
O290.81208 (9)0.48446 (13)0.61477 (3)0.02671 (18)
O301.00582 (8)0.43955 (13)0.60251 (3)0.02557 (17)
O321.11081 (7)0.18870 (11)0.45930 (2)0.01769 (14)
O330.95548 (7)0.07446 (12)0.40894 (2)0.01860 (14)
N250.55571 (9)0.26580 (19)0.47285 (4)0.0318 (2)
N280.89281 (9)0.43074 (13)0.59133 (3)0.02014 (17)
C190.68964 (10)0.27536 (18)0.48902 (4)0.0220 (2)
C200.77467 (10)0.21567 (16)0.46003 (3)0.01936 (19)
H200.7477840.1710360.4311130.023*
C210.90158 (9)0.22456 (15)0.47554 (3)0.01550 (17)
C220.94029 (9)0.29444 (14)0.51878 (3)0.01598 (17)
H221.0249610.3015560.5291830.019*
C230.85085 (10)0.35304 (15)0.54597 (3)0.01766 (18)
C240.72394 (10)0.34432 (17)0.53230 (3)0.0214 (2)
H240.6648760.3826170.5511150.026*
C310.99973 (9)0.16011 (14)0.44667 (3)0.01486 (16)
H18A0.2430 (12)0.095 (2)0.4199 (4)0.022 (3)*
H18B0.3640 (9)0.071 (2)0.4010 (5)0.028 (4)*
H331.0109 (15)0.041 (3)0.3924 (6)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O170.0133 (3)0.0228 (3)0.0160 (3)0.0006 (3)0.0027 (2)0.0024 (3)
N10.0121 (3)0.0226 (4)0.0132 (3)0.0014 (3)0.0019 (3)0.0012 (3)
N180.0149 (4)0.0255 (4)0.0158 (4)0.0011 (3)0.0014 (3)0.0051 (3)
C20.0128 (4)0.0192 (4)0.0126 (4)0.0004 (3)0.0024 (3)0.0002 (3)
C30.0160 (4)0.0200 (4)0.0150 (4)0.0012 (3)0.0025 (3)0.0010 (3)
C40.0156 (4)0.0222 (5)0.0167 (4)0.0019 (3)0.0018 (3)0.0025 (3)
C50.0177 (4)0.0265 (5)0.0135 (4)0.0035 (4)0.0009 (3)0.0019 (3)
C60.0236 (5)0.0214 (5)0.0148 (4)0.0033 (4)0.0043 (3)0.0031 (3)
C70.0190 (4)0.0181 (4)0.0155 (4)0.0005 (3)0.0053 (3)0.0001 (3)
C80.0335 (6)0.0190 (5)0.0210 (5)0.0045 (4)0.0087 (4)0.0002 (4)
C90.0324 (6)0.0249 (5)0.0261 (5)0.0126 (4)0.0115 (4)0.0064 (4)
C100.0190 (5)0.0330 (6)0.0215 (5)0.0086 (4)0.0072 (4)0.0119 (4)
C110.0195 (5)0.0532 (8)0.0299 (6)0.0145 (5)0.0102 (4)0.0215 (5)
C120.0139 (5)0.0700 (10)0.0319 (6)0.0025 (5)0.0024 (4)0.0277 (6)
C130.0205 (5)0.0596 (9)0.0264 (6)0.0125 (5)0.0037 (4)0.0150 (6)
C140.0193 (5)0.0376 (6)0.0206 (5)0.0057 (4)0.0008 (4)0.0059 (4)
C150.0130 (4)0.0291 (5)0.0166 (4)0.0015 (4)0.0025 (3)0.0070 (4)
C160.0148 (4)0.0144 (4)0.0138 (4)0.0006 (3)0.0020 (3)0.0010 (3)
O260.0224 (4)0.0604 (7)0.0506 (6)0.0068 (4)0.0171 (4)0.0166 (5)
O270.0216 (4)0.0818 (9)0.0371 (5)0.0051 (5)0.0017 (4)0.0222 (5)
O290.0416 (5)0.0233 (4)0.0171 (3)0.0024 (3)0.0114 (3)0.0012 (3)
O300.0329 (4)0.0250 (4)0.0180 (3)0.0046 (3)0.0009 (3)0.0010 (3)
O320.0167 (3)0.0186 (3)0.0176 (3)0.0005 (3)0.0014 (2)0.0011 (2)
O330.0170 (3)0.0243 (4)0.0147 (3)0.0008 (3)0.0028 (2)0.0046 (3)
N250.0184 (4)0.0414 (6)0.0362 (5)0.0043 (4)0.0065 (4)0.0150 (5)
N280.0326 (5)0.0148 (4)0.0135 (4)0.0025 (3)0.0048 (3)0.0006 (3)
C190.0168 (4)0.0256 (5)0.0241 (5)0.0036 (4)0.0046 (4)0.0065 (4)
C200.0188 (4)0.0218 (5)0.0178 (4)0.0031 (4)0.0034 (3)0.0047 (3)
C210.0180 (4)0.0143 (4)0.0146 (4)0.0011 (3)0.0038 (3)0.0002 (3)
C220.0198 (4)0.0133 (4)0.0149 (4)0.0018 (3)0.0023 (3)0.0015 (3)
C230.0255 (5)0.0147 (4)0.0133 (4)0.0029 (4)0.0041 (3)0.0009 (3)
C240.0236 (5)0.0205 (5)0.0214 (5)0.0029 (4)0.0089 (4)0.0040 (4)
C310.0176 (4)0.0134 (4)0.0136 (4)0.0002 (3)0.0024 (3)0.0010 (3)
Geometric parameters (Å, º) top
O17—C161.2560 (11)C12—H120.9300
N1—C21.4359 (12)C12—C131.386 (2)
N1—C151.4330 (12)C13—H130.9300
N1—C161.3619 (12)C13—C141.3948 (16)
N18—C161.3424 (12)C14—H140.9300
N18—H18A0.868 (8)C14—C151.3908 (16)
N18—H18B0.862 (9)O26—N251.2273 (14)
C2—C31.3890 (14)O27—N251.2282 (15)
C2—C71.4004 (13)O29—N281.2277 (12)
C3—H30.9300O30—N281.2253 (12)
C3—C41.3917 (13)O32—C311.2261 (12)
C4—H40.9300O33—C311.3025 (11)
C4—C51.3915 (15)O33—H330.846 (9)
C5—H50.9300N25—C191.4687 (14)
C5—C61.3848 (15)N28—C231.4747 (12)
C6—H60.9300C19—C201.3864 (14)
C6—C71.4060 (14)C19—C241.3845 (14)
C7—C81.4612 (15)C20—H200.9300
C8—H80.9300C20—C211.3928 (14)
C8—C91.3472 (17)C21—C221.3937 (13)
C9—H90.9300C21—C311.4986 (13)
C9—C101.4599 (18)C22—H220.9300
C10—C111.4074 (15)C22—C231.3829 (14)
C10—C151.4004 (16)C23—C241.3814 (15)
C11—H110.9300C24—H240.9300
C11—C121.378 (2)
C15—N1—C2117.77 (7)C12—C13—C14119.91 (13)
C16—N1—C2119.67 (8)C14—C13—H13120.0
C16—N1—C15121.18 (8)C13—C14—H14120.4
C16—N18—H18A117.5 (9)C15—C14—C13119.16 (12)
C16—N18—H18B120.2 (10)C15—C14—H14120.4
H18A—N18—H18B118.3 (14)C10—C15—N1119.10 (10)
C3—C2—N1119.83 (8)C14—C15—N1118.93 (10)
C3—C2—C7121.81 (9)C14—C15—C10121.91 (10)
C7—C2—N1118.31 (9)O17—C16—N1119.72 (8)
C2—C3—H3120.2O17—C16—N18122.17 (9)
C2—C3—C4119.51 (9)N18—C16—N1118.07 (8)
C4—C3—H3120.2C31—O33—H33114.1 (14)
C3—C4—H4120.1O26—N25—O27124.24 (11)
C5—C4—C3119.85 (9)O26—N25—C19118.36 (11)
C5—C4—H4120.1O27—N25—C19117.40 (10)
C4—C5—H5119.9O29—N28—C23117.62 (9)
C6—C5—C4120.19 (9)O30—N28—O29124.99 (9)
C6—C5—H5119.9O30—N28—C23117.39 (9)
C5—C6—H6119.4C20—C19—N25118.18 (9)
C5—C6—C7121.20 (9)C24—C19—N25118.16 (10)
C7—C6—H6119.4C24—C19—C20123.66 (10)
C2—C7—C6117.39 (9)C19—C20—H20121.0
C2—C7—C8123.32 (9)C19—C20—C21117.99 (9)
C6—C7—C8119.29 (9)C21—C20—H20121.0
C7—C8—H8115.9C20—C21—C22120.25 (9)
C9—C8—C7128.13 (11)C20—C21—C31121.50 (8)
C9—C8—H8115.9C22—C21—C31118.24 (9)
C8—C9—H9116.3C21—C22—H22120.5
C8—C9—C10127.42 (10)C23—C22—C21118.97 (9)
C10—C9—H9116.3C23—C22—H22120.5
C11—C10—C9120.03 (11)C22—C23—N28118.56 (9)
C15—C10—C9122.79 (10)C24—C23—N28118.54 (9)
C15—C10—C11117.18 (12)C24—C23—C22122.89 (9)
C10—C11—H11119.3C19—C24—H24121.9
C12—C11—C10121.30 (13)C23—C24—C19116.24 (9)
C12—C11—H11119.3C23—C24—H24121.9
C11—C12—H12119.8O32—C31—O33125.55 (9)
C11—C12—C13120.45 (11)O32—C31—C21120.28 (8)
C13—C12—H12119.8O33—C31—C21114.17 (8)
C12—C13—H13120.0
N1—C2—C3—C4175.76 (9)C15—N1—C16—O17179.52 (9)
N1—C2—C7—C6174.50 (9)C15—N1—C16—N182.83 (14)
N1—C2—C7—C84.88 (14)C15—C10—C11—C121.97 (16)
C2—N1—C15—C1069.20 (12)C16—N1—C2—C377.77 (12)
C2—N1—C15—C14113.56 (11)C16—N1—C2—C799.54 (11)
C2—N1—C16—O1713.22 (14)C16—N1—C15—C1097.36 (11)
C2—N1—C16—N18169.14 (9)C16—N1—C15—C1479.89 (13)
C2—C3—C4—C50.58 (15)O26—N25—C19—C20160.53 (12)
C2—C7—C8—C929.72 (17)O26—N25—C19—C2419.74 (18)
C3—C2—C7—C62.75 (14)O27—N25—C19—C2020.14 (18)
C3—C2—C7—C8177.87 (10)O27—N25—C19—C24159.60 (12)
C3—C4—C5—C61.21 (15)O29—N28—C23—C22179.10 (9)
C4—C5—C6—C70.17 (15)O29—N28—C23—C240.13 (14)
C5—C6—C7—C22.10 (15)O30—N28—C23—C220.14 (13)
C5—C6—C7—C8178.49 (10)O30—N28—C23—C24179.09 (9)
C6—C7—C8—C9150.91 (12)N25—C19—C20—C21179.86 (10)
C7—C2—C3—C41.45 (15)N25—C19—C24—C23179.31 (10)
C7—C8—C9—C100.5 (2)N28—C23—C24—C19178.36 (9)
C8—C9—C10—C11149.86 (12)C19—C20—C21—C220.86 (15)
C8—C9—C10—C1529.08 (18)C19—C20—C21—C31179.13 (10)
C9—C10—C11—C12177.04 (11)C20—C19—C24—C230.41 (17)
C9—C10—C15—N17.26 (15)C20—C21—C22—C230.47 (14)
C9—C10—C15—C14175.58 (10)C20—C21—C31—O32172.63 (9)
C10—C11—C12—C130.30 (18)C20—C21—C31—O337.65 (13)
C11—C10—C15—N1173.77 (9)C21—C22—C23—N28178.78 (8)
C11—C10—C15—C143.39 (15)C21—C22—C23—C240.42 (15)
C11—C12—C13—C141.25 (18)C22—C21—C31—O327.38 (14)
C12—C13—C14—C150.13 (17)C22—C21—C31—O33172.34 (9)
C13—C14—C15—N1174.64 (9)C22—C23—C24—C190.84 (16)
C13—C14—C15—C102.52 (16)C24—C19—C20—C210.42 (17)
C15—N1—C2—C3115.47 (10)C31—C21—C22—C23179.52 (9)
C15—N1—C2—C767.22 (12)
The geometry of hydrogen bonds and other intermolecular contacts identified in the CBZ.35DNBA cocrystal top
Cg1 and Cg2 denote the geometric centres of gravity of the C10–C15 and C19–C24 aromatic rings, respectively (Fig. 1).
Hydrogen bonds
D—HH···AD···AD—H···A
N18–H18A···O32i0.867 (12)2.041 (13)2.8940 (11)167.5 (12)
N18—H18B···O270.862 (10)2.261 (12)3.0260 (14)147.9 (12)
O33—H33···O17ii0.846 (17)1.633 (17)2.4749 (9)173.3 (18)
C12—H12···O330.932.563.3876 (14)148.0
YX···CgI contactsX···CgIYX···CgI
N25—O27···Cg13.515 (1)138.76 (9)
C4—H4···Cg1iii2.77138.0
C11—H11···Cg1iv2.90148.0
C31O32···Cg2v3.3288 (8)99.08 (6)
C16—O17···N28v3.0418 (11)90.53
C31—O32···N28vi2.8924 (11)90.62
N28—O30···C31vi2.9796 (12)83.39
N28—O29···C16v3.1037 (13)88.19
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) -x, y+1/2, -z+1/2; (iv) -x+1, y-1/2, -z+1/2; (v) -x+2, -y, -z+1; (vi) -x+2, -y-1, -z+1.
The values of lattice energy and energies for the pairs of adjacent molecules for investigated system top
Interactions in brackets denote the shortest intermolecular contacts identified among respective pair of molecules. Cg1 and Cg2 denote the geometric centres of gravity of the C10–C15 and C19–C24 aromatic rings, respectively (Fig. 1).
Energy (kJ mol-1)EtotEeleEpolEdisErep
Lattice-123.2-82.8-36.2-115.2111.1
Pair 1(O33—H33···O17)-83.8-140.8-34.1-13.3165.0
Pair 2(N18—H18B···O27)-18.1-14.9-2.8-20.228.1
Pair 3(C11—H11···Cg1)-24.6-9.9-4.1-28.722.3
Pair 4(C4—H4···Cg1)-23.5-6.5-1.3-34.823.5
Pair 5(C31O32···Cg2)-28.3-12.5-5.7-24.516.9
Pair 6(C31—O32···N28)-41.5-27.1-4.7-45.749.3
Pair 7(C16—O17···N28)-21.6-3.1-4.1-36.927.3
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds