Download citation
Download citation
link to html
The croconate dianion is a highly versatile ligand with two tautomeric forms making it useful for building large superstructures in the solid state. The single-crystal X-ray structures of PbII– and CdII–croconate coordination polymers, namely catena-poly[[[di­aqua­lead(II)]-μ-croconato-κ4O1,O2:O3,O4] monohydrate], {[Pb(C5O5)(H2O)2]·H2O}n, 1, and catena-poly[[tri­aqua­cadmium(II)]-μ-croconato-κ4O1,O2:O3,O4], [Cd(C5O5)(H2O)3]n, 2, have been determined. Both polymers form one-dimensional (1D) structures; 1 is a nonplanar 1D zigzag coordination polymer extended along the crystallographic b axis, whereas 2 is a planar 1D ribbon parallel to the [101] direction. In 2, three H2O mol­ecules are coordinated directly to the metal atom, while in 1, only two H2O mol­ecules are directly coordinated to the metal atom. A third inter­stitial H2O mol­ecule is involved in hydrogen bonding with O atoms of the croconate ligands of an adjacent layer and other H2O mol­ecules, resulting in stacked double layers parallel to the [105] plane. Solid-state FT–IR and solution UV–Vis spectra also substanti­ate the croconate coordination.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619007277/yf3176sup1.cif
Contains datablocks rgr545_a_pl, rgr560_a, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619007277/yf3176rgr545_a_plsup2.hkl
Contains datablock rgr545_a_pl

cdx

Chemdraw file https://doi.org/10.1107/S2053229619007277/yf3176rgr545_a_plsup4.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619007277/yf3176rgr560_asup3.hkl
Contains datablock rgr560_a

cdx

Chemdraw file https://doi.org/10.1107/S2053229619007277/yf3176rgr560_asup5.cdx
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619007277/yf3176sup6.pdf
UV-Vis titration and FT-IR information and spectra

CCDC references: 1917126; 1917125

Computing details top

For both structures, data collection: SAINT (Bruker, 2015); cell refinement: APEX2 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009) and CrystalMaker (Palmer, 2014) for rgr545_a_pl; OLEX2 (Dolomanov et al., 2009) and CrystalMaker (Version 9; Palmer, 2014) for rgr560_a. For both structures, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[[diaqualead(II)]-µ-croconato-κ4O1,O2:O3,O4] monohydrate] (rgr545_a_pl) top
Crystal data top
[Pb(C5O5)(H2O)2]·H2OZ = 2
Mr = 401.29F(000) = 364
Triclinic, P1Dx = 3.256 Mg m3
a = 6.4360 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9058 (4) ÅCell parameters from 6853 reflections
c = 8.3495 (5) Åθ = 3.2–28.3°
α = 104.055 (1)°µ = 20.63 mm1
β = 90.956 (2)°T = 296 K
γ = 96.200 (2)°Needle, yellow
V = 409.30 (4) Å30.13 × 0.04 × 0.03 mm
Data collection top
Bruker D8 with PHOTON 100 detector
diffractometer
1928 reflections with I > 2σ(I)
Detector resolution: 10.42 pixels mm-1Rint = 0.027
φ and ω shutterless scansθmax = 28.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 88
Tmin = 0.415, Tmax = 0.746k = 1010
8040 measured reflectionsl = 1110
2026 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0217P)2 + 0.0167P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
2026 reflectionsΔρmax = 0.49 e Å3
144 parametersΔρmin = 1.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data were collected on a Bruker D8 Quest diffractometer with graphite monochromated Mo Kα radiation using the APEX3 suite (Bruker, 2015). Structures were solved by intrinsic phasing method using SHELXT (Sheldrick, 2015a) and were refined using SHELXL (Sheldrick, 2015b) with the Olex2 program (Dolomanov et al., 2009).

Graphics were prepared using CrystalMaker (Palmer, 2014).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.09912 (2)0.70968 (2)0.35063 (2)0.02400 (6)
O10.1805 (4)0.4301 (3)0.4220 (3)0.0249 (5)
O20.2089 (4)0.4717 (3)0.0930 (3)0.0265 (5)
O30.2472 (5)0.1217 (3)0.1318 (3)0.0318 (6)
O40.2391 (5)0.1311 (3)0.0789 (3)0.0352 (6)
O50.2032 (4)0.0626 (3)0.4195 (3)0.0267 (5)
O60.4883 (4)0.7389 (3)0.3353 (3)0.0262 (5)
H6A0.5488540.8015830.4291820.039*
H6B0.5287640.8003810.2645010.039*
O70.2731 (4)0.8030 (3)0.6382 (3)0.0288 (5)
O80.2576 (5)0.4678 (4)0.2181 (3)0.0307 (6)
C10.2054 (5)0.3091 (4)0.2983 (4)0.0171 (6)
C20.2195 (5)0.3295 (4)0.1308 (4)0.0178 (6)
C30.2370 (5)0.1582 (4)0.0204 (4)0.0215 (7)
C40.2352 (5)0.0287 (4)0.1255 (4)0.0196 (6)
C50.2143 (5)0.1274 (4)0.2964 (4)0.0181 (6)
H7A0.248 (9)0.902 (5)0.706 (6)0.060 (16)*
H7B0.274 (7)0.721 (5)0.692 (5)0.043 (13)*
H8A0.351 (6)0.537 (6)0.254 (6)0.046 (15)*
H8B0.270 (9)0.467 (8)0.116 (3)0.072 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02980 (8)0.01489 (8)0.02673 (8)0.00468 (5)0.00083 (5)0.00310 (5)
O10.0435 (15)0.0158 (11)0.0156 (11)0.0059 (10)0.0042 (10)0.0030 (9)
O20.0445 (15)0.0166 (12)0.0203 (12)0.0050 (10)0.0031 (11)0.0077 (9)
O30.0536 (17)0.0246 (13)0.0134 (11)0.0008 (12)0.0083 (11)0.0005 (10)
O40.0583 (19)0.0171 (13)0.0294 (14)0.0106 (12)0.0021 (13)0.0013 (10)
O50.0456 (16)0.0163 (12)0.0200 (12)0.0018 (10)0.0004 (10)0.0088 (9)
O60.0277 (13)0.0318 (14)0.0190 (12)0.0030 (10)0.0020 (9)0.0060 (10)
O70.0427 (15)0.0198 (13)0.0233 (13)0.0043 (11)0.0006 (11)0.0042 (10)
O80.0431 (16)0.0321 (15)0.0192 (13)0.0121 (12)0.0035 (11)0.0072 (11)
C10.0207 (15)0.0147 (15)0.0157 (14)0.0028 (11)0.0012 (11)0.0030 (11)
C20.0232 (15)0.0147 (15)0.0153 (14)0.0014 (11)0.0018 (11)0.0039 (11)
C30.0253 (16)0.0207 (17)0.0187 (15)0.0043 (13)0.0033 (12)0.0047 (13)
C40.0238 (16)0.0153 (15)0.0192 (15)0.0058 (12)0.0010 (12)0.0016 (12)
C50.0218 (15)0.0148 (14)0.0174 (15)0.0019 (11)0.0009 (12)0.0033 (12)
Geometric parameters (Å, º) top
Pb1—O12.529 (2)O6—H6B0.8779
Pb1—O22.653 (2)O7—H7A0.88 (2)
Pb1—O5i2.714 (2)O7—H7B0.876 (19)
Pb1—O62.499 (2)O8—H8A0.864 (19)
Pb1—O72.537 (3)O8—H8B0.85 (2)
O1—C11.251 (4)C1—C21.449 (4)
O2—C21.248 (4)C1—C51.440 (4)
O3—C31.238 (4)C2—C31.458 (4)
O4—C41.231 (4)C3—C41.501 (5)
O5—C51.255 (4)C4—C51.467 (4)
O6—H6A0.8782
O1—Pb1—O266.73 (7)H7A—O7—H7B110 (5)
O1—Pb1—O5i144.36 (8)H8A—O8—H8B98 (5)
O1—Pb1—O774.06 (8)O1—C1—C2124.7 (3)
O2—Pb1—O5i127.18 (7)O1—C1—C5126.3 (3)
O6—Pb1—O179.20 (8)C5—C1—C2108.9 (3)
O6—Pb1—O270.11 (8)O2—C2—C1123.6 (3)
O6—Pb1—O5i77.15 (8)O2—C2—C3127.8 (3)
O6—Pb1—O769.40 (8)C1—C2—C3108.6 (3)
O7—Pb1—O2127.50 (9)O3—C3—C2127.7 (3)
O7—Pb1—O5i72.84 (8)O3—C3—C4125.2 (3)
C1—O1—Pb1113.6 (2)C2—C3—C4107.1 (3)
C2—O2—Pb1110.12 (19)O4—C4—C3127.5 (3)
C5—O5—Pb1ii115.4 (2)O4—C4—C5125.7 (3)
Pb1—O6—H6A111.0C5—C4—C3106.7 (3)
Pb1—O6—H6B110.7O5—C5—C1126.0 (3)
H6A—O6—H6B103.2O5—C5—C4125.2 (3)
Pb1—O7—H7A120 (4)C1—C5—C4108.7 (3)
Pb1—O7—H7B116 (3)
Pb1—O1—C1—C29.0 (4)O3—C3—C4—C5178.0 (3)
Pb1—O1—C1—C5167.6 (3)O4—C4—C5—O52.0 (6)
Pb1—O2—C2—C18.9 (4)O4—C4—C5—C1177.0 (3)
Pb1—O2—C2—C3168.0 (3)C1—C2—C3—O3178.1 (3)
Pb1ii—O5—C5—C1160.7 (2)C1—C2—C3—C40.4 (4)
Pb1ii—O5—C5—C418.3 (4)C2—C1—C5—O5178.8 (3)
O1—C1—C2—O20.4 (5)C2—C1—C5—C40.2 (4)
O1—C1—C2—C3177.0 (3)C2—C3—C4—O4177.0 (3)
O1—C1—C5—O51.7 (6)C2—C3—C4—C50.6 (4)
O1—C1—C5—C4177.3 (3)C3—C4—C5—O5178.6 (3)
O2—C2—C3—O30.9 (6)C3—C4—C5—C10.5 (4)
O2—C2—C3—C4177.7 (3)C5—C1—C2—O2177.5 (3)
O3—C3—C4—O41.6 (6)C5—C1—C2—C30.1 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O5iii0.882.052.868 (4)155
O6—H6B···O3iv0.881.972.757 (3)149
O7—H7A···O3v0.88 (2)1.92 (2)2.795 (4)169 (5)
O7—H7B···O8vi0.88 (2)1.82 (2)2.691 (4)173 (5)
O8—H8A···O6vii0.86 (2)1.98 (2)2.831 (4)167 (5)
O8—H8B···O2viii0.85 (2)1.95 (3)2.769 (4)159 (6)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x, y+1, z+1; (vi) x, y+1, z+1; (vii) x1, y, z; (viii) x, y+1, z.
catena-Poly[[triaquacadmium(II)]-µ-croconato-κ4O1,O2:O3,O4] (rgr560_a) top
Crystal data top
[Cd(C5O5)(H2O)3]F(000) = 592
Mr = 306.50Dx = 2.569 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.5123 (3) ÅCell parameters from 9903 reflections
b = 8.8174 (4) Åθ = 3.0–28.3°
c = 13.8763 (6) ŵ = 2.78 mm1
β = 96.053 (1)°T = 298 K
V = 792.36 (6) Å3Block, red
Z = 40.18 × 0.14 × 0.09 mm
Data collection top
Bruker D8 with PHOTON 100 detector
diffractometer
1843 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.3°, θmin = 3.0°
Tmin = 0.688, Tmax = 0.746h = 88
22305 measured reflectionsk = 1111
1970 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015All H-atom parameters refined
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0216P)2 + 0.2417P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
1970 reflectionsΔρmax = 0.48 e Å3
151 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.43724 (2)0.88271 (2)0.68614 (2)0.02022 (5)
O10.2558 (2)0.89361 (12)0.51854 (9)0.0268 (3)
O20.37243 (18)0.63493 (12)0.62976 (8)0.0226 (2)
O30.26637 (19)0.35768 (12)0.51165 (9)0.0248 (2)
O40.08427 (18)0.46592 (14)0.32039 (7)0.0284 (3)
O50.06505 (17)0.78557 (14)0.31997 (7)0.0290 (3)
O60.7487 (2)0.87789 (12)0.61835 (10)0.0239 (2)
O70.4245 (2)1.13414 (13)0.64388 (10)0.0317 (3)
O80.1165 (2)0.89464 (13)0.74291 (10)0.0251 (2)
C10.2310 (2)0.76145 (16)0.48626 (10)0.0182 (3)
C20.2908 (2)0.62790 (14)0.54359 (10)0.0166 (3)
C30.2409 (2)0.49220 (15)0.48598 (10)0.0166 (3)
C40.1502 (2)0.54480 (16)0.39068 (10)0.0179 (3)
C50.1411 (2)0.71068 (16)0.39055 (10)0.0190 (3)
H6A0.751 (3)0.798 (3)0.5861 (16)0.039 (6)*
H8A0.114 (3)0.970 (3)0.7824 (18)0.047 (6)*
H6B0.745 (3)0.944 (3)0.5841 (16)0.035 (6)*
H8B0.025 (4)0.896 (2)0.7057 (19)0.040 (7)*
H7A0.426 (4)1.198 (4)0.6907 (19)0.070 (9)*
H7B0.353 (4)1.182 (4)0.601 (2)0.076 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02547 (7)0.01806 (7)0.01602 (7)0.00052 (4)0.00309 (4)0.00174 (3)
O10.0415 (7)0.0179 (5)0.0192 (6)0.0015 (4)0.0054 (5)0.0019 (4)
O20.0318 (6)0.0213 (5)0.0132 (5)0.0028 (4)0.0054 (4)0.0001 (4)
O30.0334 (6)0.0182 (5)0.0217 (6)0.0032 (4)0.0027 (5)0.0024 (4)
O40.0419 (7)0.0225 (6)0.0178 (5)0.0003 (5)0.0102 (5)0.0043 (4)
O50.0425 (7)0.0218 (6)0.0194 (5)0.0009 (5)0.0119 (5)0.0034 (4)
O60.0298 (6)0.0156 (5)0.0256 (6)0.0008 (4)0.0006 (5)0.0006 (4)
O70.0514 (8)0.0207 (6)0.0207 (6)0.0074 (5)0.0073 (5)0.0010 (4)
O80.0279 (6)0.0239 (6)0.0226 (6)0.0021 (4)0.0019 (5)0.0032 (4)
C10.0216 (7)0.0175 (6)0.0149 (6)0.0013 (5)0.0014 (5)0.0004 (5)
C20.0167 (6)0.0186 (6)0.0140 (6)0.0004 (5)0.0005 (5)0.0006 (5)
C30.0173 (6)0.0175 (6)0.0146 (6)0.0001 (5)0.0000 (5)0.0002 (5)
C40.0195 (6)0.0183 (7)0.0152 (6)0.0006 (5)0.0015 (5)0.0008 (5)
C50.0219 (7)0.0189 (7)0.0154 (6)0.0009 (5)0.0022 (5)0.0003 (5)
Geometric parameters (Å, º) top
Cd1—O12.4971 (12)O6—H6A0.83 (2)
Cd1—O22.3439 (11)O6—H6B0.75 (2)
Cd1—O4i2.4067 (11)O7—H7A0.86 (3)
Cd1—O5i2.4529 (11)O7—H7B0.83 (3)
Cd1—O62.3244 (13)O8—H8A0.86 (3)
Cd1—O72.2924 (12)O8—H8B0.74 (3)
Cd1—O82.3112 (13)C1—C21.4512 (19)
O1—C11.2528 (18)C1—C51.464 (2)
O2—C21.2578 (18)C2—C31.4565 (18)
O3—C31.2445 (17)C3—C41.4657 (18)
O4—C41.2373 (17)C4—C51.464 (2)
O5—C51.2402 (17)
O2—Cd1—O170.98 (4)Cd1—O6—H6A107.5 (15)
O2—Cd1—O4i144.91 (4)Cd1—O6—H6B105.6 (17)
O2—Cd1—O5i73.96 (4)H6A—O6—H6B109 (2)
O4i—Cd1—O1144.11 (4)Cd1—O7—H7A116 (2)
O4i—Cd1—O5i70.97 (4)Cd1—O7—H7B132 (2)
O5i—Cd1—O1144.87 (3)H7A—O7—H7B100 (3)
O6—Cd1—O188.35 (5)Cd1—O8—H8A109.4 (15)
O6—Cd1—O288.96 (4)Cd1—O8—H8B116.6 (19)
O6—Cd1—O4i91.75 (4)H8A—O8—H8B111 (2)
O6—Cd1—O5i93.12 (4)O1—C1—C2122.81 (13)
O7—Cd1—O173.96 (4)O1—C1—C5129.26 (14)
O7—Cd1—O2144.65 (4)C2—C1—C5107.92 (12)
O7—Cd1—O4i70.27 (4)O2—C2—C1122.90 (12)
O7—Cd1—O5i141.16 (4)O2—C2—C3127.57 (12)
O7—Cd1—O685.63 (5)C1—C2—C3109.53 (12)
O7—Cd1—O891.92 (5)O3—C3—C2127.63 (13)
O8—Cd1—O187.69 (5)O3—C3—C4126.06 (13)
O8—Cd1—O291.08 (4)C2—C3—C4106.30 (11)
O8—Cd1—O4i90.63 (4)O4—C4—C3127.35 (13)
O8—Cd1—O5i90.93 (4)O4—C4—C5123.37 (13)
O8—Cd1—O6175.80 (4)C5—C4—C3109.25 (11)
C1—O1—Cd1109.12 (9)O5—C5—C1129.92 (14)
C2—O2—Cd1113.98 (9)O5—C5—C4123.08 (13)
C4—O4—Cd1ii112.03 (10)C4—C5—C1106.98 (12)
C5—O5—Cd1ii110.55 (10)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O3iii0.83 (2)1.93 (2)2.746 (2)167 (2)
O8—H8A···O2iv0.86 (3)1.89 (3)2.755 (2)176 (2)
O6—H6B···O1v0.75 (2)2.02 (2)2.767 (2)174 (2)
O8—H8B···O6vi0.74 (3)2.07 (3)2.806 (2)170 (2)
O7—H7A···O8iv0.86 (3)1.99 (3)2.811 (2)158 (3)
O7—H7B···O3vii0.83 (3)2.03 (3)2.813 (2)157 (3)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+3/2; (v) x+1, y+2, z+1; (vi) x1, y, z; (vii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds